LXT9785 Advanced 10/100 8-Port PHY Datasheet The LXT9785 is an 8-port Fast Ethernet PHY Transceiver that supports IEEE 802.3 physical layer applications at both 10Mbps and 100Mbps. This device provides both Serial/Source Synchronous (SMII/SS-SMII) and Reduced Media Independent (RMII) Interfaces for switching and other independent port applications. All network ports provide a combination twisted-pair (TP) or pseudo-ECL (PECL) interface for both 10Mbps or 100Mbps (10BASE-T and 100BASE-TX) Ethernet over twisted-pair, or 100Mbps (100BASE-FX) Ethernet over fiber-optic media . The LXT9785 provides three discrete LED driver outputs for each port. The device supports both half-duplex and full-duplex operation at 10Mbps and 100Mbps and requires only a single 2.5V power supply. Applications ■ 10BASE-T, 10/100BASE-TX, or 100BASE-FX Switches and multi-port NICs. Product Features ■ ■ ■ ■ ■ ■ ■ Eight IEEE 802.3-compliant 10BASE-T or 100BASE-TX ports with integrated filters. 2.5V operation. Optimized for dual-high stacked RJ-45 applications. Proprietary Optimal Signal Processing™ architecture improves SNR by 3 dB over ideal analog filters. Robust baseline wander correction. 100BASE-FX fiber-optic capability on all ports. Supports both auto-negotiation systems and legacy systems without auto-negotiation capability. ■ ■ ■ ■ ■ ■ ■ JTAG boundary scan. Multiple RMII or SMII/SS-SMII ports for independent PHY port operation. Configurable via MDIO port or external control pins. Low power consumption; 250 mW per port typical. Auto MDIX crossover capabilities. 208-pin PQFP and 241-pin BGA packages. MDIO sectionalization into 2x4 or 1x8 configurations. As of January 15, 2001, this document replaces the Level One document known as LXT9785 Advanced 10/100 8-Port PHY Datasheet. Order Number: 249241-002 January 2001 Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The LXT9785 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com. Copyright © Intel Corporation, 2001 *Third-party brands and names are the property of their respective owners. Datasheet Advanced 10/100 8-Port PHY — LXT9785 Contents 1.0 Pin Assignments and Signal Descriptions ....................................................12 1.1 2.0 Functional Description...........................................................................................51 2.1 2.2 2.3 2.4 2.5 2.6 Datasheet Signal Name Conventions...................................................................................39 Introduction..........................................................................................................51 2.1.1 OSP™ Architecture ................................................................................51 2.1.2 Comprehensive Functionality .................................................................51 2.1.2.1 Sectionalization .........................................................................52 Interface Descriptions..........................................................................................52 2.2.1 10/100 Network Interface .......................................................................52 2.2.1.1 Twisted-Pair Interface ...............................................................53 2.2.1.2 MDI Crossover (MDIX) ..............................................................53 2.2.1.3 Fiber Interface ...........................................................................53 Media Independent Interface (MII) Interfaces .....................................................53 2.3.1 Global MII Mode Select ..........................................................................54 2.3.2 Internal Loopback...................................................................................54 2.3.3 RMII Data Interface ................................................................................54 2.3.4 Serial Media Independent Interface (SMII) and Source Synchronous Data Interfaces54 2.3.4.1 SMII Interface ............................................................................54 2.3.4.2 Source Synchronous Interface ..................................................55 2.3.5 Configuration Management Interface .....................................................55 2.3.6 MII Isolate...............................................................................................55 2.3.6.1 MDIO Management Interface ....................................................55 2.3.6.2 MII Sectionalization ...................................................................57 2.3.6.3 MII Interrupts .............................................................................57 2.3.6.4 Hardware Control Interface .......................................................57 Operating Requirements .....................................................................................58 2.4.1 Power Requirements..............................................................................58 2.4.2 Clock/SYNC Requirements ....................................................................58 2.4.2.1 Reference Clock ........................................................................58 2.4.2.2 TxClk Signal (SS-SMII only) ......................................................58 2.4.2.3 TxSYNC Signal (SMII/SS-SMII) ................................................58 2.4.2.4 RxSYNC Signal (SS-SMII only).................................................58 2.4.2.5 RxCLK Signal (SS-SMII only)....................................................58 Initialization..........................................................................................................59 2.5.1 MDIO Control Mode ...............................................................................59 2.5.2 Hardware Control Mode .........................................................................59 2.5.3 Power-Down Mode.................................................................................60 2.5.3.1 Global (Hardware) Power Down................................................60 2.5.3.2 Port (Software) Power Down .....................................................61 2.5.4 Reset ......................................................................................................61 2.5.5 Hardware Configuration Settings ...........................................................62 Link Establishment ..............................................................................................62 2.6.1 Auto-Negotiation.....................................................................................62 2.6.1.1 Base Page Exchange................................................................62 2.6.1.2 Next Page Exchange.................................................................62 3 LXT9785 — Advanced 10/100 8-Port PHY 2.7 2.8 2.9 2.10 2.11 3.0 Application Information ......................................................................................... 88 3.1 3.2 4 2.6.1.3 Controlling Auto-Negotiation ..................................................... 63 2.6.1.4 Link Criteria ............................................................................... 63 2.6.1.5 Parallel Detection ...................................................................... 