Data Sheet No. PD60147-L IR2110/IR2113 HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +500V or +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels Separate logic supply range from 5 to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs Description The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL output. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts. Product Summary VOFFSET (IR2110) (IR2113) 500V max. 600V max. IO+/- 2A / 2A VOUT 10 - 20V ton/off (typ.) 120 & 94 ns Delay Matching 10 ns Packages 14 Lead PDIP IR2110/IR2113 16 Lead PDIP w/o leads 4 & 5 IR2110-2/IR2113-2 14 Lead PDIP w/o Lead 4 IR2110-1/IR2113-1 16 Lead SOIC IR2110S/IR2113S Typical Connection up to 500V or 600V HO V DD V DD VB HIN HIN VS SD SD LIN LIN V CC V SS V SS COM VCC www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 TO LOAD LO 1 IR2110/IR2113 Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB Definition Min. Max. High side floating supply voltage (IR2110) -0.3 525 (IR2113) -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 VSS + 25 VSS Logic supply offset voltage VCC - 25 VCC + 0.3 VIN Logic input voltage (HIN, LIN & SD) VSS - 0.3 VDD + 0.3 — 50 VS dVs/dt PD RTHJA Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA ≤ +25°C (14 lead DIP) — 1.6 (14 lead DIP w/o lead 4) — 1.5 (16 lead DIP w/o leads 4 & 5) — 1.6 (16 lead SOIC) — 1.25 (14 lead DIP) — 75 Thermal resistance, junction to ambient (14 lead DIP w/o lead 4) — 85 (16 lead DIP w/o leads 4 & 5) — 75 (16lLead SOIC) — 100 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 Units (IR2110) Note 1 500 (IR2113) Note 1 600 VB VHO High side floating output voltage VS VCC Low side fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VDD Logic supply voltage VSS + 4.5 VSS + 20 VSS Logic supply offset voltage VIN TA -5 5 Logic input voltage (HIN, LIN & SD) VSS VDD Ambient temperature -40 125 V °C Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS. 2 Powered by ICminer.com Electronic-Library Service CopyRight 2003 www.irf.com IR2110/IR2113 Dynamic Electrical Characteristics VBIAS (VCC , VBS , VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 7 — 120 150 VS = 0V toff Turn-off propagation delay 8 — 94 125 VS = 500V/600V tsd Shutdown propagation delay 9 — 110 140 VS = 500V/600V tr Turn-on rise time 10 — 25 35 tf Turn-off fall time 11 — 17 25 Delay matching, HS & LS turn-on/off — — — 10 MT ns Figure 5 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Figure Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 12 9.5 — — VIL Logic “0” input voltage 13 — — 6.0 VOH High level output voltage, VBIAS - VO 14 — — 1.2 VOL Low level output voltage, VO 15 — — 0.1 IO = 0A V IO = 0A ILK Offset supply leakage current 16 — — 50 VB=VS = 500V/600V IQBS Quiescent VBS supply current 17 — 125 230 VIN = 0V or VDD IQCC Quiescent VCC supply current 18 — 180 340 IQDD Quiescent VDD supply current 19 — 15 30 VIN = 0V or VDD IIN+ Logic “1” input bias current 20 — 20 40 VIN = VDD 21 22 — 7.5 — 8.6 1.0 9.7 VIN = 0V 23 7.0 8.2 9.4 24 7.4 8.5 9.6 25 7.0 8.2 9.4 IO+ Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current 26 2.0 2.5 — IO- Output low short circuit pulsed current 27 2.0 2.5 — IINVBSUV+ VBSUVVCCUV+ VCCUV- www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 µA VIN = 0V or VDD V A VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs 3 IR2110/IR2113 Functional Block Diagram VB UV DETECT VDD HV LEVEL SHIFT R Q S VDD /VCC LEVEL SHIFT HIN PULSE FILTER PULSE GEN R R Q HO S VS SD VCC VDD /VCC LEVEL SHIFT LIN S R Q UV DETECT LO DELAY COM VSS Lead Definitions Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return Lead Assignments 14 Lead PDIP IR2110/IR2113 14 Lead PDIP w/o Lead 4 16 Lead PDIP w/o Leads 4 & 5 16 Lead SOIC (Wide Body) IR2110-1/IR2113-1 IR2110-2/IR2113-2 Part Number 4 Powered by ICminer.com Electronic-Library Service