a CONNECTION DIAGRAMS 14-Lead Plastic DIP (N) 14-Lead CerDIP (Q) Packages OUTPUT 1 –IN 2 +IN 3 +VS 4 14 4 1 AD704 OUTPUT OUTPUT 1 13 –IN –IN 2 12 +IN +IN 3 11 –VS +VS 4 (TOP VIEW) +IN 5 –IN 6 OUTPUT 7 2 3 APPLICATIONS Industrial/Process Controls Weigh Scales ECG/EKG Instrumentation Low Frequency Active Filters 16-Lead SOIC (R) Package 1 4 AD704 16 OUTPUT 15 –IN 14 +IN 13 –VS (TOP VIEW) 10 +IN +IN 5 9 –IN –IN 6 8 OUTPUT OUTPUT NC 12 +IN 11 –IN 7 10 OUTPUT 8 9 2 3 NC NC = NO CONNECT OUT1 NC OUT4 –IN4 20-Terminal LCC (E) Package –IN1 FEATURES High DC Precision 75 V Max Offset Voltage 1 V/ⴗC Max Offset Voltage Drift 150 pA Max Input Bias Current 0.2 pA/ⴗC Typical I B Drift Low Noise 0.5 V p-p Typical Noise, 0.1 Hz to 10 Hz Low Power 600 A Max Supply Current per Amplifier MIL-STD-883B Processing Available Available in Tape and Reel in Accordance with EIA-481A Standard Dual Version: AD706 Quad Picoampere Input Current Bipolar Op Amp AD704 3 2 1 20 19 PRODUCT DESCRIPTION The AD704 is an excellent choice for use in low frequency active filters in 12- and 14-bit data acquisition systems, in precision instrumentation, and as a high quality integrator. The AD704 is internally compensated for unity gain and is available in five performance grades. The AD704J and AD704K are rated over the commercial temperature range of 0°C to 70°C. The AD704A is rated over the industrial temperature of –40°C to +85°C. The AD704T is rated over the military temperature range of –55°C to +125°C and is available processed to MIL-STD-883B, Rev. C. NC 5 AMP 1 +VS 6 NC 7 17 NC AMP 4 16 –VS AD704 AMP 2 AMP 3 15 NC 14 +IN3 12 13 –IN3 OUT2 11 NC 10 OUT3 9 –IN2 +IN2 8 NC = NO CONNECT 100 10 TYPICAL I B – nA Since it has only 1/20 the input bias current of an AD OP07, the AD704 does not require the commonly used “balancing” resistor. Furthermore, the current noise is 1/5 that of the AD OP07 which makes the AD704 usable with much higher source impedances. At 1/6 the supply current (per amplifier) of the AD OP07, the AD704 is better suited for today’s higher density circuit boards and battery-powered applications. 18 +IN4 +IN1 4 The AD704 is a quad, low power bipolar op amp that has the low input bias current of a BiFET amplifier but which offers a significantly lower IB drift over temperature. It utilizes super-beta bipolar input transistors to achieve picoampere input bias current levels (similar to FET input amplifiers at room temperature), while its IB typically only increases by 5× at 125°C (unlike a BiFET amp, for which IB doubles every 10°C resulting in a 1000× increase at 125°C). Furthermore, the AD704 achieves 75 µV offset voltage and low noise characteristics of a precision bipolar input op amp. TYPICAL JFET AMP 1 0.1 AD704T 0.01 –55 +25 TEMPERATURE – C +125 Figure 1. Input Bias Current Over Temperature REV. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 AD704–SPECIFICATIONS (@ T = 25ⴗC, V A Parameters INPUT OFFSET VOLTAGE Initial Offset Offset vs. Temp, Average TC vs. Supply (PSRR) TMIN –TMAX Long-Term Stability Conditions INPUT BIAS CURRENT 1 VCM = 0 V VCM = ± 13.5 V vs. Temp, Average TC TMIN –TMAX INPUT OFFSET CURRENT vs. Temp, Average TC TMIN –TMAX CM = 0 V, and ⴞ15 V dc, unless otherwise noted.) AD704J/A Min Typ Max TMIN –TMAX VS = ± 2 to ± 18 V 100 VS = ± 2.5 to ± 18 V 100 50 100 0.2 132 126 0.3 150 250 1.5 100 270 300 VCM = 0 V VCM = ± 13.5 V 80 0.6 100 100 VCM = 0 V VCM = ± 13.5 V TMIN –TMAX TMIN –TMAX Power Supply Rejection 4 TMIN –TMAX f = 10 Hz RLOAD = 2 kΩ G = –1 TMIN –TMAX VCM = ± 13.5 V TMIN –TMAX 75 150 1.0 80 150 200 250 300 30 0.4 80 80 300 400 30 80 112 108 80 µV µV µV/°C dB dB µV/month 200 250 pA pA pA/°C pA pA 1.0 600 700 100 150 50 0.4 80 100 200 300 110 104 110 106 Unit 100 150 1.0 132 126 0.3 130 200 300 400 150 200 400 500 150 250 400 600 104 104 110 106 pA pA pA/°C pA pA µV µV pA pA dB dB dB dB 150 150 150 dB 0.8 0.15 0.1 0.8 0.15 0.1 0.8 0.15 0.1 MHz V/µs V/µs 40储2 300储2 40储2 300储2 40储2 300储2 MΩ储pF GΩ储pF ± 13.5 ± 14 100 132 98 128 ± 13.5 ± 14 114 132 108 128 0.1 to 10 Hz f = 10 Hz 3 50 3 50 INPUT VOLTAGE NOISE 0.1 to 10 Hz f = 10 Hz f = 1 kHz 0.5 17 15 0.5 17 15 VO = ± 12 V RLOAD = 10 kΩ TMIN –TMAX VO = ± 10 V RLOAD = 2 kΩ TMIN –TMAX AD704T Typ Max 200 300 INPUT CURRENT NOISE OPEN-LOOP GAIN Min 0.2 94 94 94 94 INPUT IMPEDANCE Differential Common-Mode INPUT VOLTAGE RANGE Common-Mode Voltage Common-Mode Rejection Ratio 30 50 0.2 132 126 0.3 250 400 500 600 Input Bias Current2 Common-Mode Rejection 3 AD704K Typ Max 300 400 TMIN –TMAX FREQUENCY RESPONSE UNITY GAIN Crossover Frequency Slew Rate, Unity Gain Slew Rate 112 108 0.3 VCM = 0 V VCM = ± 13.5 V MATCHING CHARACTERISTICS Offset Voltage Crosstalk5 Min 22 ± 13.5 ± 14 110 132 108 128 V dB dB 3 50 2.0 0.5 17 15 22 pA p-p fA/√Hz 2.0 22 µV p-p nV/√Hz nV/√Hz 200 150 2000 1500 400 300 2000 1500 400 300 2000 1500 V/mV V/mV 200 150 1000 1000 300 200 1000 1000 200 100 1000 1000 V/mV V/mV –2– REV. C AD704 Parameters OUTPUT CHARACTERISTICS Voltage Swing Current CAPACITIVE LOAD Drive Capability Conditions RLOAD = 10 kΩ TMIN –TMAX Short Circuit Min ± 13 ± 13 Gain = 1 POWER SUPPLY Rated Performance Operating Range Quiescent Current TRANSISTOR COUNT AD704J/A Min Typ Max ± 14 ± 15 10,000 ± 2.0 ± 15 TMIN –TMAX 1.5 1.6 # of Transistors 180 –3– ± 14 ± 15 Min ± 13 10,000 ± 18 2.4 2.6 ± 2.0 NOTES 1 Bias current specifications are guaranteed maximum at either input. 2 Input bias current match is the maximum difference between corresponding inputs of all four amplifiers. 3 CMRR match is the difference of ∆VOS/∆VCM between any two amplifiers, expressed in dB. 4 PSRR match is the difference between ∆VOS/∆V SUPPLY for any two amplifiers, expressed in dB. 5 See Figure 2a for test circuit. All min and max specifications are guaranteed. Specifications subject to change without notice. REV. C AD704K Typ Max ± 15 1.5 1.6 180 ± 18 2.4 2.6 ± 2.0 AD704T Typ Max Unit ± 14 ± 15 V mA 10,000 pF ± 15 1.5 1.6 180 ± 18 2.4 2.6 V V mA mA AD704 ABSOLUTE MAXIMUM RATINGS 1 9k⍀ Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V Internal Power Dissipation (25°C) . . . . . . . . . . . . See Note 2 Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VS Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . ± 0.7 V Output Short-Circuit Duration (Single Input) . . . . . Indefinite Storage Temperature Range Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C Operating Temperature Range AD704J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C AD704A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C AD704T . