AD AD704TQ/883B

a
CONNECTION DIAGRAMS
14-Lead Plastic DIP (N)
14-Lead CerDIP (Q) Packages
OUTPUT
1
–IN
2
+IN
3
+VS
4
14
4
1
AD704
OUTPUT OUTPUT
1
13
–IN
–IN
2
12
+IN
+IN
3
11
–VS
+VS
4
(TOP VIEW)
+IN
5
–IN
6
OUTPUT
7
2
3
APPLICATIONS
Industrial/Process Controls
Weigh Scales
ECG/EKG Instrumentation
Low Frequency Active Filters
16-Lead SOIC
(R) Package
1
4
AD704
16
OUTPUT
15
–IN
14
+IN
13
–VS
(TOP VIEW)
10
+IN
+IN
5
9
–IN
–IN
6
8
OUTPUT OUTPUT
NC
12
+IN
11
–IN
7
10
OUTPUT
8
9
2
3
NC
NC = NO CONNECT
OUT1
NC
OUT4
–IN4
20-Terminal LCC
(E) Package
–IN1
FEATURES
High DC Precision
75 ␮V Max Offset Voltage
1 ␮V/ⴗC Max Offset Voltage Drift
150 pA Max Input Bias Current
0.2 pA/ⴗC Typical I B Drift
Low Noise
0.5 ␮V p-p Typical Noise, 0.1 Hz to 10 Hz
Low Power
600 ␮A Max Supply Current per Amplifier
MIL-STD-883B Processing Available
Available in Tape and Reel in Accordance
with EIA-481A Standard
Dual Version: AD706
Quad Picoampere Input Current
Bipolar Op Amp
AD704
3
2
1
20
19
PRODUCT DESCRIPTION
The AD704 is an excellent choice for use in low frequency active
filters in 12- and 14-bit data acquisition systems, in precision
instrumentation, and as a high quality integrator. The AD704 is
internally compensated for unity gain and is available in five
performance grades. The AD704J and AD704K are rated over
the commercial temperature range of 0°C to 70°C. The AD704A
is rated over the industrial temperature of –40°C to +85°C. The
AD704T is rated over the military temperature range of –55°C
to +125°C and is available processed to MIL-STD-883B, Rev. C.
NC 5
AMP 1
+VS 6
NC 7
17 NC
AMP 4
16 –VS
AD704
AMP 2
AMP 3
15 NC
14 +IN3
12
13
–IN3
OUT2
11
NC
10
OUT3
9
–IN2
+IN2 8
NC = NO CONNECT
100
10
TYPICAL I B – nA
Since it has only 1/20 the input bias current of an AD OP07, the
AD704 does not require the commonly used “balancing” resistor.
Furthermore, the current noise is 1/5 that of the AD OP07 which
makes the AD704 usable with much higher source impedances.
At 1/6 the supply current (per amplifier) of the AD OP07, the
AD704 is better suited for today’s higher density circuit boards
and battery-powered applications.
18 +IN4
+IN1 4
The AD704 is a quad, low power bipolar op amp that has the
low input bias current of a BiFET amplifier but which offers a
significantly lower IB drift over temperature. It utilizes super-beta
bipolar input transistors to achieve picoampere input bias current
levels (similar to FET input amplifiers at room temperature),
while its IB typically only increases by 5× at 125°C (unlike a
BiFET amp, for which IB doubles every 10°C resulting in a
1000× increase at 125°C). Furthermore, the AD704 achieves
75 µV offset voltage and low noise characteristics of a precision
bipolar input op amp.
TYPICAL JFET AMP
1
0.1
AD704T
0.01
–55
+25
TEMPERATURE – C
+125
Figure 1. Input Bias Current Over Temperature
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
AD704–SPECIFICATIONS (@ T = 25ⴗC, V
A
Parameters
INPUT OFFSET VOLTAGE
Initial Offset
Offset
vs. Temp, Average TC
vs. Supply (PSRR)
TMIN –TMAX
Long-Term Stability
Conditions
INPUT BIAS CURRENT 1
VCM = 0 V
VCM = ± 13.5 V
vs. Temp, Average TC
TMIN –TMAX
INPUT OFFSET CURRENT
vs. Temp, Average TC
TMIN –TMAX
CM
= 0 V, and ⴞ15 V dc, unless otherwise noted.)