63 Serial MII Operation ............................................................................................ 64 2.7.1 SMII Reference Clock ............................................................................ 67 2.7.2 TxSYNC Pulse (SMII/SS-SMII) .............................................................. 67 2.7.3 Transmit Data Stream ............................................................................ 67 2.7.3.1 Transmit Enable ........................................................................ 67 2.7.3.2 Transmit Error ........................................................................... 67 2.7.4 Receive Data Stream ............................................................................. 68 2.7.4.1 Carrier Sense ............................................................................ 68 2.7.4.2 Receive Data Valid.................................................................... 68 2.7.4.3 Receive Error ............................................................................ 68 2.7.4.4 Receive Status Encoding .......................................................... 68 2.7.5 Collision.................................................................................................. 68 2.7.5.1 Source Synchronous SMII......................................................... 70 RMII Operation.................................................................................................... 74 2.8.1 RMII Reference Clock ............................................................................ 74 2.8.2 Transmit Enable ..................................................................................... 74 2.8.3 Carrier Sense & Data Valid .................................................................... 74 2.8.4 Receive Error ......................................................................................... 74 2.8.5 Out-of-Band Signalling ........................................................................... 74 2.8.6 4B/5B Coding Operations ...................................................................... 74 100Mbps Operation............................................................................................. 78 2.9.1 100BASE-X Network Operations ........................................................... 78 2.9.2 100BASE-X Protocol Sublayer Operations ............................................ 78 2.9.2.1 PCS Sublayer............................................................................ 78 2.9.3 PMA Sublayer ........................................................................................ 80 2.9.3.1 Twisted-Pair PMD Sublayer ...................................................... 82 2.9.3.2 Fiber PMD Sublayer .................................................................. 82 10Mbps Operation............................................................................................... 83 2.10.1 Preamble Handling................................................................................. 83 2.10.2 Dribble Bits............................................................................................. 83 2.10.3 Link Test................................................................................................. 83 2.10.3.1Link Failure................................................................................ 84 2.10.4 Jabber .................................................................................................... 84 Monitoring Operations......................................................................................... 84 2.11.1 Monitoring Auto-Negotiation................................................................... 84 2.11.2 Per-Port LED Driver Functions............................................................... 84 2.11.3 Out-of-Band Signalling ........................................................................... 85 2.11.4 Boundary Scan Interface........................................................................ 86 2.11.5 State Machine ........................................................................................ 86 2.11.6 Instruction Register ................................................................................ 86 2.11.7 Boundary Scan Register ........................................................................ 87 Design Recommendations .................................................................................. 88 General Design Guidelines ................................................................................. 88 3.2.1 Power Supply Filtering ........................................................................... 88 3.2.2 Power and Ground Plane Layout Considerations .................................. 89 3.2.2.1 Chassis Ground......................................................................... 89 Datasheet Advanced 10/100 8-Port PHY — LXT9785 3.2.3 3.2.4 3.3 MII Terminations.....................................................................................89 Twisted-Pair Interface ............................................................................90 3.2.4.1 Magnetics Information ...............................................................90 3.2.5 The Fiber Interface .................................................................................90 3.2.6 LED Circuit .............................................................................................90 Typical Application Circuits .................................................................................92 4.0 Test Specifications ..................................................................................................94 5.0 Register Definitions...............................................................................................119 6.0 Package Specifications .......................................................................................136 Datasheet 5 LXT9785 — Advanced 10/100 8-Port PHY Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 6 LXT9785 Block Diagram ..................................................................................... 11 LXT9785 RMII 208-Pin PQFP Assignments ....................................................... 12 LXT9785 SMII 208-Pin PQFP Assignments ....................................................... 13 LXT9785 SS-SMII 208-Pin PQFP Assignments ................................................. 14 LXT9785 RMII 241-Ball PBGA Assignments ...................................................... 15 LXT9785 SMII 241-Ball PBGA Assignments ...................................................... 16 LXT9785 SS-SMII 241-Ball PBGA Assignments ................................................ 17 LXT9785 Interfaces............................................................................................. 52 Internal Loopback................................................................................................ 54 Management Interface Read Frame Structure.................................................... 56 Management Interface Write Frame Structure.................................................... 56 Port Address Scheme ......................................................................................... 