STMICROELECTRONICS TS902ID

TS902

RAIL TO RAIL CMOS DUAL
OPERATIONAL AMPLIFIER (WITH STANDBY POSITION)
.
.
.
.
..
.
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
STANDBY POSITION : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE
OUTPUTS
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
SPICE MACROMODEL INCLUDED IN THIS
SPECIFICATION
N
DIP14
(Plastic Package)
D
SO14
(Plastic Micropackage)
ORDER CODES
Part Number
Package
Temperature Range
o
-40, +125 C
TS902I/AI
N
D
•
•
PIN CONNECTIONS (top view)
DESCRIPTION
The TS902 is a RAIL TO RAIL dual CMOS operational amplifier designed to operate with single or
dual supply voltage.
The input voltage range Vicm includes the two
supply rails VCC+ and VCC-.
The output reaches (VCC = 5V) :
• VCC- +50mV VCC+ -50mV
with RL = 10kΩ
• VCC- +350mV VCC+ -400mV with RL = 600Ω
This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of
only 200µA/amp. (VCC = 3V).
Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal
limitation circuit.
The TS902 can be put on STANDBY position (only
0.5µA and high impedance outputs).
STMicroelectronics is offering a quad op-amp with
the same features : TS904.
April 1999
V CC+
Standby 1
14
2
13
Output 2
Output 1
N.C. 3
12
N.C.
-
-
11
Inverting Input 2
+
+
10
Non-inverting Input 2
Inverting Input 1
4
Non-inverting input 1
5
N.C.
6
9
N.C.
N.C. 7
8
V CC -
1/12
TS902
SCHEMATIC DIAGRAM (1/2 TS902)
VCC
S ta ndby
S ta ndby
Interna l
Vref
Non-inve rting
Input
Inve rting
Input
Output
S ta ndby
S ta ndby
VCC
STANDBY POSITION
VCC
HIGH IMPEDANCE OUTPUT IN STANDBY MODE
1/2
TS 3V902
VCC
1
S TBY OFF
S TBY ON
VCC
Vsby
VCC
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
Vid
Vi
Iin
Io
Toper
Parameter
Supply Voltage - (note 1)
Differential Input Voltage - (note 2)
Input Voltage - (note 3)
Current on Inputs
Current on Outputs
Operating Free Air Temperature Range
Value
18
±18
-0.3 to 18
±50
±130
TS902I/AI
Storage Temperature
Tstg
Notes :
-40 to +125
-65 to +150
Unit
V
V
V
mA
mA
o
C
o
C
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
OPERATING CONDITIONS
Symbol
VCC
Vicm
2/12
Parameter
Supply Voltage
Common Mode Input Voltage Range
Value
2.7 to 16
+
VCC -0.2 to VCC +0.2
Unit
V
V
TS902
ELECTRICAL CHARACTERISTICS
VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC
(unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (V ic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
VOL
Io
GBP
SR
∅m
en
Min.
TS902
TS902A
TS902
TS902A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 0 to 3V, Vo = 1.5V
+
Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.2V to 1.8V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
RL = 10kΩ
RL = 600Ω
RL = 100Ω
RL = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
Low Level Output Voltage (Vid = -1V
RL = 10kΩ
RL = 600Ω
RL = 100Ω
RL = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
−
Output Short Circuit Current (Vid = ±1V)
Source (Vo = VCC )
+
Sink
(Vo = VCC )
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Slew Rate (A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V)
Phase Margin
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
TS902I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
200
300
400
Unit
mV
µV/oC
pA
pA
µA
dB
3
2
2.9
2.2
60
80
10
dB
V/mV
2.97
2.7
2
V
2.8
2.1
30
250
900
100
600
mV
150
900
40
40
mA
MHz
0.7
0.5
30
V/µs
Degrees
nV

√
Hz
30
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
STANDBY MODE
VCC+ = 3V, VCC- = 0V, Tamb = 25oC (unless otherwise specified)
Symbol
VinSBY/ON
VinSBY/OFF
ICC SBY
Parameter
Pin 1 Threshold Voltage for STANDBY ON
Pin 1 Threshold Voltage for STANDBY OFF
Total Consumption in Standby Position (STANDBY ON)
Min.
TS902I/AI
Typ.
1.2
1.2
0.5
Max.
Unit
V
V
µA
3/12
TS902
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC
(unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
VOL
Io
GBP
SR
∅m
Min.