AD704J/A
Min Typ Max
TMIN –TMAX
VS = ± 2 to ± 18 V
100
VS = ± 2.5 to ± 18 V 100
50
100
0.2
132
126
0.3
150
250
1.5
100
270
300
VCM = 0 V
VCM = ± 13.5 V
80
0.6
100
100
VCM = 0 V
VCM = ± 13.5 V
TMIN –TMAX
TMIN –TMAX
Power Supply Rejection 4
TMIN –TMAX
f = 10 Hz
RLOAD = 2 kΩ
G = –1
TMIN –TMAX
VCM = ± 13.5 V
TMIN –TMAX
75
150
1.0
80
150
200
250
300
30
0.4
80
80
300
400
30
80
112
108
80
µV
µV
µV/°C
dB
dB
µV/month
200
250
pA
pA
pA/°C
pA
pA
1.0
600
700
100
150
50
0.4
80
100
200
300
110
104
110
106
Unit
100
150
1.0
132
126
0.3
130
200
300
400
150
200
400
500
150
250
400
600
104
104
110
106
pA
pA
pA/°C
pA
pA
µV
µV
pA
pA
dB
dB
dB
dB
150
150
150
dB
0.8
0.15
0.1
0.8
0.15
0.1
0.8
0.15
0.1
MHz
V/µs
V/µs
40储2
300储2
40储2
300储2
40储2
300储2
MΩ储pF
GΩ储pF
± 13.5 ± 14
100 132
98
128
± 13.5 ± 14
114 132
108 128
0.1 to 10 Hz
f = 10 Hz
3
50
3
50
INPUT VOLTAGE NOISE
0.1 to 10 Hz
f = 10 Hz
f = 1 kHz
0.5
17
15
0.5
17
15
VO = ± 12 V
RLOAD = 10 kΩ
TMIN –TMAX
VO = ± 10 V
RLOAD = 2 kΩ
TMIN –TMAX
AD704T
Typ Max
200
300
INPUT CURRENT NOISE
OPEN-LOOP GAIN
Min
0.2
94
94
94
94
INPUT IMPEDANCE
Differential
Common-Mode
INPUT VOLTAGE RANGE
Common-Mode Voltage
Common-Mode Rejection Ratio
30
50
0.2
132
126
0.3
250
400
500
600
Input Bias Current2
Common-Mode Rejection 3
AD704K
Typ Max
300
400
TMIN –TMAX
FREQUENCY RESPONSE
UNITY GAIN
Crossover Frequency
Slew Rate, Unity Gain
Slew Rate
112
108
0.3
VCM = 0 V
VCM = ± 13.5 V
MATCHING CHARACTERISTICS
Offset Voltage
Crosstalk5
Min
22
± 13.5 ± 14
110 132
108 128
V
dB
dB
3
50
2.0
0.5
17
15
22
pA p-p
fA/√Hz
2.0
22
µV p-p
nV/√Hz
nV/√Hz
200
150
2000
1500
400
300
2000
1500
400
300
2000
1500
V/mV
V/mV
200
150
1000
1000
300
200
1000
1000
200
100
1000
1000
V/mV
V/mV
–2–
REV. C
AD704
Parameters
OUTPUT CHARACTERISTICS
Voltage Swing
Current
CAPACITIVE LOAD
Drive Capability
Conditions
RLOAD = 10 kΩ
TMIN –TMAX
Short Circuit
Min
± 13
± 13
Gain = 1
POWER SUPPLY
Rated Performance
Operating Range
Quiescent Current
TRANSISTOR COUNT
AD704J/A
Min Typ Max
± 14
± 15
10,000
± 2.0
± 15
TMIN –TMAX
1.5
1.6
# of Transistors
180
–3–
± 14
± 15
Min
± 13
10,000
± 18
2.4
2.6
± 2.0
NOTES
1
Bias current specifications are guaranteed maximum at either input.
2
Input bias current match is the maximum difference between corresponding inputs of all four amplifiers.