56 Interrupt Logic ..................................................................................................... 57 Initialization Sequence ........................................................................................ 60 Auto-Negotiation Operation................................................................................. 63 Typical SMII Interface Diagram........................................................................... 65 Typical SMII Quad Sectionalization Diagram...................................................... 66 100Mbps Serial MII Data Flow ............................................................................ 67 Serial MII Transmit Synchronization ................................................................... 68 Serial MII Receive Synchronization .................................................................... 69 Typical SS-SMII Interface Diagram..................................................................... 71 Typical SS-SMII Quad Sectionalization Diagram................................................ 72 Source Synchronous Transmit Timing ................................................................ 73 Source Synchronous Receive Timing ................................................................. 73 RMII Data Flow ................................................................................................... 75 Typical RMII Interface Diagram........................................................................... 76 Typical RMII Quad Sectionalization Diagram...................................................... 77 100BASE-X Frame Format ................................................................................. 78 Protocol Sublayers .............................................................................................. 79 LED Pulse Stretching .......................................................................................... 85 RMII Programmable Out-of-Bank Signaling........................................................ 86 LED Circuit .......................................................................................................... 91 Power and Ground Supply Connections ............................................................. 92 Typical Twisted-Pair Interface............................................................................. 93 Typical Fiber Interface......................................................................................... 93 SMII - 100BASE-TX Receive Timing .................................................................. 98 SMII - 100BASE-TX Transmit Timing ................................................................. 99 SMII - 100BASE-FX Receive Timing ................................................................ 100 SMII - 100BASE-FX Transmit Timing ............................................................... 101 SMII - 10BASE-T Receive Timing..................................................................... 102 SMII - 10BASE-T Transmit Timing.................................................................... 103 Source Synchronous SMII 100BASE-TX Receive Timing ................................ 104 Source Synchronous SMII 100BASE-TX Transmit Timing ............................... 105 Source Synchronous SMII - 100BASE-FX Receive Timing .............................. 106 Source Synchronous SMII - 100BASE-FX Transmit Timing ............................. 107 Source Synchronous SMII - 10BASE-T Receive Timing .................................. 108 Source Synchronous SMII - 10BASE-T Transmit Timing ................................. 109 RMII - 100BASE-TX Receive Timing ................................................................ 110 RMII - 100BASE-TX Transmit Timing ............................................................... 111 Datasheet Advanced 10/100 8-Port PHY — LXT9785 50 51 52 53 54 55 56 57 58 59 60 61 62 RMII - 100BASE-FX Receive Timing ................................................................112 RMII - 100BASE-FX Transmit Timing ...............................................................113 RMII - 10BASE-T Receive Timing.....................................................................114 RMII - 10BASE-T Transmit Timing....................................................................115 Auto-Negotiation and Fast Link Pulse Timing ...................................................116 Fast Link Pulse Timing ......................................................................................116 MDIO Write Timing (MDIO Sourced by MAC)...................................................117 MDIO Read Timing (MDIO Sourced by PHY) ...................................................117 Power-Up Timing...............................................................................................118 Reset Recovery Timing .....................................................................................118 PHY Identifier Bit Mapping ................................................................................122 LXT9785 208-Pin PQFP Plastic Package Specification....................................136 LXT9785 241-Ball PBGA Package Specification (LXT9785BC) .......................137 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 RMII PQFP Pin List .............................................................................................18 SMII PQFP Pin List .............................................................................................25 SS-SMII PQFP Pin List .......................................................................................32 LXT9785 RMII Signal Descriptions .....................................................................39 LXT9785 SMII / SS-SMII Common Signal Descriptions......................................41 LXT9785 SMII Specific Signal Descriptions ........................................................41 LXT9785 SS-SMII Specific Signal Descriptions ..................................................42 MDIO Control Interface Signals...........................................................................43 LXT9785 Signal Detect .......................................................................................44 LXT9785 Network Interface Signal Descriptions.................................................44 LXT9785 JTAG Test Signal Descriptions............................................................45 LXT9785 Miscellaneous Signal Descriptions ......................................................46 LXT9785 LED Signal Descriptions ......................................................................48 LXT9785 Power Supply Signal Descriptions.......................................................49 Unused / Reserved Pins......................................................................................50 MDIX Selection....................................................................................................53 MII Mode Select ..................................................................................................54 Global Hardware Configuration Settings .............................................................62 SMII Signal