VN750SM ® M HIGH SIDE DRIVER TYPE VN750SM RDS(on) 55 mΩ IOUT 6A VCC 36 V CMOS COMPATIBLE INPUT ■ ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ PROTECTION AGAINST LOSS OF GROUND ■ VERY LOW STAND-BY CURRENT ■ ■ SO-8 ORDER CODES PACKAGE REVERSE BATTERY PROTECTION (*) SO-8 DESCRIPTION The VN750SM is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device detects open load condition both in on and off state. The openload threshold is aimed at TUBE VN750SM T&R VN750SM13TR detecting the 5W/12V standard bulb as an openload fault in the on state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER INPUT OUTPUT LOGIC CURRENT LIMITER ON STATE OPENLOAD DETECTION STATUS OVERTEMPERATURE DETECTION OFF STATE OPENLOAD AND OUTPUT SHORTED TO VCC DETECTION (*) See application schematic at page 8 July 2002 1/18 1 VN750SM ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - Ignd IOUT - IOUT IIN ISTAT VESD EMAX Ptot Tj Tstg Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) Value 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 Unit V V mA A A mA mA - INPUT 4000 V - STATUS 4000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V 90 mJ 4.2 Internally Limited - 55 to 150 W °C °C (L=1.3mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=10A) Power Dissipation TC=25°C Junction Operating Temperature Storage Temperature CONNECTION DIAGRAM (TOP VIEW) VCC OUTPUT OUTPUT VCC 5 4 8 1 N.C. STATUS INPUT GND CURRENT AND VOLTAGE CONVENTIONS IS IIN VCC INPUT ISTAT IOUT STATUS VCC OUTPUT GND VIN VSTAT 2/18 1 IGND VOUT VN750SM THERMAL DATA Symbol Rthj-lead Parameter Thermal Resistance Junction-lead Rthj-amb Thermal Resistance Junction-ambient Max Max Value 30 Unit °C/W 93 (*) °C/W (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) POWER Symbol VCC VUSD VUSDhyst VOV RON IS IL(off1) IL(off2) IL(off3) IL(off4) Parameter Operating Supply Voltage Undervoltage Shut-down Undervoltage Shut-down Hysteresis Overvoltage Shut-down On State Resistance Supply Current Off State Output Current Off State Output Current Off State Output Current Off State Output Current Test Conditions Min 5.5 3 Typ 13 4 Max 36 5.5 0.5 V 36 IOUT=2A; Tj=25°C; VCC>8V IOUT=2A; VCC>8V Unit V V 55 V mΩ 110 25 mΩ µA Off State; VCC=13V; VIN=VOUT=0V 10 Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 10 20 µA On State; VCC=13V; VIN=5V; IOUT=0A 2 3.5 50 0 5 3 mA µA µA µA µA Typ Max Unit VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; Vcc=13V; Tj =125°C VIN=VOUT=0V; Vcc=13V; Tj =25°C 0 -75 Test Conditions RL=6.5Ω from VIN rising edge to VOUT=1.3V RL=6.5Ω from VIN falling edge to VOUT=11.7V Min SWITCHING (VCC=13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time dVOUT/dt(on) Turn-on Voltage Slope RL=6.5Ω from VOUT=1.3V to VOUT=10.4V dVOUT/dt(off) Turn-off Voltage Slope RL=6.5Ω from VOUT=11.7V to VOUT=1.3V 40 µs 30 µs See relative diagram See relative diagram V/µs V/µs INPUT PIN Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V Min Typ 1 3.25 VIN=3.25V IIN=1mA IIN=-1mA Max 1.25 10 0.5 6 6.8 -0.7 8 Unit V µA V µA V V V 3/18 1 VN750SM ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=2A; Tj=150°C Min Typ Max 0.6 Unit V STATUS PIN Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT=1.6mA Status Leakage Current Normal Operation; VSTAT=5V Status Pin Input Normal Operation; VSTAT=5V Capacitance ISTAT=1mA Status Clamp Voltage ISTAT=-1mA Min 6 Typ 6.8 Max 0.5 10 Unit V µA 100 pF 8 V -0.7 V PROTECTIONS Symbol TTSD TR Thyst tSDL Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status delay in overload condition Ilim Current limitation Vdemag Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 10 5.5V<VCC<36V IOUT=2A; VIN=0V; L=6mH Unit °C °C °C 20 µs 12 A 12 A 15 Tj>TTSD 6 Max 200 VCC-41 VCC-48 VCC-55 V OPENLOAD DETECTION Symbol IOL tDOL(on) VOL tDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Test Conditions VIN=5V Min Typ Max Unit 0.6 0.9 1.2 A 200 µs 3.5 V 1000 µs IOUT=0A VIN=0V 1.5 2.5 Threshold Openload Detection Delay at Turn Off OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL OVER TEMP STATUS TIMING Tj > TTSD VIN VIN VSTAT VSTAT tDOL(off) tDOL(on) tSDL tSDL 4/18 2 1 VN750SM Switching time Waveforms VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% t VIN td(on) td(off) t TRUTH TABLE CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L 5/18 1 VN750SM ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN ISO T/R 7637/1 Test Pulse I II TEST LEVELS III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E 6/18 1 1 I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. VN750SM