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C Lead Temperature Range (Soldering 10 seconds) . . . . . 300°C 1k⍀ OUTPUT 1/4 NOTES 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 Specification is for device in free air: 14-Lead Plastic Package: θJA = 150°C/W 14-Lead Cerdip Package: θJA = 110°C/W 16-Lead SOIC Package: θJA = 100°C/W 20-Terminal LCC Package: θJA = 150°C/W 3 The input pins of this amplifier are protected by back-to-back diodes. If the differential voltage exceeds ± 0.7 volts, external series protection resistors should be added to limit the input current to less than 25 mA. 0.1F 1F 0.1F 1F COM AD704 INPUT* SIGNAL 1k⍀ AD704 PIN 4 +VS – + 2.5k⍀ AD704 PIN 11 –VS ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN *THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER’S OUTPUT IS AT MAX AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS ARE THEN MEASURED FOR CROSSTALK. Figure 2a. Crosstalk Test Circuit –80 AMP4 CROSSTALK – dB –100 AMP2 AMP3 –120 –140 –160 10 100 1k 10k 100k FREQUENCY – Hz Figure 2b. Crosstalk vs. Frequency ORDERING GUIDE Model Temperature Range Package Description Package Option AD704JN AD704JR AD704JR-/REEL AD704KN* AD704AN* AD704AR AD704AR-REEL AD704SE/883B AD704TQ/883B* 0°C to 70°C 0°C to 70°C 0°C to 70°C 0°C to 70°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –55°C to +125°C –55°C to +125°C Plastic Small Outline (SOIC) N-14 R-16 Tape and Reel N-14 N-14 R-16 Tape and Reel E-20A Q-14 Plastic Plastic Small Outline (SOIC) Leadless Ceramic Chip Carrier Cerdip Chips are also available. *Not for new designs; obsolete April 2002. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD704 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. C Typical Performance Characteristics–AD704 50 50 40 40 40 30 20 10 0 –80 PERCENTAGE OF UNITS 50 PERCENTAGE OF UNITS PERCENTAGE OF UNITS (@ 25ⴗC, VS = ⴞ15 V dc, unless otherwise noted.) 30 20 10 0 –40 0 +40 +80 INPUT OFFSET VOLTAGE – V –160 20 10 0 –80 0 +80 +160 INPUT BIAS CURRENT – pA –120 –60 0 +60 +120 INPUT OFFSET CURRENT – pA TPC 2. Typical Distribution of Input Bias Current TPC 1. Typical Distribution of Input Offset Voltage 30 TPC 3. Typical Distribution of Input Offset Current 100 –0.5 –1.0 –1.5 +1.5 25 20 15 10 +1.0 5 +0.5 –VS 0 1k 0 5 10 15 SUPPLY VOLTAGE – V 20 TPC 4. Input Common-Mode Voltage Range vs. Supply Voltage 10k 100k FREQUENCY – Hz 1M SOURCE RESISTANCE MAY BE EITHER BALANCED OR UNBALANCED 10 1.0 0.1 1k TPC 5. Large Signal Frequency Response 10k 100k 1M 10M SOURCE RESISTANCE – ⍀ 100M TPC 6. Offset Voltage Drift vs. Source Resistance 4 50 120 40 30 20 10 3 2 1 0 0 –0.8 –0.4 0 +0.4 +0.8 INPUT OFFSET VOLTAGE DRIFT – V/ⴗC TPC 7. Typical Distribution of Offset Voltage Drift REV. C INPUT BIAS CURRENT – pA CHANGE IN OFFSET VOLTAGE – V PERCENTAGE OF UNITS OFFSET VOLTAGE DRIFT – V/ⴗC 30 OUTPUT VOLTAGE – V p-p INPUT COMMON-MODE VOLTAGE LIMIT – V (REFERRED TO SUPPLY VOLTAGES) 35 +VS 0 1 2 3 4 WARM-UP TIME – Minutes TPC 8. Change in Input Offset Voltage vs. Warm-Up Time –5– 5 100 80 POSITIVE IB 60 40 NEGATIVE IB 20 0 –15 –10 –5 0 5 10 COMMON-MODE VOLTAGE – V TPC 9. Input Bias Current vs. Common-Mode Voltage 15 AD704 1000 CURRENT NOISE – fA/ Hz VOLTAGE NOISE – nV/ Hz 1000 100 10 100 10k⍀ 100⍀ 10 20M⍀ VOUT 1 1 1 1000 10 100 FREQUENCY – Hz 500 10 100 FREQUENCY – Hz 0 1000 5 TIME – Seconds 10 TPC 12. 