Summary..........................................................................................64 RX Status Encoding Bit Definitions .....................................................................69 Source Synchronous SMII..................................................................................70 4B/5B Coding ......................................................................................................80 BSR Mode of Operation ......................................................................................87 Supported JTAG Instructions ..............................................................................87 Magnetics Requirements.....................................................................................91 Absolute Maximum Ratings.................................................................................94 Operating Conditions...........................................................................................94 Digital I/O Characteristics (VCCIO = 2.5V +/- 5%) ..............................................95 Digital I/O Characteristics (VCCIO = 3.3V +/- 5%) ..............................................96 Required Clock Characteristics ...........................................................................96 100BASE-TX Transceiver Characteristics ..........................................................96 100BASE-FX Transceiver Characteristics ..........................................................97 10BASE-T Transceiver Characteristics...............................................................97 SMII - 100BASE-TX Receive Timing Parameters ...............................................98 Tables Datasheet 7 LXT9785 — Advanced 10/100 8-Port PHY 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 8 SMII - 100BASE-TX Transmit Timing Parameters .............................................. 99 SMII - 100BASE-FX Receive Timing Parameters ............................................. 100 SMII - 100BASE-FX Transmit Timing Parameters ............................................ 101 SMII - 10BASE-T Receive Timing Parameters ................................................. 102 SMII-10BASE-T Transmit Timing Parameters .................................................. 103 Source Synchronous SMII 100BASE-TX Receive Timing Parameters............. 104 Source Synchronous SMII 100BASE-TX Transmit Timing ............................... 105 Source Synchronous SMII - 100BASE-FX Receive Timing Parameters .......... 106 Source Synchronous SMII - 100BASE-FX Transmit Timing Parameters ......... 107 Source Synchronous SMII - 10BASE-T Receive Timing Parameters ............... 108 Source Synchronous SMII - 10BASE-T Transmit Timing Parameters.............. 109 RMII - 100BASE-TX Receive Timing Parameters............................................. 110 RMII - 100BASE-TX Transmit Timing Parameters............................................ 111 RMII - 100BASE-FX Receive Timing Parameters............................................. 112 RMII - 100BASE-FX Transmit Timing Parameters............................................ 113 RMII - 10BASE-T Receive Timing Parameters ................................................. 114 RMII - 10BASE-T Transmit Timing Parameters ................................................ 115 Auto-Negotiation and Fast Link Pulse Timing Parameters ............................... 116 MDIO Timing Parameters ................................................................................. 117 Power-Up Timing Parameters.......................................................................... 118 Reset Recovery Timing Parameters ................................................................. 118 Register Set ...................................................................................................... 119 Control Register (Address 0)............................................................................. 120 Status Register (Address 1) .............................................................................. 121 PHY Identification Register 1 (Address 2)......................................................... 122 PHY Identification Register 2 (Address 3)......................................................... 122 Auto-Negotiation Advertisement Register (Address 4)4 ................................... 123 Auto-Negotiation Link Partner Base Page Ability Register (Address 5) ............ 124 Auto-Negotiation Expansion (Address 6) .......................................................... 125 Auto-Negotiation Next Page Transmit Register (Address 7)............................. 125 Auto-Negotiation Link Partner Next Page Receive Register (Address 8) ......... 126 Port Configuration Register (Address 16, Hex 10) ............................................ 127 Quick Status Register (Address 17, Hex 11) .................................................... 128 Interrupt Enable Register (Address 18, Hex 12) ............................................... 128 Interrupt Status Register (Address 19, Hex 13) ................................................ 130 LED Configuration Register (Address 20, Hex 14) ........................................... 131 Receive Error Count Register (Address 21)...................................................... 132 RMII Out-of-Band Signalling Register (Address 25) ......................................... 133 Trim Enable Register (Address 27)................................................................... 133 Register Bit Map................................................................................................ 134 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Revision History Date Revision January 2001 002 Description Global: Add bar to all LEDm_n for active low status. Tables 1, 2 and 3: Add RMII, SMII, and SS-SMII numeric pin lists. Introduction: Deleted “(up to 100 meters)” and “(up to 185 meters)”. Sectionalization: Change second sentence. SMII/SS-SMII Interfaces: Delete text from “SMII Interface: “The SMII interface only operates with VCCIO at 3.3V (refer to Table 26 on page 73).” Reference Clock: Changed language. Simplified SMII Application Diagram: Delete old Figure 17 -- redundant. Under Purpose, switch descriptions for TXD and RXD. Per-Port LED Driver Functions: Add text to third paragraph after first line: LED Circuits: Add LED Circuit text and diagram. Power and Ground Connections: Add 0.1 µF capacitor value to figure. Typical Twisted-Pair Interface: Change capacitor value from 0.1 µF to .01 µF. Delete old Figure 35 and old Table 33, SMII Sync Timing (Parameters) Delete Old Figure 37 Typical RMII Interface -- redundant. Absolute Maximum Ratings: Change Operating temperature for Case under Max from “120” to “+120”. Operating Conditions: Two lines for Recommended Supply Voltage for VCCPECL are: I/O (SD_2P5V = 0); Sym=VCCPECL; Min=3.14; Typ (2.5)=2.5; Typ (3.3)=3.3; Max=3.46 I/O (SD_2P5V = 1): Sym= VCCPECL; Min=2.38; TypTyp=2.5 ; Max=2.53. For Supply Voltage, I/O (SD_205V = 1) under Max, change value from “2.53” to “2.63”. Delete Table note 3 Digital I/O Characteristics (2.5V): Change Output Low Voltage/Max = 0.2 (was 0.1); Output High voltage/Min = 2.07 (was 2.27). Add to Input Low voltage SD pins: Sym=VIL-SD, Max=0.755V. Add to Input High voltage SD pins: Sym=VIH-SD, Min=1.58V. Add new line: Output Low voltage (LEDn_m pins) Digital I/O Characteristics (3.3V): Add new table. Required Clock Characteristics: Delete “Input Low voltage” and “Input High voltage” lines. 