TS902 RAIL TO RAIL CMOS DUAL OPERATIONAL AMPLIFIER (WITH STANDBY POSITION) . . . . .. . RAIL TO RAIL INPUT AND OUTPUT VOLTAGE RANGES STANDBY POSITION : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS SINGLE (OR DUAL) SUPPLY OPERATION FROM 2.7V TO 16V EXTREMELY LOW INPUT BIAS CURRENT : 1pA TYP SPECIFIED FOR 600Ω AND 100Ω LOADS LOW SUPPLY CURRENT : 200µA/Ampli SPICE MACROMODEL INCLUDED IN THIS SPECIFICATION N DIP14 (Plastic Package) D SO14 (Plastic Micropackage) ORDER CODES Part Number Package Temperature Range o -40, +125 C TS902I/AI N D • • PIN CONNECTIONS (top view) DESCRIPTION The TS902 is a RAIL TO RAIL dual CMOS operational amplifier designed to operate with single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches (VCC = 5V) : • VCC- +50mV VCC+ -50mV with RL = 10kΩ • VCC- +350mV VCC+ -400mV with RL = 600Ω This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200µA/amp. (VCC = 3V). Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit. The TS902 can be put on STANDBY position (only 0.5µA and high impedance outputs). STMicroelectronics is offering a quad op-amp with the same features : TS904. April 1999 V CC+ Standby 1 14 2 13 Output 2 Output 1 N.C. 3 12 N.C. - - 11 Inverting Input 2 + + 10 Non-inverting Input 2 Inverting Input 1 4 Non-inverting input 1 5 N.C. 6 9 N.C. N.C. 7 8 V CC - 1/12 TS902 SCHEMATIC DIAGRAM (1/2 TS902) VCC S ta ndby S ta ndby Interna l Vref Non-inve rting Input Inve rting Input Output S ta ndby S ta ndby VCC STANDBY POSITION VCC HIGH IMPEDANCE OUTPUT IN STANDBY MODE 1/2 TS 3V902 VCC 1 S TBY OFF S TBY ON VCC Vsby VCC ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Vi Iin Io Toper Parameter Supply Voltage - (note 1) Differential Input Voltage - (note 2) Input Voltage - (note 3) Current on Inputs Current on Outputs Operating Free Air Temperature Range Value 18 ±18 -0.3 to 18 ±50 ±130 TS902I/AI Storage Temperature Tstg Notes : -40 to +125 -65 to +150 Unit V V V mA mA o C o C 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. OPERATING CONDITIONS Symbol VCC Vicm 2/12 Parameter Supply Voltage Common Mode Input Voltage Range Value 2.7 to 16 + VCC -0.2 to VCC +0.2 Unit V V TS902 ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC (unless otherwise specified) Symbol Vio Parameter Input Offset Voltage (V ic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. DVio Iio Iib ICC CMR SVR Avd VOH VOL Io GBP SR ∅m en Min. TS902 TS902A TS902 TS902A Input Offset Voltage Drift Input Offset Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Supply Current (per amplifier, A VCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Common Mode Rejection Ratio Vic = 0 to 3V, Vo = 1.5V + Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2) Large Signal Voltage Gain (RL = 10kΩ, VO = 1.2V to 1.8V) Tmin. ≤ Tamb ≤ Tmax. High Level Output Voltage (Vid = 1V) RL = 10kΩ RL = 600Ω RL = 100Ω RL = 10kΩ Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω Low Level Output Voltage (Vid = -1V RL = 10kΩ RL = 600Ω RL = 100Ω RL = 10kΩ Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω − Output Short Circuit Current (Vid = ±1V) Source (Vo = VCC ) + Sink (Vo = VCC ) Gain Bandwidth Product (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) Slew Rate (A VCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V) Phase Margin Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz) TS902I/AI Typ. Max. 10 5 12 7 5 1 100 200 1 150 300 200 300 400 Unit mV µV/oC pA pA µA dB 3 2 2.9 2.2 60 80 10 dB V/mV 2.97 2.7 2 V 2.8 2.1 30 250 900 100 600 mV 150 900 40 40 mA MHz 0.7 0.5 30 V/µs Degrees nV √ Hz 30 Note 1 : Maximum values including unavoidable inaccuracies of the industrial test. STANDBY MODE VCC+ = 3V, VCC- = 0V, Tamb = 25oC (unless otherwise specified) Symbol VinSBY/ON VinSBY/OFF ICC SBY Parameter Pin 1 Threshold Voltage for STANDBY ON Pin 1 Threshold Voltage for STANDBY OFF Total Consumption in Standby Position (STANDBY ON) Min. TS902I/AI Typ. 1.2 1.2 0.5 Max. Unit V V µA 3/12 TS902 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC (unless otherwise specified) Symbol Vio Parameter Input Offset Voltage (Vic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. DVio Iio Iib ICC CMR SVR Avd VOH VOL Io GBP SR ∅m Min. TS902 TS902A TS902 TS902A Input Offset Voltage Drift Input Offset Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Supply Current (per amplifier, A VCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Common Mode Rejection Ratio Vic = 1.5 to 3.5V, Vo = 2.5V + Supply Voltage Rejection Ratio (VCC = 2.7 to 3.3V, VO = VCC /2) Large Signal Voltage Gain (RL = 10kΩ, VO = 1.5V to 3.5V) Tmin. ≤ Tamb ≤ Tmax. High Level Output Voltage (Vid = 1V) R L = 10kΩ R L = 600Ω R L = 100Ω R L = 10kΩ Tmin. ≤ Tamb ≤ Tmax. R L = 600Ω Low Level Output Voltage (Vid = -1V) R L = 10kΩ R L = 600Ω R L = 100Ω R L = 10kΩ Tmin. ≤ Tamb ≤ Tmax. R L = 600Ω − Output Short Circuit Current (Vid = ±1V) Source (Vo = VCC ) + Sink (Vo = VCC ) Gain Bandwidth Product (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 1V to 4V) Phase Margin TS902I/AI Typ. Max. 10 5 12 7 5 1 100 200 1 150 300 230 350 450 Unit mV µV/oC pA pA µA dB 7 5 4.85 4.2 85 80 30 dB V/mV 4.95 4.6 3.7 V 4.8 4.1 50 350 1400 100 680 mV 150 900 60 60 mA MHz 0.8 0.8 30 V/µs Degrees Note 1 : Maximum values including unavoidable inaccuracies of the industrial test. STANDBY MODE VCC+ = 5V, VCC- = 0V, Tamb = 25oC (unless otherwise specified) Symbol VinSBY/ON VinSBY/OFF ICC SBY 4/12 Parameter Pin 1 Threshold Voltage for STANDBY ON Pin 1 Threshold Voltage for STANDBY OFF Total Consumption in Standby Position (STANDBY ON) Min. TS902I/AI Typ. 5.2 5.2 0.5 Max. Unit V V µA TS902 ELECTRICAL CHARACTERISTICS VCC+ = 10V, VCC- = 0V, RL,CL connected to VCC/2, Standby OFF, Tamb = 25oC (unless otherwise specified) Symbol Vio Parameter Input Offset Voltage (Vic = Vo = VCC/2) Tmin. ≤ Tamb ≤ Tmax. DVio Iio Iib ICC CMR SVR Avd VOH VOL Io GBP SR ∅m en THD Cin Min. TS902 TS902A TS902 TS902A Input Offset Voltage Drift Input Offset Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Input Bias Current - (note 1) Tmin. ≤ Tamb ≤ Tmax. Supply Current (per amplifier, A VCL = 1, no load) Tmin. ≤ Tamb ≤ Tmax. Common Mode Rejection Ratio Vic = 3 to 7V, Vo = 5V Vic = 0 to 10V, Vo = 5V + Supply Voltage Rejection Ratio (VCC = 5 to 10V, VO = VCC /2) Large Signal Voltage Gain (RL = 10kΩ, VO = 2.5V to 7.5V) Tmin. ≤ Tamb ≤ Tmax. High Level Output Voltage (Vid = 1V) R L = 10kΩ R L = 600Ω R L = 100Ω R L = 10kΩ Tmin. ≤ Tamb ≤ Tmax. R L = 600Ω Low Level Output Voltage (Vid = -1V) R L = 10kΩ R L = 600Ω R L = 100Ω R L = 10kΩ Tmin. ≤ Tamb ≤ Tmax. R L = 600Ω Output Short Circuit Current (Vid = ±1V) Source (Vo = VCC−) + Sink (Vo = VCC ) Gain Bandwidth Product (AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz) Slew Rate (AVCL = 1, R L = 10kΩ, CL = 100pF, Vi = 2.5V to 7.5V) Phase Margin Equivalent Input Noise Voltage (Rs = 100Ω, f = 1kHz) 15 10 9.85 9.2 TS902I/AI Typ. Max. 10 5 12 7 5 1 100 200 1 150 300 400 600 700 90 70 80 40 9.95 9.35 7.8 mV µV/oC pA pA µA dB dB V/mV V 9.8 9 50 650 2300 150 800 mV 150 900 60 60 mA MHz 1.3 1.3 40 V/µs Degrees nV √ Hz % 30 Total Harmonic Distortion (AVCL = 1, RL = 10kΩ, CL = 100pF, VO = 4.75V to 5.25V, f = 1kHz) Input Capacitance Unit 0.024 1.5 pF Note 1 : Maximum values including unavoidable inaccuracies of the industrial test. STANDBY MODE VCC+ = 10V, VCC- = 0V, Tamb = 25oC (unless otherwise specified) Symbol VinSBY/ON VinSBY/OFF ICC SBY Parameter Pin 1 Threshold Voltage for STANDBY ON Pin 1 Threshold Voltage for STANDBY OFF Total Consumption in Standby Position (STANDBY ON) Min. TS902I/AI Typ. 8.2 8.5 1 Max. Unit V V µA 5/12 TS902 TYPICAL CHARACTERISTICS Figure 1a : Supply Current (each amplifier) vs Supply Voltage Figure 1b : Supply Current (each amplifier) vs Supply Voltage (in STANDBY mode) 50 SUPPLY CURRENT, I CC ( µA) SUPPLY CURRENT, ICC ( mA) 600 Ta mb = 25 C A VCL = 1 V o = VCC / 2 S tandby OFF 500 400 300 200 Ta mb = 25 C A VCL = 1 Sta ndby ON 40 30 20 10 100 0 4 8 12 0 16 4 S UPP LY VOLTAGE, VCC (V) OUTPUT VOLTAGE, VOH (V) INPUT BIAS CURRENT, I ib (pA) 5 VCC = 10V Vi = 5V No load Sta ndby OFF 10 T a mb = 25 C V id = 100mV S tandby OFF 4 2 VCC = +3V 1 0 50 75 100 125 -70 OUTPUT VOLTAGE, V OL (V) VCC = +16V 12 -4 2 -28 -1 4 0 Figure 4a : Low Level Output Voltage vs Low Level Output Current 5 T a mb = 25 C V id = 100mV Standby OFF -56 OUTPUT CURRENT, IOH (m A) Figure 3b : High Level Output Voltage vs High Level Output Current OUTPUT VOLTAGE, VOH (V) VCC = +5V 3 TEMPERATURE , Tamb ( C) 16 16 Figure 3a : High Level Output Voltage vs High Level Output Current 100 20 12 SUPPLY VOLTAGE, V CC (V) Figure 2 : Input Bias Current vs Temperature 1 25 8 VCC = +10 V 8 4 4 3 T a mb = 25 C V id = 1 00mV S tandby OFF VCC = +3V 2 VCC = +5V 1 0 -70 -56 -42 -28 -14 OUTP UT CURRENT, IOH (m A) 6/12 0 0 14 28 42 56 70 OUTPUT CURRENT, I OL (mA) TS902 Figure 4b : Low Level Output Voltage vs Low Level Output Current GAIN 40 6 V 4 V CC CC = 16V = 10V 0 30 P HASE 20 90 Tamb = 25 C VCC = 10V R L = 10k Ω C L = 100pF AVCL = 100 S tandby OFF 10 2 45 P ha s e Margin 0 135 Ga in Bandwidth P roduct 180 PHASE (Degrees) 8 50 T a mb = 25 C V id = 100mV S ta ndby OFF GAIN (dB) OUTPUT VOLTAGE, VOL (V) 10 Figure 5a : Gain and Phase vs Frequency -10 0 14 28 42 56 70 10 2 10 OUTPUT CURRENT, I OL (mA) 50 GAIN 0 30 Ta mb = 25 C VCC = 10V R L = 60 0Ω C L = 10 0pF A VCL = 100 S ta nd by O FF 20 10 0 10 10 45 P HASE 2 10 3 P ha s e Margin 90 135 Ga in Ba ndwidth P roduct 4 180 5 10 10 10 FREQUENCY, f (Hz) 6 10 PHASE (Degrees) GAIN (dB) 40 7 PHASE MARGIN, φ m (Degrees) GAIN BANDW. PROD., GBP (kHz) Ta mb = 25 C R L = 600Ω C L = 100pF Sta ndby OFF 1000 6 00 200 4 8 6 10 7 1800 Ta mb = 25 C R L = 10k Ω C L = 100pF Sta ndby OFF 1400 1000 600 200 0 4 8 12 16 Figure 7a : Phase Margin vs Supply Voltage 1800 0 5 S UPP LY VOLTAGE, VCC (V) Figure 6b : Gain bandwidth Product vs Supply Voltage 1400 4 10 10 10 FREQUENCY, f (Hz) Figure 6a : Gain Bandwidth Product vs Supply Voltage GAIN BANDW. PROD., GBP (kHz) Figure 5b : Gain and Phase vs Frequency 3 12 SUPP LY VOLTAGE, VCC (V) 16 60 Tamb = 2 5 C R L = 1 0kΩ C L = 1 00p F Sta ndby OFF 50 40 30 20 0 4 8 12 16 S UPP LY VOLTAGE, VCC (V) 7/12 TS902 Figure 7b : Phase Margin vs Supply Voltage Figure 8 : Input Voltage Noise vs Frequency EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz) PHASE MARGIN,φ m (Degrees) 60 Ta mb = 25 C R L = 600Ω C L = 100 pF Sta ndby OFF 50 40 30 20 0 4 8 12 150 VCC = 10V Tamb = 25 C R S = 100Ω 100 16 Sta ndby OFF 50 0 10 SUP PLY VOLTAGE, VCC (V) 1000 100 FREQUENCY (Hz) STANDBY APPLICATION The two operators of the TS902 are both put on STANDBY. . . .. In this configuration (standby ON) : The total consumption of the circuit is considerably reduced down to 0.5µA (VCC = 3V). This standby consumption vs VCC curve is given figure 1b. The both outputs are in high impedance state. No output current can then be sourced or sinked by the device. The standby pin 1 should never stay unconnected. The ”standby OFF” state, is reached when the pin 1 voltage is higher than Vin SBY/OFF. The ”standby ON” state is assured by a pin 1 voltage lower than Vin SBY/ON. (see electrical characteristics) 8/12 10000 TS902 MACROMODEL . . . RAIL TO RAIL INPUT AND OUTPUT VOLTAGE RANGES STANDBY POSITION : REDUCED CONSUMPTION (0.5µA) AND HIGH IMPEDANCE OUTPUTS SINGLE (OR DUAL) SUPPLY OPERATION FROM 2.7V TO 16V (±1.35V to ±8V) . . .. . EXTREMELY LOW INPUT BIAS CURRENT : 1pA TYP LOW INPUT OFFSET VOLTAGE : 5mV max. SPECIFIED FOR 600Ω AND 100Ω LOADS LOW SUPPLY CURRENT : 200µA/Ampli SPEED : 0.7MHz - 0.5V/µs Applies to : TS902I,AI ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TS902 1 3 2 