0.1 Hz to 10 Hz Noise Voltage 160 180 140 160 120 450 VS = 15V TA = 25 C 140 VS = 15V 400 +125 C 100 PSR – dB CMR – dB 80 60 +25 C 120 100 –PSR 80 +PSR –55 C 300 0 5 10 15 SUPPLY VOLTAGE – ⴞV 40 60 20 40 0 0.1 20 TPC 13. Quiescent Supply Current vs. Supply Voltage (per Amplifier) OPEN-LOOP VOLTAGE GAIN – dB +25ⴗC 1M 100k +125ⴗC 1 10 LOAD RESISTANCE – k⍀ 100 TPC 16. Open-Loop Gain vs. Load Resistance Over Temperature 10 100 1k 10k FREQUENCY – Hz 100k 20 0.1 1M TPC 14. Common-Mode Rejection vs. Frequency 10M –55ⴗC 1 140 0 120 30 60 100 PHASE 80 90 60 120 150 40 GAIN 180 20 0 –20 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY – Hz TPC 17. Open-Loop Gain and Phase vs. Frequency –6– 1 10 100 1k 10k FREQUENCY – Hz 100k 1M TPC 15. Power Supply Rejection vs. Frequency +VS OUTPUT VOLTAGE SWING – V (REFERRED TO SUPPLY VOLTAGES) 350 PHASE SHIFT – Degrees QUIESCENT CURRENT – A 1 TPC 11. Input Noise Current Spectral Density TPC 10. Input Noise Voltage Spectral Density OPEN-LOOP VOLTAGE GAIN 0.5V RL = 10k⍀ –0.5 –1.0 –1.5 +1.5 +1.0 +0.5 –VS 0 5 10 15 SUPPLY VOLTAGE – ⴞV 20 TPC 18. Output Voltage Swing vs. Supply Voltage REV. C AD704 CLOSED-LOOP OUTPUT IMPEDANCE – ⍀ 1000 RF +VS 100 100 0.1F 90 10 A V = –1000 – 1/4 VOUT AD704 1 RL 2k⍀ + VIN A V = +1 CL 10 0.1 SQUARE WAVE INPUT 0.01 0% 0.1F 50s 2V –VS I OUT = 1mA 0.001 1 10 100 1k FREQUENCY – Hz 10k 100k TPC 19. Closed-Loop Output Impedance vs. Frequency TPC 20a. Unity Gain Follower (For Large Signal Applications, Resistor RF Limits the Current through the Input Protection Diodes) TPC 20b. Unity Gain Follower Large Signal Pulse Response RF = 10 kΩ, CL = 1,000 pF 10k⍀ 5s 5s +VS 0.1F 100 90 100 90 10k⍀ VIN – 1/4 VOUT AD704 + SQUARE WAVE INPUT 10 10 20mV 20mV TPC 20c. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω, CL = 100 pF 2V –VS TPC 20d. Unity Gain Follower Small Signal Pulse Response RF = 0 Ω, CL = 1,000 pF 100 90 90 10 10 0% 0% REV. C 5s 100 90 10 0% 20mV 20mV TPC 21b. Unity Gain Inverter Large Signal Pulse Response, CL = 1,000 pF TPC 21a. Unity Gain Inverter Connection 5s 50s 100 CL 0.1F 0% 0% RL 2.5k⍀ TPC 21c. Unity Gain Inverter Small Signal Pulse Response, CL = 100 pF –7– TPC 21d. Unity Gain Inverter Small Signal Pulse Response, CL = 1,000 pF AD704 GAIN TRIM (500k⍀ POT) OPTIONAL AC CMRR TRIM RG R5 2.4k⍀ R3 6.34k⍀ R4 47.5k⍀ DC CMRR TRIM (5k⍀ POT) R1 6.34k⍀ ω = R2 49.9k⍀ Q2 = 1 R6 C1C2 C3 4C4 1 ω= R6 = R7 R8 R8 = R9 C1 Ct +VS – C3C4 C3 0.1F – R6 1M⍀ 1/4 R7 1M⍀ + AD704 1/4 + AD704 R8 1M⍀ 1/4 C2 0.1F + –VIN C1 4C2 Q1 = R9 1M⍀ AD704 – 1/4 AD704 – –VS +VIN + C4 OUTPUT R10, 2M⍀ R11, 2M⍀ INSTRUMENTATION AMPLIFIER GAIN = 1 + C5, 0.01F R2 2R2 + (FOR R1 = R3, R2 = R4 + R5) R1 RG C6, 0.01F ALL RESISTORS METAL FILM, 1% OPTIONAL BALANCE RESISTOR NETWORKS CAN BE REPLACED WITH A SHORT CAPACITORS C2 AND C4 ARE SOUTHERN ELECTRONICS MPCC, POLYCARBONATE, 5%, 50 VOLT Figure 3. Gain of 10 Instrumentation Amplifier with Post Filtering The instrumentation amplifier with post filtering (Figure 3) combines two applications which benefit greatly from the AD704. This circuit achieves low power and dc precision over temperature with a minimum of components. Table I. Resistance Values for Various Gains Circuit Gain RG (Max Value Bandwidth (G) R1 and R3 of Trim Potentiometer) (–3 