100BASE-FX Transceiver Characteristics: Remove TBDs. Modify all timing diagrams and related tables due to completion of Intel’s design verification testing. Control Register (Address 0): Restructure table notes. Status Register (Address 1): Change as follows: 1 = Extended register capabilities 0 = Basic register capabilities. Auto-Negotiation Advertisement Register (Address 4): Add table note 4: “Restart Auto-Negotiation process whenever Register 4 is written/modified.” Table note 2: Change pin “79” to pin “50”. Table note 3: Change “LED/CFG” to “CFG”. Port Configuration Register (Address 16, Hex 10): For Register bit 16.7 under description, change to: “Write as one. Ignore on read”. (changed from zero) Receive Error Count Register: Add text to paragraph under Description. Datasheet 9 Advanced 10/100 8-Port PHY — LXT9785 Figure 1. LXT9785 Block Diagram 8 Port Global Functions RMII/SMII Contr ADD_<4:0> MDIO Management / Mode Select Logic & LED Drivers 2 MDC 2 MDINT RESET PWRDN Clock Generator REFCLK SYNC (SMII only) 2 Register Set Manchester Encoder TX PCS TXDn Parallel/Serial Converter Scrambler & Encoder Auto Negotiation Mgmt Counters 10 100 Pulse Shaper TP Driver ECL Driver CIM + TP / Fiber Out + Fiber select n Media Select Clock Generator + Adaptive EQ with BL Wander Cancellation 100TX + RX PCS RXDn Port LED Drivers 3 Serial to Parallel Converter Carrier Sense Data Valid Error Detect TPFONn - Register Set LEDn_<2:0> TPFOPn 10 100 Manchester Decoder 100FX Slicer TP / Fiber In TPFIPn TPFINn - Decoder & Descrambler + 10BT Per-Port Functions PORT 0 - PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORT 6 PORT 7 Datasheet 11 LXT9785 — Advanced 10/100 8-Port PHY 1.0 Pin Assignments and Signal Descriptions 208 ....... VCCIO 207 ....... GNDIO 206 ....... RXD6_0 205 ....... RXD6_1 204 ....... TXD7_1 203 ....... TXD7_0 202 ....... TXEN7 201 ....... RXER7 200 ....... CRS_DV7 199 ....... GNDIO 198 ....... RXD7_0 197 ....... RXD71 196 ....... VCCD 195 ....... GNDD 194 ....... LED7_3 193 ....... LED7_2 192 ....... LED7_1 191 ....... LED6_3 190 ....... LED6_2 189 ....... LED6_1 188 ....... GNDIO 187 ....... LED5_3 186 ....... LED5_2 185 ....... LED5_1 184 ....... VCCD 183 ....... GNDD 182 ....... LED4_3 181 ....... LED4_2 180 ....... LED4_1 179 ....... SGND 178 ....... ModeSel1 177 ....... ModeSel0 176 ....... Section 175 ....... RESET 174 ....... PWRDWN 173 ....... G_FX/TP 172 ....... N/C 171....... TRST 170 ....... TCK 169 ....... TMS 168 ....... TDO 167 ....... TDI 166 ....... SD7 165 ....... SD6 164 ....... VCCPECL 163 ....... GNDPECL 162 ....... SD5 161 ....... SD4 160 ....... N/C 159 ....... N/C 158 ....... VCCR7 157 ....... TPFIP7 Figure 2. LXT9785 RMII 208-Pin PQFP Assignments Part # LOT # FPO # LXT9785 XX XXXXXX XXXXXXXX Rev # 156 .......TPFIN7 155 .......GNDR7 154 .......TPFOP7 153 .......TPFON7 152 .......VCCT6/7 151 .......TPFON6 150 .......TPFOP6 149 .......GNDR6 148 .......GNDT6/7 147 .......TPFIN6 146 .......TPFIP6 145 .......VCCR6 144 .......VCCR5 143 .......TPFIP5 142 .......TPFIN5 141 .......GNDR5 140 .......TPFOP5 139 .......TPFON5 138 .......VCCT4/5 137 .......TPFON4 136 .......TPFOP4 135 .......GNDR4 134 .......GNDT4/5 133 .......TPFIN4 132 .......TPFIP4 131 .......VCCR4 130 .......VCCR3 129 .......TPFIP3 128 .......TPFIN3 127 .......GNDT2/3 126 .......GNDR3 125 .......TPFOP3 124 .......TPFON3 123 .......VCCT2/3 122 .......TPFON2 121 .......TPFOP2 120 .......GNDR2 119 .......TPFIN2 118 .......TPFIP2 117 .......VCCR2 116 .......VCCR1 115 .......TPFIP1 114 .......TPFIN1 113 .......GNDT0/1 112 .......GNDR1 111 .......TPFOP1 110 .......TPFON1 109 .......VCCT0/1 108 .......TPFON0 107 .......TPFOP0 106 .......GNDR0 105 .......TPFIN0 TXD1_1 ..... 53 RXD0_1 ..... 54 RXD0_0 ..... 55 VCCIO ..... 56 GNDIO ..... 57 CRS_DV0 ..... 58 RXER0/MDIX ..... 59 TXEN0 ..... 60 TXD0_0 ..... 61 TXD0_1 ..... 62 MDC0 ..... 63 MDIO0 ..... 64 VCCD ..... 65 GNDD ..... 66 MDINT0 ..... 67 LED3_3 ..... 68 LED3_2 ..... 69 LED3_1 ..... 70 LED2_3 ..... 71 LED2_2 ..... 72 LED2_1 ..... 73 GNDIO ..... 74 LED1_3 ..... 75 LED1_2 ..... 76 LED1_1 ..... 77 VCCD ..... 78 GNDD ..... 79 LED0_3 ..... 80 LED0_2 ..... 81 LED0_1 ..... 82 AMDIX_EN ..... 83 MDDIS ..... 84 CFG_3 ..... 85 CFG_2 ..... 86 CFG_1 ..... 87 ADD_4 ..... 88 ADD_3 ..... 89 ADD_2 ..... 90 ADD_1 ..... 91 ADD_0 ..... 92 TxSlew_1 ..... 93 TxSlew_0 ..... 94 SD_2P5V ..... 95 SD0 ..... 96 SD1 ..... 97 VCCPECL ..... 98 GNDPECL ..... 99 SD2 ..... 100 SD3 ..... 101 N/C ..... 102 VCCR0 ..... 103 TPFIP0 ..... 104 CRS_DV6 ..... 1 RXER6 ..... 2 TXEN6 ..... 3 TXD6_0 ..... 4 TXD6_1 ..... 5 REFCLK1 ..... 6 RXD5_1 ..... 7 RXD5_0 ..... 8 GNDIO ..... 9 CRS_DV5 ..... 10 RXER5 ..... 11 TXEN5 ..... 12 TXD5_0 ..... 13 TXD5_1 ..... 14 RXD4_1 ..... 15 RXD4_0 ..... 16 CRS_DV4 ..... 17 VCCIO ..... 18 GNDIO ..... 19 RXER4 ..... 20 TXEN4 ..... 21 TXD4_0 ..... 22 TXD4_1 ..... 23 MDC1 ..... 24 MDIO1 ..... 25 MDINT1 ..... 26 RXD3_1 ..... 27 RXD3_0 ..... 28 VCCIO ..... 29 GNDIO ..... 30 CRS_DV3 ..... 31 RXER3 ..... 32 TXEN3 ..... 33 TXD3_0 ..... 34 TXD3_1 ..... 35 RXD2_1 ..... 36 RXD2_0 ..... 37 GNDIO ..... 38 CRS_DV2 ..... 39 RXER2 ..... 40 TXEN2 ..... 41 TXD2_0 ..... 42 TXD2_1 ..... 43 REFCLK0 ..... 44 RXD1_1 ..... 45 RXD1_0 ..... 46 VCCIO ..... 47 GNDIO ..... 48 CRS_DV1 ..... 49 ER1/PAUSE ..... 50 TXEN1 ..... 51 TXD1_0 ..... 52 12 Datasheet Advanced 10/100 8-Port PHY — LXT9785 208 ....... 207 ....... 206 ....... 205 ....... 204 ....... 203 ....... 202 ....... 201 ....... 200 ....... 199 ....... 198 ....... 197 ....... 196 ....... 195 ....... 194 ....... 193 ....... 192 ....... 191 ....... 190 ....... 189 ....... 188 ....... 187 ....... 186 ....... 185 ....... 184 ....... 183 ....... 182 ....... 181 ....... 180 ....... 179 ....... 178 ....... 177 ....... 176 ....... 175 ....... 174 ....... 173 ....... 172 ....... 171....... 170 ....... 169 ....... 168 ....... 167 ....... 166 ....... 165 ....... 164 ....... 163 ....... 162 ....... 161 ....... 160 ....... 159 ....... 158 ....... 157 ....... VCCIO GNDIO RXD6 N/C SYNC1 TXD7 N/C N/C N/C GNDIO RXD7 N/C VCCD GNDD LED7_3 LED7_2 LED7_1 LED6_3 LED6_2 LED6_1 GNDIO LED5_3 LED5_2 LED5_1 VCCD GNDD LED4_3 LED4_2 LED4_1 SGND ModeSel_1 ModeSel_0 Section RESET PWRDWN G_FX/TP N/C TRST TCK TMS TDO TDI SD7 SD6 VCCPECL GNDPECL SD5 SD4 N/C N/C VCCR7 TPFIP7 Figure 3. LXT9785 SMII 208-Pin PQFP Assignments Part # LOT # FPO # LXT9785 XX XXXXXX XXXXXXXX Rev # 156 .......TPFIN7 155 .......GNDR7 154 .......TPFOP7 153 .......TPFON7 152 .......VCCT6/7 151 .......TPFON6 150 .......TPFOP6 149 .......GNDR6 148 .......GNDT6/7 147 .......TPFIN6 146 .......TPFIP6 145 .......VCCR6 144 .......VCCR5 143 .......TPFIP5 142 .......TPFIN5 141 .......GNDR5 140 .......TPFOP5 139 .......TPFON5 138 .......VCCT4/5 137 .......TPFON4 136 .......TPFOP4 135 .......GNDR4 134 .......GNDT4/5 133 .......TPFIN4 132 .......TPFIP4 131 .......VCCR4 130 .......VCCR3 129 .......TPFIP3 128 .......TPFIN3 127 .......GNDT2/3 126 .......GNDR3 125 .......TPFOP3 124 .......TPFON3 123 .......VCCT2/3 122 .......TPFON2 121 .......TPFOP2 120 .......GNDR2 119 .......TPFIN2 118 .......TPFIP2 117 .......VCCR2 116 .......VCCR1 115 .......TPFIP1 114 .......TPFIN1 113 .......GNDT0/1 112 .......GNDR1 111 .......TPFOP1 110 .......TPFON1 109 .......VCCT0/1 108 .......TPFON0 107 .......TPFOP0 106 .......GNDR0 105 .......TPFIN0 N/C ..... 