TS902
TS902A
TS902
TS902A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 1.5 to 3.5V, Vo = 2.5V
+
Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 1.5V to 3.5V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
R L = 600Ω
Low Level Output Voltage (Vid = -1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
R L = 600Ω
−
Output Short Circuit Current (Vid = ±1V)
Source (Vo = VCC )
+
Sink
(Vo = VCC )
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 1V to 4V)
Phase Margin
TS902I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
230
350
450
Unit
mV
µV/oC
pA
pA
µA
dB
7
5
4.85
4.2
85
80
30
dB
V/mV
4.95
4.6
3.7
V
4.8
4.1
50
350
1400
100
680
mV
150
900
60
60
mA
MHz
0.8
0.8
30
V/µs
Degrees
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
STANDBY MODE
VCC+ = 5V, VCC- = 0V, Tamb = 25oC (unless otherwise specified)
Symbol
VinSBY/ON
VinSBY/OFF
ICC SBY
4/12
Parameter
Pin 1 Threshold Voltage for STANDBY ON
Pin 1 Threshold Voltage for STANDBY OFF
Total Consumption in Standby Position (STANDBY ON)
Min.
TS902I/AI
Typ.
5.2
5.2
0.5
Max.
Unit
V
V
µA
TS902
ELECTRICAL CHARACTERISTICS
VCC+ = 10V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC
(unless otherwise specified)
Symbol
Vio
Parameter
Input Offset Voltage (Vic = Vo = VCC/2)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Iio
Iib
ICC
CMR
SVR
Avd
VOH
VOL
Io
GBP
SR
∅m
en
THD
Cin
Min.
TS902
TS902A
TS902
TS902A
Input Offset Voltage Drift
Input Offset Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Input Bias Current - (note 1)
Tmin. ≤ Tamb ≤ Tmax.
Supply Current (per amplifier, A VCL = 1, no load)
Tmin. ≤ Tamb ≤ Tmax.
Common Mode Rejection Ratio
Vic = 3 to 7V, Vo = 5V
Vic = 0 to 10V, Vo = 5V
+
Supply Voltage Rejection Ratio (VCC = 5 to 10V, VO = VCC /2)
Large Signal Voltage Gain (RL = 10kΩ, VO = 2.5V to 7.5V)
Tmin. ≤ Tamb ≤ Tmax.
High Level Output Voltage (Vid = 1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
R L = 600Ω
Low Level Output Voltage (Vid = -1V)
R L = 10kΩ
R L = 600Ω
R L = 100Ω
R L = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
R L = 600Ω
Output Short Circuit Current (Vid = ±1V)
Source (Vo = VCC−)
+
Sink
(Vo = VCC )
Gain Bandwidth Product
(AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz)
Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V)
Phase Margin
Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz)
15
10
9.85
9.2
TS902I/AI
Typ.
Max.
10
5
12
7
5
1
100
200
1
150
300
400
600
700
90
70
80
40
9.95
9.35
7.8
mV
µV/oC
pA
pA
µA
dB
dB
V/mV
V
9.8
9
50
650
2300
150
800
mV
150
900
60
60
mA
MHz
1.3
1.3
40
V/µs
Degrees
nV

√
Hz
%
30
Total Harmonic Distortion
(AVCL = 1, RL = 10kΩ, CL = 100pF, VO = 4.75V to 5.25V, f = 1kHz)
Input Capacitance
Unit
0.024
1.5
pF
Note 1 : Maximum values including unavoidable inaccuracies of the industrial test.
STANDBY MODE
VCC+ = 10V, VCC- = 0V, Tamb = 25oC (unless otherwise specified)
Symbol
VinSBY/ON
VinSBY/OFF
ICC SBY
Parameter
Pin 1 Threshold Voltage for STANDBY ON
Pin 1 Threshold Voltage for STANDBY OFF
Total Consumption in Standby Position (STANDBY ON)
Min.
TS902I/AI
Typ.
8.2
8.5
1
Max.