dB), Hz The instrumentation amplifier circuit offers many performance benefits including BiFET level input bias currents, low input offset voltage drift and only 1.2 mA quiescent current. It will operate for gains G ≥ 2, and at lower gains it will benefit from the fact that there is no output amplifier offset and noise contribution as encountered in a 3 op amp design. Good low frequency CMRR is achieved even without the optional ac CMRR trim (Figure 4). Table I provides resistance values for 3 common circuit gains. For other gains, use the following equations: 10 100 1,000 Ct ≈ 50k 5k 0.5k GAIN = 10, 0.2V p-p COMMON-MODE INPUT COMMON-MODE REJECTION – dB 140 49.9 kΩ 0.9 G − 1 Max Value of RG = 166 kΩ 16.6 kΩ 1.66 kΩ 160 R2 = R4 + R5 = 49.9 kΩ R1 = R3 = 6.34 kΩ 526 Ω 56.2 Ω 99.8 kΩ 0.06 G CIRCUIT TRIMMED USING CAPACITOR Ct 120 100 80 TYPICAL MONOLITHIC IN AMP 60 40 WITHOUT CAPACITOR Ct 20 0 1 2 π (R3) 5 × 105 1 10 100 FREQUENCY – Hz 1k 10k Figure 4. Common-Mode Rejection vs. Frequency with and without Capacitor Ct –8– REV. C AD704 The 1 Hz, 4-pole active filter offers dc precision with a minimum of components and cost. The low current noise, IOS, and IB allow the use of 1 MΩ resistors without sacrificing the 1 µV/°C drift of the AD704. This means lower capacitor values may be used, reducing cost and space. Furthermore, since the AD704’s IB is as low as its IOS, over most of the MIL temperature range, most applications do not require the use of the normal balancing resistor (with its stability capacitor). Adding the optional balancing resistor enhances performance at high temperatures, as shown in Figure 5. Table II gives capacitor values for several common low pass responses. 180 OFFSET VOLTAGE OF FILTER CIRCUIT (RTI) – V 120 WITHOUT OPTIONAL BALANCE RESISTOR, R3 60 0 WITH OPTIONAL BALANCE RESISTOR, R3 –60 –120 –180 –40 0 +40 +80 TEMPERATURE – ⴗC +120 Figure 5. VOS vs. Temperature Performance of the 1 Hz Filter Circuit Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values Desired Low Pass Response Section 1 Frequency (Hz) Bessel Butterworth 0.1 dB Chebychev 0.2 dB Chebychev 0.5 dB Chebychev 1.0 dB Chebychev 1.43 1.00 0.648 0.603 0.540 0.492 Q Section 2 Frequency (Hz) Q C1 (F) C2 (F) C3 (F) C4 (F) 0.522 0.541 0.619 0.646 0.705 0.785 1.60 1.00 0.948 0.941 0.932 0.925 0.806 1.31 2.18 2.44 2.94 3.56 0.116 0.172 0.304 0.341 0.416 0.508 0.107 0.147 0.198 0.204 0.209 0.206 0.160 0.416 0.733 0.823 1.00 1.23 0.0616 0.0609 0.0385 0.0347 0.0290 0.0242 Specified values are for a –3 dB point of 1.0 Hz. For other frequencies, simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 µF, C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF. REV. C –9– AD704 OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 14-Lead Cerdip (Q) Package 14-Lead Plastic DIP (N) Package 16-Lead Plastic SO (R) Package 20-Terminal LCC (E) Package 0.100 (2.54) 0.064 (1.63) 0.358 (9.09) 0.342 (8.69) 0.040 (1.02) x 45 REF 3 PLCS 0.028 (0.71) 0.022 (0.56) NO. 1 PIN INDEX 0.050 (1.27) BSC 0.020 (0.51) x 45 REF Revision History Location Page 11/01 Data Sheet changed from REV. B to REV. C. Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Deleted METALIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 –10– REV. C –11– –12– PRINTED IN U.S.A. C00818–0–1/02(C)