53 N/C ..... 54 RXD0 ..... 55 VCCIO ..... 56 GNDIO ..... 57 N/C ..... 58 MDIX ..... 59 N/C ..... 60 TXD0 ..... 61 N/C ..... 62 MDC0 ..... 63 MDIO0 ..... 64 VCCD ..... 65 GNDD ..... 66 MDINT0 ..... 67 LED3_3 ..... 68 LED3_2 ..... 69 LED3_1 ..... 70 LED2_3 ..... 71 LED2_2 ..... 72 LED2_1 ..... 73 GNDIO ..... 74 LED1_3 ..... 75 LED1_2 ..... 76 LED1_1 ..... 77 VCCD ..... 78 GNDD ..... 79 LED0_3 ..... 80 LED0_2 ..... 81 LED0_1 ..... 82 AMDIX_EN ..... 83 MDDIS ..... 84 CFG_3 ..... 85 CFG_2 ..... 86 CFG_1 ..... 87 ADD_4 ..... 88 ADD_3 ..... 89 ADD_2 ..... 90 ADD_1 ..... 91 ADD_0 ..... 92 TxSlew_1 ..... 93 TxSlew_0 ..... 94 SD_2P5V ..... 95 SD0 ..... 96 SD1 ..... 97 VCCPECL ..... 98 GNDPECL ..... 99 SD2 ..... 100 SD3 ..... 101 N/C ..... 102 VCCR0 ..... 103 TPFIP0 ..... 104 N/C ..... 1 N/C ..... 2 N/C ..... 3 TXD6 ..... 4 N/C ..... 5 REFCLK1 ..... 6 N/C ..... 7 RXD5 ..... 8 GNDIO ..... 9 N/C ..... 10 N/C ..... 11 N/C ..... 12 TXD5 ..... 13 N/C ..... 14 N/C ..... 15 RXD4 ..... 16 N/C ..... 17 VCCIO ..... 18 GNDIO ..... 19 N/C ..... 20 N/C ..... 21 TXD4 ..... 22 N/C ..... 23 MDC1 ..... 24 MDIO1 ..... 25 MDINT1 ..... 26 N/C ..... 27 RXD3 ..... 28 VCCIO ..... 29 GNDIO ..... 30 N/C ..... 31 N/C ..... 32 N/C ..... 33 TXD3 ..... 34 SYNC0 ..... 35 N/C ..... 36 RXD2 ..... 37 GNDIO ..... 38 N/C ..... 39 N/C ..... 40 N/C ..... 41 TXD2 ..... 42 N/C ..... 43 REFCLK0 ..... 44 N/C ..... 45 RXD1 ..... 46 VCCIO ..... 47 GNDIO ..... 48 N/C ..... 49 PAUSE ..... 50 N/C ..... 51 TXD1 ..... 52 Datasheet 13 LXT9785 — Advanced 10/100 8-Port PHY 208 ....... VCCIO 207 ....... GNDIO 206 ....... N/C 205 ....... RXD6 204 ....... TX_SYNC1 203 ....... TXD7 202 ....... N/C 201 ....... TX_CLK1 200 ....... N/C 199 ....... GNDIO 198 ....... N/C 197 ....... RXD7 196 ....... VCCD 195 ....... GNDD 194 ....... LED7_3 193 ....... LED7_2 192 ....... LED7_1 191 ....... LED6_3 190 ....... LED6_2 189 ....... LED6_1 188 ....... GNDIO 187 ....... LED5_3 186 ....... LED5_2 185 ....... LED5_1 184 ....... VCCD 183 ....... GNDD 182 ....... LED4_3 181 ....... LED4_2 180 ....... LED4_1 179 ....... SGND 178 ....... ModeSel_1 177 ....... ModeSel_0 176 ....... Section 175 ....... RESET 174 ....... PWRDWN 173 ....... G_FX/TP 172 ....... N/C 171....... TRST 170 ....... TCK 169 ....... TMS 168 ....... TDO 167 ....... TDI 166 ....... SD7 165 ....... SD6 164 ....... VCCPECL 163 ....... GNDPECL 162 ....... SD5 161 ....... SD4 160 ....... N/C 159 ....... N/C 158 ....... VCCR7 157 ....... TPFIP7 Figure 4. LXT9785 SS-SMII 208-Pin PQFP Assignments Part # LOT # FPO # LXT9785 XX XXXXXX XXXXXXXX Rev # 156 .......TPFIN7 155 .......GNDR7 154 .......TPFOP7 153 .......TPFON7 152 .......VCCT6/7 151 .......TPFON6 150 .......TPFOP6 149 .......GNDR6 148 .......GNDT6/7 147 .......TPFIN6 146 .......TPFIP6 145 .......VCCR6 144 .......VCCR5 143 .......TPFIP5 142 .......TPFIN5 141 .......GNDR5 140 .......TPFOP5 139 .......TPFON5 138 .......VCCT4/5 137 .......TPFON4 136 .......TPFOP4 135 .......GNDR4 134 .......GNDT4/5 133 .......TPFIN4 132 .......TPFIP4 131 .......VCCR4 130 .......VCCR3 129 .......TPFIP3 128 .......TPFIN3 127 .......GNDT2/3 126 .......GNDR3 125 .......TPFOP3 124 .......TPFON3 123 .......VCCT2/3 122 .......TPFON2 121 .......TPFOP2 120 .......GNDR2 119 .......TPFIN2 118 .......TPFIP2 117 .......VCCR2 116 .......VCCR1 115 .......TPFIP1 114 .......TPFIN1 113 .......GNDT0/1 112 .......GNDR1 111 .......TPFOP1 110 .......TPFON1 109 .......VCCT0/1 108 .......TPFON0 107 .......TPFOP0 106 .......GNDR0 105 .......TPFIN0 N/C ..... 53 RXD0 ..... 54 N/C ..... 55 VCCIO ..... 56 GNDIO ..... 57 RX_SYNC0 ..... 58 MDIX ..... 59 RX_CLK0 ..... 60 TXD0 ..... 61 N/C ..... 62 MDC0 ..... 63 MDIO0 ..... 64 VCCD ..... 65 GNDD ..... 66 MDINT0 ..... 67 LED3_3 ..... 68 LED3_2 ..... 69 LED3_1 ..... 70 LED2_3 ..... 71 LED2_2 ..... 72 LED2_1 ..... 73 GNDIO ..... 74 LED1_3 ..... 75 LED1_2 ..... 76 LED1_1 ..... 77 VCCD ..... 78 GNDD ..... 79 LED0_3 ..... 80 LED0_2 ..... 81 LED0_1 ..... 82 AMDIX_EN ..... 83 MDDIS ..... 84 CFG_3 ..... 85 CFG_2 ..... 86 CFG_1 ..... 87 ADD_4 ..... 88 ADD_3 ..... 89 ADD_2 ..... 90 ADD_1 ..... 91 ADD_0 ..... 92 TxSlew_1 ..... 93 TxSlew_0 ..... 94 SD_2P5V ..... 95 SD0 ..... 96 SD1 ..... 97 VCCPECL ..... 98 GNDPECL ..... 99 SD2 ..... 100 SD3 ..... 101 N/C ..... 102 VCCR0 ..... 103 TPFIP0 ..... 104 N/C ..... 1 N/C ..... 2 N/C ..... 3 TXD6 ..... 4 N/C ..... 5 REFCLK1 ..... 6 RXD5 ..... 7 N/C ..... 8 GNDIO ..... 9 N/C ..... 10 N/C ..... 11 N/C ..... 12 TXD5 ..... 13 N/C ..... 14 RXD4 ..... 15 N/C ..... 16 RX_SYNC1 ..... 17 VCCIO ..... 18 GNDIO ..... 19 N/C ..... 20 RX_CLK1 ..... 21 TXD4 ..... 22 N/C ..... 23 MDC1 ..... 24 MDIO1 ..... 25 MDINT1 ..... 26 RXD3 ..... 27 N/C ..... 28 VCCIO ..... 29 GNDIO ..... 30 N/C ..... 31 TX_CLK0 ..... 32 N/C ..... 33 TXD3 ..... 34 TX_SYNC0 ..... 35 RXD2 ..... 36 N/C ..... 37 GNDIO ..... 38 N/C ..... 39 N/C ..... 40 N/C ..... 41 TXD2 ..... 42 N/C ..... 43 REFCLK0 ..... 44 RXD1 ..... 45 N/C ..... 46 VCCIO ..... 47 GNDIO ..... 48 N/C ..... 49 PAUSE ..... 50 N/C ..... 51 TXD1 ..... 52 14 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 5. LXT9785 RMII 241-Ball PBGA Assignments RMI I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A GNDD VCCIO RXD1_0 TXD2_1 CRS_D V2 TXD3_1 TXEN3 VCCIO GNDD MDIO1 TXD4_0 RXER4 RXD4_0 TXEN5 RXER5 TXD6_1 RXER6 B RXD0_1 TXEN1 GNDD RXD1_1 TXD2_0 RXD2_0 GNDD CRS_D V3 RXD3_1 MDC1 TXEN4 CRS_D V4 TXD5_0 RXD5_0 RXD5_1 CRS_ DV6 RXD6_1 B C VCCIO RXD0_0 TXD1_0 CRS_D V1 GNDD TXEN2 RXD2_1 RXER3 MDINT1 TXD4_1 VCCIO RXD4_1 GNDD TXEN6 RXD6_0 TXD7_1 GNDD C D GNDD RXER0/ MDIX GNDD TXD1_1 RXER1/ PAUSE GNDD RXER2 TXD3_0 RXD3_0 GNDD TXD5_1 CRS_D V5 TXD6_0 VCCIO GNDD TXEN7 RXER7 D E MDC0 TXD0_0 TXEN0 CRS_D V0 GNDD REF CLK0 GNDD GNDD REF CLK1 GNDD TXD7_0 CRS_D V7 RXD7_0 GNDD E F MDINT0 LED3_1 MDIO0 TXD0_1 VCCD GNDD RXD7_1 N/C LED7_3 LED7_2 F G LED2_3 N/C LED3_2 LED3_3 N/C VCCD N/C LED7_1 N/C LED6_3 G H LED1_3 LED2_1 LED2_2 N/C N/C LED6_1 LED6_2 LED5_3 H J LED0_3 N/C LED1_2 LED1_1 VCCD LED5_1 LED5_2 LED4_3 J K AMDIX_ EN LED0_2 LED0_1 N/C SGND N/C LED4_1 LED4_2 K L MDDIS CFG_3 CFG_2 ADD_4 VCC PECL VCC PECL PWR DWN SEC TION MODE SEL_0 MODE SEL_1 L M CFG_1 ADD_3 ADD_2 TxSLE W_1 GND PECL GND PECL G_FX/ TP RESET TCK TRST M N ADD_1 ADD_0 TxSLE W_0 SD1 SD3 VCCT VCCT P SD_2P5 V SD0 SD2 VCCR GNDR GNDR VCCR VCCR VCCR R GNDT TPFIP (0) GNDT TPFON( 1) GNDT TPFIP (2) GNDR TPFIN (3) T TPFIN (0) TPFOP (0) TPFOP (1) TPFIN (1) TPFIN (2) TPFOP (2) TPFON (3) U TPFON (0) GNDT TPFIP (1) GNDT TPFON (2) GNDT 1 2 3 4 5 6 Datasheet VCCD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD VCCT N/C A VCCT VCCT VCCR TDI TDO TMS SD7 N VCCR VCCR VCCR GNDR GNDT SD4 SD5 SD6 P GNDR TPFON (4) GNDR TPFIP (6) GNDR TPFOP (7) GNDT TPFIP (7) GNDT R TPFIP (3) TPFIP (4) TPFOP (4) TPFOP (5) TPFIN (5) TPFIN (6) TPFOP (6) TPFON (7) TPFIN (7) GNDT T TPFOP (3) GNDR TPFIN (4) GNDT TPFON (5) GNDT TPFIP (5) GNDT TPFON (6) GNDT GNDT U 7 8 9 10 11 12 13 14 15 16 17 15 LXT9785 — Advanced 10/100 8-Port