CopyRight 2003 IR2110S/IR2113S www.irf.com IR2110/IR2113 HV =10 to 500V/600V Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit (0 to 500V/600V) 50% 50% HIN LIN ton toff tr 90% HO LO Figure 3. Switching Time Test Circuit 90% 10% 10% Figure 4. Switching Time Waveform Definition HIN LIN SD tf 50% 50% 50% LO HO tsd HO LO 10% 90% MT MT 90% LO Figure 3. Shutdown Waveform Definitions www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 HO Figure 6. Delay Matching Waveform Definitions 5 IR2110/IR2113 250 250 200 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) Max. 150 Max. 100 Typ. 50 Typ. 150 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 7A. Turn-On Time vs. Temperature 16 18 20 Figure 7B. Turn-On Time vs. Voltage 250 250 200 200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 14 VBIAS Supply Voltage (V) 150 Max. 100 Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 200 Shutdown Delay time (ns) Shutdown Delay Time (ns) Max. 150 Max. 100 Typ. 50 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 9A. Shutdown Time vs. Temperature 6 Powered by ICminer.com Electronic-Library Service CopyRight 2003 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Shutdown Time vs. Voltage www.irf.com 100 100 80 80 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2110/IR2113 60 40 Max. 60 Max. 40 Typ. Typ. 20 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage 50 50 40 40 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) Figure 10A. Turn-On Rise Time vs. Temperature 30 Max. 20 Typ. 10 30 20 Max. Typ. 10 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 12.0 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) 14 VBIAS Supply Voltage (V) Max Min. 9.0 6.0 3.0 9.0 6.0 Min. Max 3.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 12A. Logic “1” Input Threshold vs. Temperature www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12B. Logic “1” Input Threshold vs. Voltage 7 15.0 15.0 12.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2110/IR2113 9.0 Max. Min. 6.0 3.0 9.0 6.0 3.0 0.0 Max. Min. 0.0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 13B. Logic “0” Input Threshold vs. Voltage 5.00 5.00 4.00 4.00 High Level Output Voltage (V) High Level Output Voltage (V) Figure 13A. Logic “0” Input Threshold vs. Temperature 3.00 2.00 Max. 1.00 3.00 2.00 Max. 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) 10 VDD Logic Supply Voltage (V) 0.60 0.40 0.60 0.40 0.20 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 15A. Low Level Output vs. Temperature 8 Powered by ICminer.com Electronic-Library Service CopyRight 2003 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15B. Low Level Output vs. Voltage www.irf.com IR2110/IR2113 500 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) 500 400 300 200 100 400 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 0 125 100 Temperature (°C) 300 400 V B Boost Voltage (V) Figure 16A. Offset Supply Current vs. Temperature 500 500 400 400 300 Max. 200 500 IR2110 600 IR2113 Figure 16B. Offset Supply Current vs. Voltage VBS Supply Current (µA) VBS Supply Current (µA) 200 300 200 Max. Typ. 100 100 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 17A. VBS Supply Current vs. Temperature 16 18 20 Figure 17B. VBS Supply Current vs. Voltage 625 625 500 500 VCC Supply Current (µA) VCC Supply Current (µA) 14 VBS Floating Supply Voltage (V) 375 Max. 250 375 250 Max. Typ. 125 125 0 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 18A. VCC Supply Current vs. Temperature www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage 9 IR2110/IR2113 80 80 VDD Supply Current (µA) 100 VDD Supply Current (µA) 100 60 40 Max. 60 40 Max. 20 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 19B. VDD Supply Current vs. Voltage 100 100 80 80 Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) Figure 19A. VDD Supply Current vs. Temperature 60 40 Max. 20 60 40 Max. 