Unit
V
V
µA
5/12
TS902
TYPICAL CHARACTERISTICS
Figure 1a : Supply Current (each amplifier)
vs Supply Voltage
Figure 1b : Supply Current (each amplifier)
vs Supply Voltage (in STANDBY
mode)
50
SUPPLY CURRENT, I CC ( µA)
SUPPLY CURRENT, ICC ( mA)
600
Ta mb = 25 C
A VCL = 1
V o = VCC / 2
S tandby OFF
500
400
300
200
Ta mb = 25 C
A VCL = 1
Sta ndby ON
40
30
20
10
100
0
4
8
12
0
16
4
S UPP LY VOLTAGE, VCC (V)
OUTPUT VOLTAGE, VOH (V)
INPUT BIAS CURRENT, I ib (pA)
5
VCC = 10V
Vi = 5V
No load
Sta ndby OFF
10
T a mb = 25 C
V id = 100mV
S tandby OFF
4
2
VCC = +3V
1
0
50
75
100
125
-70
OUTPUT VOLTAGE, V OL (V)
VCC = +16V
12
-4 2
-28
-1 4
0
Figure 4a : Low Level Output Voltage vs Low
Level Output Current
5
T a mb = 25 C
V id = 100mV
Standby OFF
-56
OUTPUT CURRENT, IOH (m A)
Figure 3b : High Level Output Voltage vs High
Level Output Current
OUTPUT VOLTAGE, VOH (V)
VCC = +5V
3
TEMPERATURE , Tamb ( C)
16
16
Figure 3a : High Level Output Voltage vs High
Level Output Current
100
20
12
SUPPLY VOLTAGE, V CC (V)
Figure 2 : Input Bias Current vs Temperature
1
25
8
VCC = +10 V
8
4
4
3
T a mb = 25 C
V id = 1 00mV
S tandby OFF
VCC = +3V
2
VCC = +5V
1
0
-70
-56
-42
-28
-14
OUTP UT CURRENT, IOH (m A)
6/12
0
0
14
28
42
56
70
OUTPUT CURRENT, I OL (mA)
TS902
Figure 4b : Low Level Output Voltage vs Low
Level Output Current
GAIN
40
6
V
4
V
CC
CC
= 16V
= 10V
0
30
P HASE
20
90
Tamb = 25 C
VCC = 10V
R L = 10k Ω
C L = 100pF
AVCL = 100
S tandby OFF
10
2
45
P ha s e
Margin
0
135
Ga in
Bandwidth
P roduct
180
PHASE (Degrees)
8
50
T a mb = 25 C
V id = 100mV
S ta ndby OFF
GAIN (dB)
OUTPUT VOLTAGE, VOL (V)
10
Figure 5a : Gain and Phase vs Frequency
-10
0
14
28
42
56
70
10
2
10
OUTPUT CURRENT, I OL (mA)
50
GAIN
0
30
Ta mb = 25 C
VCC = 10V
R L = 60 0Ω
C L = 10 0pF
A VCL = 100
S ta nd by O FF
20
10
0
10
10
45
P HASE
2
10
3
P ha s e
Margin
90
135
Ga in
Ba ndwidth
P roduct
4
180
5
10
10
10
FREQUENCY, f (Hz)
6
10
PHASE (Degrees)
GAIN (dB)
40
7
PHASE MARGIN, φ m (Degrees)
GAIN BANDW. PROD., GBP (kHz)
Ta mb = 25 C
R L = 600Ω
C L = 100pF
Sta ndby OFF
1000
6 00
200
4
8
6
10
7
1800
Ta mb = 25 C
R L = 10k Ω
C L = 100pF
Sta ndby OFF
1400
1000
600
200
0
4
8
12
16
Figure 7a : Phase Margin vs Supply Voltage
1800
0
5
S UPP LY VOLTAGE, VCC (V)
Figure 6b : Gain bandwidth Product vs
Supply Voltage
1400
4
10
10
10
FREQUENCY, f (Hz)
Figure 6a : Gain Bandwidth Product vs
Supply Voltage
GAIN BANDW. PROD., GBP (kHz)
Figure 5b : Gain and Phase vs Frequency
3
12
SUPP LY VOLTAGE, VCC (V)
16
60
Tamb = 2 5 C
R L = 1 0kΩ
C L = 1 00p F
Sta ndby OFF
50
40
30
20
0
4
8
12
16
S UPP LY VOLTAGE, VCC (V)
7/12
TS902
Figure 7b : Phase Margin vs Supply Voltage
Figure 8 : Input Voltage Noise vs Frequency
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
PHASE MARGIN,φ m (Degrees)
60
Ta mb = 25 C
R L = 600Ω
C L = 100 pF
Sta ndby OFF
50
40
30
20
0
4
8
12
150
VCC = 10V
Tamb = 25 C
R S = 100Ω
100
16
Sta ndby OFF
50
0
10
SUP PLY VOLTAGE, VCC (V)
1000
100
FREQUENCY (Hz)
STANDBY APPLICATION
The two operators of the TS902 are both put on STANDBY.
.
.
..
In this configuration (standby ON) :
The total consumption of the circuit is considerably reduced down to 0.5µA (VCC = 3V).
This standby consumption vs VCC curve is given figure 1b.
The both outputs are in high impedance state.