PHY Figure 6. LXT9785 SMII 241-Ball PBGA Assignments 16 SMI I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A GNDD VCCIO RXD1 N/C N/C SYNC0 N/C VCCIO GNDD MDIO1 TXD4 N/C RXD4 N/C N/C N/C N/C B N/C N/C GNDD N/C TXD2 RXD2 GNDD N/C N/C MDC1 N/C N/C TXD5 RXD5 N/C N/C N/C B C VCCIO RXD0 TXD1 N/C GNDD N/C N/C N/C MDINT1 N/C VCCIO N/C GNDD N/C RXD6 SYNC1 GNDD C D GNDD MDIX GNDD N/C PAUSE GNDD N/C TXD3 RXD3 GNDD N/C N/C TXD6 VCCIO GNDD N/C N/C D E MDC0 TXD0 N/C N/C GNDD REF CLK0 GNDD GNDD REF CLK1 GNDD TXD7 N/C RXD7 GNDD E F MDINT0 LED3_1 MDIO0 N/C VCCD GNDD N/C N/C LED7_3 LED7_2 F G LED2_3 N/C LED3_2 LED3_3 N/C VCCD N/C LED7_1 N/C LED6_3 G H LED1_3 LED2_1 LED2_2 N/C N/C LED6_1 LED6_2 LED5_3 H J LED0_3 N/C LED1_2 LED1_1 VCCD LED5_1 LED5_2 LED4_3 J K AMDIX_ EN LED0_2 LED0_1 N/C N/C LED4_1 LED4_2 K L MDDIS CFG_3 CFG_2 ADD_4 VCC PECL VCC PECL PWR DWN SECTIO N MODE SEL_0 MODE SEL_1 L M CFG_1 ADD_3 ADD_2 TxSLE W_1 GND PECL GND PECL G_FX/ TP RESET TCK TRST M N ADD_1 ADD_0 TxSLE W_0 SD1 SD3 VCCT VCCT P SD_2P5 V SD0 SD2 VCCR GNDR GNDR VCCR VCCR VCCR R GNDT TPFIP (0) GNDT TPFON( 1) GNDT TPFIP (2) GNDR TPFIN (3) T TPFIN( 0) TPFOP( 0) TPFOP( 1) TPFIN( 1) TPFIN( 2) TPFOP( 2) TPFON( 3) U TPFON( 0) GNDT TPFIP (1) GNDT TPFON( 2) GNDT 1 2 3 4 5 6 VCCD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD VCCT N/C SGND A VCCT VCCT VCCR TDI TDO TMS SD7 N VCCR VCCR VCCR GNDR GNDT SD4 SD5 SD6 P GNDR TPFON( 4) GNDR TPFIP (6) GNDR TPFOP( 7) GNDT TPFIP (7) GNDT R TPFIP (3) TPFIP (4) TPFOP( 4) TPFOP( 5) TPFIN (5) TPFIN (6) TPFOP( 6) TPFON( 7) TPFIN( 7) GNDT T TPFOP( 3) GNDR TPFIN (4) GNDT TPFON( 5) GNDT TPFIP (5) GNDT TPFON( 6) GNDT GNDT U 7 8 9 10 11 12 13 14 15 16 17 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 7. LXT9785 SS-SMII 241-Ball PBGA Assignments SSSMI I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A GNDD VCCIO N/C N/C N/C TX_SY NC0 N/C VCCIO GNDD MDIO1 TXD4 N/C N/C N/C N/C N/C N/C B RXD0 N/C GNDD RXD1 TXD2 N/C GNDD N/C RXD3 MDC1 RX_ CLK1 RX_SY NC1 TXD5 N/C RXD5 N/C RXD6 B C VCCIO RXD0 TXD1 N/C GNDD N/C RXD2 TX_CL K0 MDINT1 N/C VCCIO RXD4 GNDD N/C N/C TX_SY NC1 GNDD C D GNDD MDIX GNDD N/C PAUSE GNDD N/C TXD3 N/C GNDD N/C N/C TXD6 VCCIO GNDD N/C TX_CL K1 D E MDC0 TXD0 RX_ CLK0 Rx_SY NC0 GNDD REF CLK0 GNDD GNDD REF CLK1 GNDD TXD7 N/C N/C GNDD E F MDINT0 LED3_1 MDIO0 N/C VCCD GNDD RXD7 N/C LED7_3 LED7_2 F G LED2_3 N/C LED3_2 LED3_3 N/C VCCD N/C LED7_1 N/C LED6_3 G H LED1_3 LED2_1 LED2_2 N/C N/C LED6_1 LED6_2 LED5_3 H J LED0_3 N/C LED1_2 LED1_1 VCCD LED5_1 LED5_2 LED4_3 J K AMDIX_ EN LED0_2 LED0_1 N/C SGND N/C LED4_1 LED4_2 K L MDDIS CFG_3 CFG_2 ADD_4 VCC PECL VCC PECL PWR DWN SEC TION MODE SEL_0 MODE SEL_1 L M CFG_1 ADD_3 ADD_2 TxSLE W_1 GND PECL GND PECL G_FX/ TP RESET TCK TRST M N ADD_1 ADD_0 TxSLE W_0 SD1 SD3 VCCT VCCT P SD_2P 5V SD0 SD2 VCCR GNDR GNDR VCCR VCCR VCCR R GNDT TPFIP (0) GNDT TPFON (1) GNDT TPFIP (2) GNDR TPFIN (3) T TPFIN (0) TPFOP (0) TPFOP (1) TPFIN (1) TPFIN (2) TPFOP (2) TPFON (3) U TPFON (0) GNDT TPFIP (1) GNDT TPFON (2) GNDT 1 2 3 4 5 6 Datasheet VCCD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD GNDD VCCT N/C A VCCT VCCT VCCR TDI TDO TMS SD7 N VCCR VCCR VCCR GNDR GNDT SD4 SD5 SD6 P GNDR TPFON (4) GNDR TPFIP (6) GNDR TPFOP (7) GNDT TPFIP (7) GNDT R TPFIP (3) TPFIP (4) TPFOP (4) TPFOP (5) TPFIN (5) TPFIN (6) TPFOP (6) TPFON (7) TPFIN (7) GNDT T TPFOP (3) GNDR TPFIN (4) GNDT TPFON (5) GNDT TPFIP (5) GNDT TPFON (6) GNDT GNDT U 7 8 9 10 11 12 13 14 15 16 17 17 LXT9785 — Advanced 10/100 8-Port PHY Table 1. RMII PQFP Pin List Pin Type1 Symbol 1 CRS_DV6 2 3 Reference for Full Description O, TS, SL Table 4 on page 39 RXER6 O, TS, SL, ID Table 4 on page 39 TXEN6 I, ID Table 4 on page 39 4 TXD6_0 I, ID Table 4 on page 39 5 TXD6_1 I, ID Table 4 on page 39 6 REFCLK1 I Table 4 on page 39 7 RXD5_1 O, TS, ID Table 4 on page 39 8 RXD5_0 O, TS Table 4 on page 39 9 GNDIO – Table 14 on page 49 10 CRS_DV5 O, TS, SL Table 4 on page 39 11 RXER5 O, TS, SL, ID Table 4 on page 39 12 TXEN5 I, ID Table 4 on page 39 13 TXD5_0 I, ID Table 4 on page 39 14 TXD5_1 I, ID Table 4 on page 39 15 RXD4_1 O, TS,ID Table 4 on page 39 16 RXD4_0 O, TS Table 4 on page 39 17 CRS_DV4 O, TS, SL Table 4 on page 39 18 VCCIO – Table 14 on page 49 19 GNDIO – Table 14 on page 49 20 RXER4 O, TS, SL, ID Table 4 on page 39 21 TXEN4 I, ID Table 4 on page 39 22 TXD4_0 I, ID Table 4 on page 39 23 TXD4_1 I, ID Table 4 on page 39 24 MDC1 I, ST, ID Table 8 on page 43 25 MDIO1 I/O, TS, SL, IP Table 8 on page 43 26 MDINT1 OD, TS, SL, IP Table 8 on page 43 27 RXD3_1 O, TS, ID Table 4 on page 39 28 RXD3_0 O, TS Table 4 on page 39 29 VCCIO – Table 14 on page 49 30 GNDIO – Table 14 on page 49 31 CRS_DV3 O, TS, SL Table 4 on page 39 32 RXER3 O, TS, SL, ID Table 4 on page 39 33 TXEN3 I, ID Table 4 on page 39 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 18 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 1. RMII PQFP Pin List (Continued) Pin Type1 Symbol Reference for Full Description 34 TXD3_0 I, ID Table 4 on page 39 35 TXD3_1 I, ID Table 4 on page 39 36 RXD2_1 O, TS, ID Table 4 on page 39 37 RXD2_0 O, TS Table 4 on page 39 38 GNDIO – Table 14 on page 49 39 CRS_DV2 O, TS, SL Table 4 on page 39 40 RXER2 O, TS, SL, ID Table 4 on page 39 41 TXEN2 I, ID Table 4 on page 39 42 TXD2_0 I, ID Table 4 on page 39 43 TXD2_1 I, ID Table 4 on page 39 44 REFCLK0 I Table 4 on page 39 45 RXD1_1 O, TS, ID Table 4 on page 39 46 RXD1_0 O, TS Table 4 on page 39 47 VCCIO – Table 14 on page 49 48 GNDIO – Table 14 on page 49 49 CRS_DV1 O, TS, SL Table 4 on page 39 50 RXER1/PAUSE O, TS, SL, ID Table 12 on page 46 51 TXEN1 I, ID Table 4 on page 39 52 TXD1_0 I, ID Table 4 on page 39 53 TXD1_1 I, ID Table 4 on page 39 54 RXD0_1 O, TS, ID Table 4 on page 39 55 RXD0_0 O, TS Table 4 on page 39 56 VCCIO – Table 14 on page 49 57 GNDIO – Table 14 on page 49 58 CRS_DV0 O, TS, SL Table 4 on page 39 59 RXER0/MDIX O, TS, SL, ID Table 12 on page 46 60 TXEN0 I, ID Table 4 on page 39 61 TXD0_0 I, ID Table 4 on page 39 62 TXD0_1 I, ID Table 4 on page 39 63 MDC0 I, ST, ID Table 8 on page 43 64 MDIO0 I/O, TS, SL, IP Table 8 on page 43 65 VCCD – Table 14 on page 49 66 GNDD – Table 14 on page 49 67 MDINT0 OD, TS, SL, IP Table 8 on page 43 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 19 LXT9785 — Advanced 10/100 8-Port PHY Table 1. RMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 68 LED3_3 OD, TS, SO, IP Table 13 on page 48 69 LED3_2 OD, TS, SL, IP Table 13 on page 48 70 LED3_1 OD, TS, SL, IP Table 13 on page 48 71 LED2_3 OD, TS, SL, IP Table 13 on page 48 72 LED2_2 OD, TS, SL, IP Table 13 on page 48 73 LED2_1 OD, TS, SL, IP Table 13 on page 48 74 GNDIO – Table 14 on page 49 75 LED1_3 OD, TS, SL, IP Table 13 on page 48 76 LED1_2 OD, TS, SL, IP Table 13 on page 48 77 LED1_1 OD, TS, SL, IP Table 13 on page 48 78 VCCD – Table 14 on page 49 79 GNDD – Table 14 on page 49 80 LED0_3 OD, TS, SL, IP Table 13 on page 48 81 LED0_2 OD, TS, SL, IP Table 13 on page 48 82 LED0_1 OD, TS, SL, IP Table 13 on page 48 83 AMDIX_EN I, ST, IP Table 12 on page 46 84 MDDIS I, ST, ID Table 8 on page 43 85 CFG_3 I, ST, ID Table 12 on page 46 86 CFG_2 I, ST, ID Table 12 on page 46 87 CFG_1 I, ST, ID Table 12 on page 46 88 ADD_4 I, ST, ID Table 12 on page 46 89 ADD_3 I, ST, ID Table 12 on page 46 90 ADD_2 