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 5 125 7.5 Figure 20A. Logic “1” Input Current vs. Temperature 12.5 15 17.5 20 Figure 20B. Logic “1” Input Current vs. Voltage 5.00 4.00 4.00 Logic "0" Input Bias Current (µA) 5.00 3.00 2.00 1.00 10 VDD Logic Supply Voltage (V) Temperature (°C) Logic "0" Input Bias Current (µA) 10 VDD Logic Supply Voltage (V) Max. 0.00 3.00 2.00 Max. 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Logic “0” Input Current vs. Temperature 10 Powered by ICminer.com Electronic-Library Service CopyRight 2003 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. Voltage www.irf.com IR2110/IR2113 11.0 11.0 VBS Undervoltage Lockout + (V) 10.0 10.0 VBS Undervoltage Lockout - (V) Max. 9.0 Typ. 8.0 Min. 7.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) Figure 22. VBS Undervoltage (+) vs. Temperature 100 125 10.0 VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 75 11.0 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 50 75 100 125 Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 4.00 4.00 Output Source Current (A) 5.00 Typ. Min. 2.00 1.00 0.00 -50 25 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature Output Source Current (A) 50 Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 3.00 25 Temperature (°C) 3.00 2.00 Typ. 1.00 Min. 0.00 -25 0 25 50 75 100 125 Temperature (°C) Figure 26A. Output Source Current vs. Temperature www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage 11 5.00 5.00 4.00 4.00 Output Sink Current (A) Output Sink Current (A) IR2110/IR2113 Typ. 3.00 Min. 2.00 1.00 3.00 2.00 Typ. 1.00 0.00 -50 Min. 0.00 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 27A. Output Sink Current vs. Temperature Figure 27B. Output Sink Current vs. Voltage 320V 150 320V 150 125 125 100 75 10V 50 Junction Temperature (°C) Junction Temperature (°C) 140V 140V 25 100 75 10V 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) Figure 28. IR2110/IR2113 TJ vs. Frequency Ω , VCC = 15V (IRFBC20) RGATE = 33Ω 320V 150 1E+5 1E+6 Figure 29. IR2110/IT2113 TJ vs. Frequency Ω, VCC = 15V (IRFBC30) RGATE = 22Ω 140V 320V 150 140V 125 100 10V 75 50 25 Junction Temperature (°C) 125 Junction Temperature (°C) 1E+4 Frequency (Hz) 10V 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 30. IR2110/IR2113 TJ vs. Frequency Ω , VCC = 15V (IRFBC40) RGATE = 15Ω 12 Powered by ICminer.com Electronic-Library Service CopyRight 2003 1E+6 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 31. IR2110/IR2113 TJ vs. Frequency Ω, VCC = 15V (IRFPE50) RGATE = 10Ω www.irf.com IR2110/IR2113 320V 150 140V 100 10V 75 50 25 100 10V 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+5 1E+6 Figure 33. IR2110S/IR2113S TJ vs. Frequency Ω , VCC = 15V (IRFBC30) RGATE = 22Ω 320V 140V 150 125 320V 140V 10V 150 125 10V Junction Temperature (°C) Junction Temperature (°C) 1E+4 Frequency (Hz) Figure 32. IR2110S/IR2113S TJ vs. Frequency Ω, VCC = 15V (IRFBC20) RGATE = 33Ω 100 75 50 25 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 34. IR2110S/IR2113S TJ vs. Frequency Ω , VCC = 15V (IRFBC40) RGATE = 15Ω Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) Ω , VCC = 15V RGATE = 10Ω 0.0 20.0 VSS Logic Supply Offset Voltage (V) -2.0 VS Offset Supply Voltage (V) 140V 125 Junction Temperature (°C) 125 Junction Temperature (°C) 320V 150 Typ. -4.0 -6.0 -8.0 -10.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 20 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 13 IR2110/IR2113 Case Outlines 14 Lead PDIP 14 Lead PDIP w/o Lead 4 14 Powered by ICminer.com Electronic-Library Service CopyRight 2003 01-3002 03 01-3008 02 www.irf.com IR2110/IR2113 16 Lead PDIP w/o Leads 4 & 5 01-3010 02 16 Lead SOIC (wide body) 01-3014 03 4/12/2000 www.irf.com Powered by ICminer.com Electronic-Library Service CopyRight 2003 15