No output current can then be sourced or sinked by the device.
The standby pin 1 should never stay unconnected.
The ”standby OFF” state, is reached when the pin 1 voltage is higher than Vin SBY/OFF.
The ”standby ON” state is assured by a pin 1 voltage lower than Vin SBY/ON.
(see electrical characteristics)
8/12
10000
TS902
MACROMODEL
.
.
.
RAIL TO RAIL INPUT AND OUTPUT
VOLTAGE RANGES
STANDBY POSITION : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE
OUTPUTS
SINGLE (OR DUAL) SUPPLY OPERATION
FROM 2.7V TO 16V (±1.35V to ±8V)
.
.
..
.
EXTREMELY LOW INPUT BIAS CURRENT :
1pA TYP
LOW INPUT OFFSET VOLTAGE :
5mV max.
SPECIFIED FOR 600Ω AND 100Ω LOADS
LOW SUPPLY CURRENT : 200µA/Ampli
SPEED : 0.7MHz - 0.5V/µs
Applies to : TS902I,AI
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
* 6 STANDBY
.SUBCKT TS902 1 3 2 4 5 6 (analog)
**********************************************************
.MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F
* INPUT STAGE
CIP 2 5 1.500000E-12
CIN 1 5 1.500000E-12
EIP 10 0 2 0 1
EIN 16 0 1 0 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.655100E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
FPOL 13 0 VSTB 1
CPS 11 15 3.82E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 -0.5000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 -0.5000000E+00
FCP 4 5 VOFP 8.6E+00
FCN 5 4 VOFN 8.6E+00
ISTB0 5 4 900NA
* AMPLIFYING STAGE
FIP 0 19 VOFP 5.500000E+02
FIN 0 19 VOFN 5.500000E+02
RG1 19 120 5.087344E+05
GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11
RG2 121 19 5.087344E+05
GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 12.33E+02
HZTN 5 30 VOFN 12.33E+02
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3135
VIPM 28 4 150
HONM 21 27 VOUT 3135
VINM 5 27 150
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 103 65
COUT 103 5 1.000000E-12
GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11
* OUTPUT SWING
DOP 19 68 MDTH 400E-12
VOP 4 25 1.924
HSCP 68 25 VSCP1 1E8
DON 69 19 MDTH 400E-12
VON 24 5 2.4419107
HSCN 24 69 VSCN1 1.5E8
VSCTHP 60 61 0.1375
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.75
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
* STAND BY
RMI1 4 111 1E+12
RMI2 5 111 1E+12
RSTBIN 6 0 1E+12
ESTBIN 106 0 6 0 1
ESTBREF 106 107 111 0 1
DSTB1 107 108 MDTH 400E-12
VSTB 108 109 0
ISTB 109 0 40U
RSTB 109 110 1
DSTB2 0 110 MDTH 400E-12
.ENDS
9/12
TS902
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, standby off, Tamb = 25oC
(unless otherwise specified)
Symbol
Conditions
Vio
Avd
RL = 10kΩ
ICC
No load, per operator
Vicm
Unit
0
mV
30
V/mV
230
µA
-0.2 to 5.2
V
VOH
RL = 10kΩ
4.95
V
VOL
RL = 10kΩ
50
mV
Isink
VO = 10V
60
mA
Isource
VO = 0V
60
mA
GBP
RL = 10kΩ, CL = 100pF
0.8
MHz
SR
RL = 10kΩ, CL = 100pF
0.8
V/µs
∅m
RL = 10kΩ, CL = 100pF
30
Degrees
VSTBY = 0V
500
nA
ICC STBY
10/12
Value
TS902
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP
Dimensions
a1
B
b
b1
D
E
e
e3
F
i
L
Z
Min.
0.51
1.39
Millimeters
Typ.
Max.
1.65
Min.
0.020
0.055
0.5
0.25
Inches
Typ.
0.065
0.020
0.010
20
0.787
8.5
2.54
15.24
0.335
0.100
0.600
7.1
5.1
0.280
0.201
3.3
1.27
Max.
0.130
2.54
0.050
0.100
11/12
TS902
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
Dimensions
A
a1
a2
b
b1
C
c1
D
E
e
e3
F
G
L
M
S
Min.
Millimeters
Typ.
0.1
0.35
0.19
Max.
1.75
0.2
1.6
0.46
0.25
Min.
Inches
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45o (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.334
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
o
8 (max.)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infri ngement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for useas critical components inlife support devices or systems
without express written approval of STMicroelectronics.
 The ST logo is a trademark of STMicroelectronics
 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
 http://www.st.com
12/12