3
CMRR match is the difference of ∆VOS/∆VCM between any two amplifiers, expressed in dB.
4
PSRR match is the difference between ∆VOS/∆V SUPPLY for any two amplifiers, expressed in dB.
5
See Figure 2a for test circuit.
All min and max specifications are guaranteed.
Specifications subject to change without notice.
REV. C
AD704K
Typ Max
± 15
1.5
1.6
180
± 18
2.4
2.6
± 2.0
AD704T
Typ Max
Unit
± 14
± 15
V
mA
10,000
pF
± 15
1.5
1.6
180
± 18
2.4
2.6
V
V
mA
mA
AD704
ABSOLUTE MAXIMUM RATINGS 1
9k⍀
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 18 V
Internal Power Dissipation (25°C) . . . . . . . . . . . . See Note 2
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VS
Differential Input Voltage3 . . . . . . . . . . . . . . . . . . . . . . . ± 0.7 V
Output Short-Circuit Duration (Single Input) . . . . . Indefinite
Storage Temperature Range
Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C
N, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C
Operating Temperature Range
AD704J/K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
AD704A . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C
AD704T . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C
Lead Temperature Range (Soldering 10 seconds) . . . . . 300°C
1k⍀
OUTPUT
1/4
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in
the operational section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2
Specification is for device in free air:
14-Lead Plastic Package: θJA = 150°C/W
14-Lead Cerdip Package: θJA = 110°C/W
16-Lead SOIC Package: θJA = 100°C/W
20-Terminal LCC Package: θJA = 150°C/W
3
The input pins of this amplifier are protected by back-to-back diodes. If the
differential voltage exceeds ± 0.7 volts, external series protection resistors should
be added to limit the input current to less than 25 mA.
0.1␮F
1␮F
0.1␮F
1␮F
COM
AD704
INPUT*
SIGNAL
1k⍀
AD704
PIN 4
+VS
–
+
2.5k⍀
AD704
PIN 11
–VS
ALL 4 AMPLIFIERS ARE CONNECTED AS SHOWN
*THE SIGNAL INPUT (SUCH THAT THE AMPLIFIER’S OUTPUT IS AT MAX
AMPLITUDE WITHOUT CLIPPING OR SLEW LIMITING) IS APPLIED TO ONE
AMPLIFIER AT A TIME. THE OUTPUTS OF THE OTHER THREE AMPLIFIERS
ARE THEN MEASURED FOR CROSSTALK.
Figure 2a. Crosstalk Test Circuit
–80
AMP4
CROSSTALK – dB
–100
AMP2
AMP3
–120
–140
–160
10
100
1k
10k
100k
FREQUENCY – Hz
Figure 2b. Crosstalk vs. Frequency
ORDERING GUIDE
Model
Temperature Range
Package Description
Package Option
AD704JN
AD704JR
AD704JR-/REEL
AD704KN*
AD704AN*
AD704AR
AD704AR-REEL
AD704SE/883B
AD704TQ/883B*
0°C to 70°C
0°C to 70°C
0°C to 70°C
0°C to 70°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
–55°C to +125°C
–55°C to +125°C
Plastic
Small Outline (SOIC)
N-14
R-16
Tape and Reel
N-14
N-14
R-16
Tape and Reel
E-20A
Q-14
Plastic
Plastic
Small Outline (SOIC)
Leadless Ceramic Chip Carrier
Cerdip
Chips are also available.
*Not for new designs; obsolete April 2002.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the AD704 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
–4–
WARNING!
ESD SENSITIVE DEVICE
REV. C
Typical Performance Characteristics–AD704
50
50
40
40
40
30
20
10
0
–80
PERCENTAGE OF UNITS
50
PERCENTAGE OF UNITS
PERCENTAGE OF UNITS
(@ 25ⴗC, VS = ⴞ15 V dc, unless otherwise noted.)