4 5 6 (analog) ********************************************************** .MODEL MDTH D IS=1E-8 KF=6.563355E-14 CJO=10F * INPUT STAGE CIP 2 5 1.500000E-12 CIN 1 5 1.500000E-12 EIP 10 0 2 0 1 EIN 16 0 1 0 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.655100E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 FPOL 13 0 VSTB 1 CPS 11 15 3.82E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.5000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 -0.5000000E+00 FCP 4 5 VOFP 8.6E+00 FCN 5 4 VOFN 8.6E+00 ISTB0 5 4 900NA * AMPLIFYING STAGE FIP 0 19 VOFP 5.500000E+02 FIN 0 19 VOFN 5.500000E+02 RG1 19 120 5.087344E+05 GCOM1 120 5 POLY(1) 110 109 LEVEL=1 6.25E+11 RG2 121 19 5.087344E+05 GCOM2 121 4 POLY(1) 110 109 LEVEL=1 6.25E+11 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 12.33E+02 HZTN 5 30 VOFN 12.33E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3135 VIPM 28 4 150 HONM 21 27 VOUT 3135 VINM 5 27 150 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 103 65 COUT 103 5 1.000000E-12 GCOM 103 3 POLY(1) 110 109 LEVEL=1 6.25E+11 * OUTPUT SWING DOP 19 68 MDTH 400E-12 VOP 4 25 1.924 HSCP 68 25 VSCP1 1E8 DON 69 19 MDTH 400E-12 VON 24 5 2.4419107 HSCN 24 69 VSCN1 1.5E8 VSCTHP 60 61 0.1375 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.75 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 * STAND BY RMI1 4 111 1E+12 RMI2 5 111 1E+12 RSTBIN 6 0 1E+12 ESTBIN 106 0 6 0 1 ESTBREF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 40U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 .ENDS 9/12 TS902 ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, RL,CL connected to VCC/2, standby off, Tamb = 25oC (unless otherwise specified) Symbol Conditions Vio Avd RL = 10kΩ ICC No load, per operator Vicm Unit 0 mV 30 V/mV 230 µA -0.2 to 5.2 V VOH RL = 10kΩ 4.95 V VOL RL = 10kΩ 50 mV Isink VO = 10V 60 mA Isource VO = 0V 60 mA GBP RL = 10kΩ, CL = 100pF 0.8 MHz SR RL = 10kΩ, CL = 100pF 0.8 V/µs ∅m RL = 10kΩ, CL = 100pF 30 Degrees VSTBY = 0V 500 nA ICC STBY 10/12 Value TS902 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP Dimensions a1 B b b1 D E e e3 F i L Z Min. 0.51 1.39 Millimeters Typ. Max. 1.65 Min. 0.020 0.055 0.5 0.25 Inches Typ. 0.065 0.020 0.010 20 0.787 8.5 2.54 15.24 0.335 0.100 0.600 7.1 5.1 0.280 0.201 3.3 1.27 Max. 0.130 2.54 0.050 0.100 11/12 TS902 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) Dimensions A a1 a2 b b1 C c1 D E e e3 F G L M S Min. Millimeters Typ. 0.1 0.35 0.19 Max. 1.75 0.2 1.6 0.46 0.25 Min. Inches Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45o (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.334 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 o 8 (max.) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infri ngement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for useas critical components inlife support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com 12/12