Figure 1: Waveforms NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VUSDhyst VCC VUSD INPUT LOAD VOLTAGE STATUS undefined OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUT LOAD VOLTAGE STATUS OPEN LOAD with external pull-up INPUT VOUT>VOL LOAD VOLTAGE VOL STATUS OPEN LOAD without external pull-up INPUT LOAD VOLTAGE STATUS Tj TTSD TR OVERTEMPERATURE INPUT LOAD CURRENT STATUS 7/18 1 1 VN750SM APPLICATION SCHEMATIC +5V +5V VCC Rprot STATUS Dld µC Rprot INPUT OUTPUT GND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 8/18 1 1 VN750SM OPEN LOAD DETECTION IN OFF STATE 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. Open Load detection in off state V batt. VPU VCC RPU INPUT DRIVER + LOGIC IL(off2) OUT + R STATUS VOL RL GROUND 9/18 1 VN750SM Off State Output Current High Level Input Current Iih (uA) IL(off1) (uA) 7 3 2.5 6 Off state Vcc=36V Vin=Vout=0V 2 Vin=3.25V 5 1.5 4 1 3 0.5 2 0 1 -0.5 -1 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (ºC) Status Leakage Current Input Clamp Voltage Vicl (V) Ilstat (uA) 8 0.05 7.8 Iin=1mA 7.6 0.04 7.4 Vstat=5V 0.03 7.2 7 6.8 0.02 6.6 6.4 0.01 6.2 6 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 Tc (°C) 50 75 Tc (°C) Status Low Output Voltage Status Clamp Voltage Vstat (V) Vscl (V) 0.6 8 7.8 Istat=1mA 0.5 7.6 Istat=1.6mA 7.4 0.4 7.2 0.3 7 6.8 0.2 6.6 6.4 0.1 6.2 6 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 10/18 1 VN750SM On State Resistance Vs. Tcase On State Resistance Vs. VCC Ron (mOhm) Ron (mOhm) 140 120 110 120 Iout=2A Iout=2A Vcc=8V; 13V; 36V 100 100 Tc= 150°C 90 80 80 Tc= 125°C 70 60 60 50 40 Tc= 25°C 40 20 Tc= - 40°C 30 0 20 -50 -25 0 25 50 75 100 125 150 175 5 10 15 20 Tc (ºC) 25 30 35 40 Vcc (V) Openload On State Detection Threshold Input High Level Iol (A) Vih (V) 3.6 1.2 1.15 3.4 Vcc=13V Vin=5V 1.1 3.2 1.05 1 3 0.95 0.9 2.8 0.85 2.6 0.8 0.75 2.4 0.7 2.2 0.65 0.6 2 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 100 125 150 175 Tc (ºC) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.8 1.5 2.6 1.4 1.3 2.4 1.2 2.2 1.1 2 1 1.8 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 -50 -25 0 25 50 75 Tc (ºC) 11/18 1 1 VN750SM Overvoltage Shutdown Openload Off State Voltage Detection Threshold Vol (V) Vov (V) 50 5 48 4.5 Vin=0V 46 4 44 3.5 42 40 3 38 2.5 36 2 34 1.5 32 1 30 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 125 150 175 100 125 150 175 Tc (ºC) Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt/(on) (V/ms) dVout/dt(off) (V/ms) 1000 500 900 450 Vcc=13V Rl=6.5Ohm 800 Vcc=13V Rl=6.5Ohm 400 700 350 600 300 500 250 400 200 300 150 200 100 100 50 0 0 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) -50 -25 0 25 50 75 Tc (ºC) Ilim Vs. Tcase Ilim (A) 20 18 Vcc=13V 16 14 12 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 150 175 Tc (ºC) 12/18 1 1 VN750SM Maximum turn off current versus load inductance ILMAX (A) 100 10 A B C 1 0.1 1 10 100 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at TJstart=100ºC C= Repetitive Pulse at TJstart=125ºC Conditions: VCC=13.5V Values are generated with RL=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 13/18 VN750SM SO-8 THERMAL DATA SO-8 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.14cm2, 2cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (ºC/W) SO8 at 2 pins connected to TAB 110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 PCB Cu heatsink area (cm^2) 14/18 1 2 2.5 VN750SM SO-8 Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 0.5 cm2 100 2 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 Time (s) Thermal fitting model of a single channel HSD in SO-8 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.5 0.05 0.8 3.5 21 16 58 0.006 2.60E-03 0.0075 0.045 0.35 1.05 2 28 2 15/18 VN750SM SO-8 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.25 a2 MAX. 0.003 0.009 1.65 0.064 a3 0.65 0.85 0.025 0.033 b 0.35 0.48 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.25 0.5 0.010 0.019 c1 45 (typ.) D 4.8 5 0.188 0.196 E 5.8 6.2 0.228 0.244 e 1.27 e3 3.81 0.050 0.150 F 3.8 4 0.14 L 0.4 1.27 0.015 M 0.6 S L1 0.157 0.050 0.023 8 (max.) 0.8 1.2 0.031 0.047 16/18 1 1 VN750SM SO-8 TUBE SHIPMENT (no suffix) B Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C A 100 2000 532 3.2 6 0.6 All dimensions are in mm. TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 12 4 8 1.5 1.5 5.5 4.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 17/18 1 VN750SM Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2002 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 18/18