30
20
10
0
–40
0
+40
+80
INPUT OFFSET VOLTAGE – ␮V
–160
20
10
0
–80
0
+80
+160
INPUT BIAS CURRENT – pA
–120
–60
0
+60
+120
INPUT OFFSET CURRENT – pA
TPC 2. Typical Distribution of
Input Bias Current
TPC 1. Typical Distribution of
Input Offset Voltage
30
TPC 3. Typical Distribution of
Input Offset Current
100
–0.5
–1.0
–1.5
+1.5
25
20
15
10
+1.0
5
+0.5
–VS
0
1k
0
5
10
15
SUPPLY VOLTAGE – V
20
TPC 4. Input Common-Mode
Voltage Range vs. Supply Voltage
10k
100k
FREQUENCY – Hz
1M
SOURCE RESISTANCE
MAY BE EITHER BALANCED
OR UNBALANCED
10
1.0
0.1
1k
TPC 5. Large Signal Frequency
Response
10k
100k
1M
10M
SOURCE RESISTANCE – ⍀
100M
TPC 6. Offset Voltage Drift vs.
Source Resistance
4
50
120
40
30
20
10
3
2
1
0
0
–0.8
–0.4
0
+0.4
+0.8
INPUT OFFSET VOLTAGE DRIFT – ␮V/ⴗC
TPC 7. Typical Distribution of
Offset Voltage Drift
REV. C
INPUT BIAS CURRENT – pA
CHANGE IN OFFSET VOLTAGE – ␮V
PERCENTAGE OF UNITS
OFFSET VOLTAGE DRIFT – ␮V/ⴗC
30
OUTPUT VOLTAGE – V p-p
INPUT COMMON-MODE VOLTAGE LIMIT – V
(REFERRED TO SUPPLY VOLTAGES)
35
+VS
0
1
2
3
4
WARM-UP TIME – Minutes
TPC 8. Change in Input Offset
Voltage vs. Warm-Up Time
–5–
5
100
80
POSITIVE IB
60
40
NEGATIVE IB
20
0
–15
–10
–5
0
5
10
COMMON-MODE VOLTAGE – V
TPC 9. Input Bias Current vs.
Common-Mode Voltage
15
AD704
1000
CURRENT NOISE – fA/ Hz
VOLTAGE NOISE – nV/ Hz
1000
100
10
100
10k⍀
100⍀
10
20M⍀
VOUT
1
1
1
1000
10
100
FREQUENCY – Hz
500
10
100
FREQUENCY – Hz
0
1000
5
TIME – Seconds
10
TPC 12. 0.1 Hz to 10 Hz Noise Voltage
160
180
140
160
120
450
VS = 15V
TA = 25 C
140
VS = 15V
400
+125 C
100
PSR – dB
CMR – dB
80
60
+25 C
120
100
–PSR
80
+PSR
–55 C
300
0
5
10
15
SUPPLY VOLTAGE – ⴞV
40
60
20
40
0
0.1
20
TPC 13. Quiescent Supply Current
vs. Supply Voltage (per Amplifier)
OPEN-LOOP VOLTAGE GAIN – dB
+25ⴗC
1M
100k
+125ⴗC
1
10
LOAD RESISTANCE – k⍀
100
TPC 16. Open-Loop Gain vs. Load
Resistance Over Temperature
10
100
1k
10k
FREQUENCY – Hz
100k
20
0.1
1M
TPC 14. Common-Mode
Rejection vs. Frequency
10M
–55ⴗC
1
140
0
120
30
60
100
PHASE
80
90
60
120
150
40
GAIN
180
20
0
–20
0.01 0.1
1
10 100 1k 10k 100k 1M 10M
FREQUENCY – Hz
TPC 17. Open-Loop Gain and Phase
vs. Frequency
–6–
1
10
100
1k
10k
FREQUENCY – Hz
100k
1M
TPC 15. Power Supply Rejection
vs. Frequency
+VS
OUTPUT VOLTAGE SWING – V
(REFERRED TO SUPPLY VOLTAGES)
350
PHASE SHIFT – Degrees
QUIESCENT CURRENT – ␮A
1
TPC 11. Input Noise Current
Spectral Density
TPC 10. Input Noise Voltage
Spectral Density
OPEN-LOOP VOLTAGE GAIN
0.5␮V
RL = 10k⍀
–0.5
–1.0
–1.5
+1.5
+1.0
+0.5
–VS
0
5
10
15
SUPPLY VOLTAGE – ⴞV
20
TPC 18. Output Voltage Swing vs.
Supply Voltage
REV. C
AD704
CLOSED-LOOP OUTPUT IMPEDANCE – ⍀
1000
RF
+VS
100
100
0.1␮F
90
10
A V = –1000
–
1/4
VOUT
AD704
1
RL
2k⍀
+
VIN
A V = +1
CL
10
0.1
SQUARE
WAVE INPUT
0.01
0%
0.1␮F
50␮s
2V
–VS
I OUT = 1mA
0.001
1
10
100
1k
FREQUENCY – Hz
10k
100k
TPC 19. Closed-Loop Output
Impedance vs. Frequency
TPC 20a. Unity Gain Follower (For
Large Signal Applications, Resistor
RF Limits the Current through the
Input Protection Diodes)
TPC 20b. Unity Gain Follower Large
Signal Pulse Response RF = 10 kΩ,
CL = 1,000 pF
10k⍀
5␮s
5␮s
+VS
0.1␮F
100
90
100
90
10k⍀
VIN
–
1/4
VOUT
AD704
+
SQUARE
WAVE INPUT
10
10
20mV
20mV
TPC 20c. Unity Gain Follower Small
Signal Pulse Response RF = 0 Ω,
CL = 100 pF
2V
–VS
TPC 20d. Unity Gain Follower Small
Signal Pulse Response RF = 0 Ω,
CL = 1,000 pF
100
90
90
10
10
0%
0%
REV. C
5␮s
100
90
10
0%
20mV
20mV
TPC 21b. Unity Gain Inverter Large
Signal Pulse Response, CL = 1,000 pF
TPC 21a. Unity Gain Inverter
Connection
5␮s
50␮s
100
CL
0.1␮F
0%
0%
RL
2.5k⍀
TPC 21c. Unity Gain Inverter Small
Signal Pulse Response, CL = 100 pF
–7–
TPC 21d. Unity Gain Inverter Small
Signal Pulse Response, CL = 1,000 pF
AD704
GAIN TRIM
(500k⍀ POT)
OPTIONAL
AC CMRR TRIM
RG
R5
2.4k⍀
R3
6.34k⍀
R4
47.5k⍀
DC
CMRR
TRIM
(5k⍀ POT)
R1
6.34k⍀
ω =
R2
49.9k⍀
Q2 =
1
R6
C1C2
C3
4C4
1
ω=
R6 = R7
R8
R8 = R9
C1
Ct
+VS
–
C3C4
C3
0.1␮F
–
R6
1M⍀
1/4
R7
1M⍀
+
AD704
1/4
+
AD704
R8
1M⍀
1/4
C2
0.1␮F
+
–VIN
C1
4C2
Q1 =
R9
1M⍀
AD704
–
1/4
AD704
–
–VS
+VIN
+
C4
OUTPUT
R10, 2M⍀
R11, 2M⍀
INSTRUMENTATION AMPLIFIER GAIN = 1 +
C5, 0.01␮F
R2 2R2
+
(FOR R1 = R3, R2 = R4 + R5)
R1 RG
C6, 0.01␮F
ALL RESISTORS METAL FILM, 1%
OPTIONAL BALANCE RESISTOR
NETWORKS CAN BE REPLACED
WITH A SHORT
CAPACITORS C2 AND C4 ARE
SOUTHERN ELECTRONICS MPCC,
POLYCARBONATE, 5%, 50 VOLT
Figure 3. Gain of 10 Instrumentation Amplifier with Post Filtering
The instrumentation amplifier with post filtering (Figure 3)
combines two applications which benefit greatly from the
AD704. This circuit achieves low power and dc precision over
temperature with a minimum of components.
Table I. Resistance Values for Various Gains
Circuit Gain
RG (Max Value
Bandwidth
(G)
R1 and R3 of Trim Potentiometer) (–3 dB), Hz
The instrumentation amplifier circuit offers many performance
benefits including BiFET level input bias currents, low input
offset voltage drift and only 1.2 mA quiescent current. It will
operate for gains G ≥ 2, and at lower gains it will benefit from
the fact that there is no output amplifier offset and noise contribution as encountered in a 3 op amp design. Good low frequency
CMRR is achieved even without the optional ac CMRR trim
(Figure 4). Table I provides resistance values for 3 common
circuit gains. For other gains, use the following equations:
10
100
1,000
Ct ≈
50k
5k
0.5k
GAIN = 10, 0.2V p-p COMMON-MODE INPUT
COMMON-MODE REJECTION – dB
140
49.9 kΩ
0.9 G − 1
Max Value of RG =
166 kΩ
16.6 kΩ
1.66 kΩ
160
R2 = R4 + R5 = 49.9 kΩ
R1 = R3 =
6.34 kΩ
526 Ω
56.2 Ω
99.8 kΩ
0.06 G
CIRCUIT TRIMMED
USING CAPACITOR Ct
120
100
80
TYPICAL MONOLITHIC IN AMP
60
40
WITHOUT CAPACITOR Ct
20
0
1
2 π (R3) 5 × 105
1
10
100
FREQUENCY – Hz
1k
10k
Figure 4. Common-Mode Rejection vs. Frequency with
and without Capacitor Ct
–8–
REV. C
AD704
The 1 Hz, 4-pole active filter offers dc precision with a minimum
of components and cost. The low current noise, IOS, and IB
allow the use of 1 MΩ resistors without sacrificing the 1 µV/°C
drift of the AD704. This means lower capacitor values may be
used, reducing cost and space. Furthermore, since the AD704’s
IB is as low as its IOS, over most of the MIL temperature range,
most applications do not require the use of the normal balancing
resistor (with its stability capacitor). Adding the optional balancing
resistor enhances performance at high temperatures, as shown in
Figure 5. Table II gives capacitor values for several common low
pass responses.
180
OFFSET VOLTAGE
OF FILTER CIRCUIT (RTI) – ␮V
120
WITHOUT OPTIONAL
BALANCE RESISTOR, R3
60
0
WITH OPTIONAL
BALANCE RESISTOR, R3
–60
–120
–180
–40
0
+40
+80
TEMPERATURE – ⴗC
+120
Figure 5. VOS vs. Temperature Performance of the 1 Hz
Filter Circuit
Table II. 1 Hz, 4-Pole Low-Pass Filter Recommended Component Values
Desired Low
Pass Response
Section 1
Frequency
(Hz)
Bessel
Butterworth
0.1 dB Chebychev
0.2 dB Chebychev
0.5 dB Chebychev
1.0 dB Chebychev
1.43
1.00
0.648
0.603
0.540
0.492
Q
Section 2
Frequency
(Hz)
Q
C1
(␮F)
C2
(␮F)
C3
(␮F)
C4
(␮F)
0.522
0.541
0.619
0.646
0.705
0.785
1.60
1.00
0.948
0.941
0.932
0.925
0.806
1.31
2.18
2.44
2.94
3.56
0.116
0.172
0.304
0.341
0.416
0.508
0.107
0.147
0.198
0.204
0.209
0.206
0.160
0.416
0.733
0.823
1.00
1.23
0.0616
0.0609
0.0385
0.0347
0.0290
0.0242
Specified values are for a –3 dB point of 1.0 Hz. For other frequencies, simply scale capacitors C1 through C4 directly; i.e., for 3 Hz Bessel response, C1 = 0.0387 µF,
C2 = 0.0357 µF, C3 = 0.0533 µF, C4 = 0.0205 µF.
REV. C
–9–
AD704
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
14-Lead Cerdip (Q) Package
14-Lead Plastic DIP (N) Package
16-Lead Plastic SO (R) Package
20-Terminal LCC (E) Package
0.100 (2.54)
0.064 (1.63)
0.358 (9.09)
0.342 (8.69)
0.040 (1.02)
x 45 REF
3 PLCS
0.028 (0.71)
0.022 (0.56)
NO. 1 PIN
INDEX
0.050
(1.27)
BSC
0.020 (0.51)
x 45 REF
Revision History
Location
Page
11/01 Data Sheet changed from REV. B to REV. C.
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Deleted METALIZATION PHOTOGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
–10–
REV. C
–11–
–12–
PRINTED IN U.S.A.
C00818–0–1/02(C)