I, ST, ID Table 12 on page 46 91 ADD_1 I, ST, ID Table 12 on page 46 92 ADD_0 I, ST, ID Table 12 on page 46 93 TxSLEW_1 I, ST, ID Table 12 on page 46 94 TxSLEW_0 I, ST, ID Table 12 on page 46 95 SD_2P5V I, ST, ID Table 9 on page 44 96 SD0 I Table 9 on page 44 97 SD1 I Table 9 on page 44 98 VCCPECL – Table 14 on page 49 99 GNDPECL – Table 14 on page 49 100 SD2 I Table 9 on page 44 101 SD3 I Table 9 on page 44 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 20 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 1. RMII PQFP Pin List (Continued) Pin 102 Type1 Symbol N/C Reference for Full Description – Table 15 on page 50 103 VCCR0 – Table 14 on page 49 104 TPFIP0 AO/AI Table 10 on page 44 105 TPFIN0 AO/AI Table 10 on page 44 106 GNDR0 – Table 14 on page 49 107 TPFOP0 AO/AI Table 10 on page 44 108 TPFON0 AO/AI Table 10 on page 44 109 VCCT0/1 – Table 14 on page 49 110 TPFON1 AO/AI Table 10 on page 44 111 TPFOP1 AO/AI Table 10 on page 44 112 GNDR1 – Table 14 on page 49 113 GNDT0/1 – Table 14 on page 49 114 TPFIN1 AO/AI Table 10 on page 44 115 TPFIP1 AO/AI Table 10 on page 44 116 VCCR1 – Table 14 on page 49 117 VCCR2 – Table 14 on page 49 118 TPFIP2 AO/AI Table 10 on page 44 119 TPFIN2 AO/AI Table 10 on page 44 120 GNDR2 – Table 14 on page 49 121 TPFOP2 AO/AI Table 10 on page 44 122 TPFON2 AO/AI Table 10 on page 44 123 VCCT2/3 – Table 14 on page 49 124 TPFON3 AO/AI Table 10 on page 44 125 TPFOP3 AO/AI Table 10 on page 44 126 GNDR3 – Table 14 on page 49 127 GNDT2/3 – Table 14 on page 49 128 TPFIN3 AO/AI Table 10 on page 44 129 TPFIP3 AO/AI Table 10 on page 44 130 VCCR3 – Table 14 on page 49 131 VCCR4 – Table 14 on page 49 132 TPFIP4 AO/AI Table 10 on page 44 133 TPFIN4 AO/AI Table 10 on page 44 134 GNDT4/5 – Table 14 on page 49 135 GNDR4 – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 21 LXT9785 — Advanced 10/100 8-Port PHY Table 1. RMII PQFP Pin List (Continued) Pin 136 Type1 Symbol TPFOP4 Reference for Full Description AO/AI Table 10 on page 44 137 TPFON4 AO/AI Table 10 on page 44 138 VCCT4/5 – Table 14 on page 49 139 TPFON5 AO/AI Table 10 on page 44 140 TPFOP5 AO/AI Table 10 on page 44 141 GNDR5 – Table 14 on page 49 142 TPFIN5 AO/AI Table 10 on page 44 143 TPFIP5 AO/AI Table 10 on page 44 144 VCCR5 – Table 14 on page 49 145 VCCR6 – Table 14 on page 49 146 TPFIP6 AO/AI Table 10 on page 44 147 TPFIN6 AO/AI Table 10 on page 44 148 GNDT6/7 – Table 14 on page 49 149 GNDR6 – Table 14 on page 49 150 TPFOP6 AO/AI Table 10 on page 44 151 TPFON6 AO/AI Table 10 on page 44 152 VCCT6/7 – Table 14 on page 49 153 TPFON7 AO/AI Table 10 on page 44 154 TPFOP7 AO/AI Table 10 on page 44 155 GNDR7 – Table 14 on page 49 156 TPFIN7 AO/AI Table 10 on page 44 157 TPFIP7 AO/AI Table 10 on page 44 158 VCCR7 – Table 14 on page 49 159 N/C – Table 15 on page 50 160 N/C – Table 15 on page 50 161 SD4 I Table 9 on page 44 162 SD5 I Table 9 on page 44 163 GNDPECL – Table 14 on page 49 164 VCCPECL – Table 14 on page 49 165 SD6 I Table 9 on page 44 166 SD7 I Table 9 on page 44 167 TDI I, ST, IP Table 11 on page 45 168 TDO O, TS Table 11 on page 45 169 TMS I, ST, IP Table 11 on page 45 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 22 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 1. RMII PQFP Pin List (Continued) Pin Type1 Symbol Reference for Full Description 170 TCK I, ST, ID Table 11 on page 45 171 TRST I, ST, IP Table 11 on page 45 172 N/C – Table 15 on page 50 173 G_FX/TP I, ST, ID Table 12 on page 46 174 PWRDWN I, ST, ID Table 12 on page 46 175 RESET I, ST, IP Table 12 on page 46 176 Section I, ST, ID Table 12 on page 46 177 ModeSel0 I, ST, ID Table 12 on page 46 178 ModeSel1 I, ST, ID Table 12 on page 46 179 SGND – Table 14 on page 49 180 LED4_1 OD, TS, SL, IP Table 13 on page 48 181 LED4_2 OD, TS, SL, IP Table 13 on page 48 182 LED4_3 OD, TS, SL, IP Table 13 on page 48 183 GNDD – Table 14 on page 49 184 VCCD – Table 14 on page 49 185 LED5_1 OD, TS, SL, IP Table 13 on page 48 186 LED5_2 OD, TS, SL, IP Table 13 on page 48 187 LED5_3 OD, TS, SL, IP Table 13 on page 48 188 GNDIO – Table 14 on page 49 189 LED6_1 OD, TS, SL, IP Table 13 on page 48 190 LED6_2 OD, TS, SL, IP Table 13 on page 48 191 LED6_3 OD, TS, SL, IP Table 13 on page 48 192 LED7_1 OD, TS, SL, IP Table 13 on page 48 193 LED7_2 OD, TS, SL, IP Table 13 on page 48 194 LED7_3 OD, TS, SL, IP Table 13 on page 48 195 GNDD – Table 14 on page 49 196 VCCD – Table 14 on page 49 197 RXD7_1 O, TS, ID Table 4 on page 39 198 RXD7_0 O, TS Table 4 on page 39 199 GNDIO – Table 14 on page 49 200 CRS_DV7 O, TS, SL Table 4 on page 39 201 RXER7 O, TS, SL, ID Table 4 on page 39 202 TXEN7 I, ID Table 4 on page 39 203 TXD7_0 I, ID Table 4 on page 39 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 23 LXT9785 — Advanced 10/100 8-Port PHY Table 1. RMII PQFP Pin List (Continued) Pin 204 Type1 Symbol TXD7_1 Reference for Full Description I, ID Table 4 on page 39 205 RXD6_1 O, TS, ID Table 4 on page 39 206 RXD6_0 O, TS Table 4 on page 39 207 GNDIO – Table 14 on page 49 208 VCCIO – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 24 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 2. SMII PQFP Pin List Pin Symbol Type1 Reference for Full Description 1 N/C – Table 15 on page 50 2 N/C – Table 15 on page 50 3 N/C – Table 15 on page 50 4 TXD6 I, ID Table 15 on page 50 5 N/C I, ID Table 15 on page 50 6 REFCLK1 I Table 5 on page 41 7 N/C – Table 15 on page 50 8 RXD5 O, TS Table 6 on page 41 9 GNDIO – Table 14 on page 49 10 N/C – Table 15 on page 50 11 N/C – Table 15 on page 50 12 N/C – Table 15 on page 50 13 TXD5 I, ID Table 5 on page 41 14 N/C – Table 15 on page 50 15 N/C O, TS,ID Table 15 on page 50 16 RXD4 O, TS Table 6 on page 41 17 N/C – Table 15 on page 50 18 VCCIO – Table 14 on page 49 19 GNDIO – Table 14 on page 49 20 N/C O, TS, SL, ID Table 15 on page 50 21 N/C I, ID Table 15 on page 50 22 TXD4 I, ID Table 5 on page 41 23 N/C – Table 15 on page 50 24 MDC1 I, ST, ID Table 8 on page 43 25 MDIO1 I/O, TS, SL, IP Table 8 on page 43 26 MDINT1 OD, TS, SL, IP Table 8 on page 43 27 N/C – Table 15 on page 50 28 RXD3 O, TS Table 6 on page 41 29 VCCIO – Table 14 on page 49 30 GNDIO – Table 14 on page 49 31 N/C – Table 15 on page 50 32 N/C – Table 15 on page 50 33 N/C – Table 15 on page 50 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 25 LXT9785 — Advanced 10/100 8-Port PHY Table 2. SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 34 TXD3 I, ID Table 5 on page 41 35 SYNC0 I, ID Table 6 on page 41 36 N/C – Table 15 on page 50 37 RXD2 O, TS Table 6 on page 41 38 GNDIO – Table 14 on page 49 39 N/C – Table 15 on page 50 40 N/C – Table 15 on page 50 41 N/C – Table 15 on page 50 42 TXD2 I, ID Table 5 on page 41 43 N/C – Table 15 on page 50 44 REFCLK0 I Table 5 on page 41 45 N/C – Table 15 on page 50 46 RXD1 O, TS Table 6 on page 41 47 VCCIO – Table 14 on page 49 48 GNDIO – Table 14 on page 49 49 N/C – Table 15 on page 50 50 PAUSE I, ID Table 12 on page 46 51 N/C 52 TXD1 – Table 15 on page 50 I, ID Table 5 on page 41 53 N/C – Table 15 on page 50 54 N/C – Table 15 on page 50 55 RXD0 O, TS Table 6 on page 41 56 VCCIO – Table 14 on page 49 57 GNDIO – Table 14 on page 49 58 N/C – Table 15 on page 50 59 MDIX I, ID Table 12 on page 46 60 N/C – Table 15 on page 50 61 TXD0 I, ID Table 5 on page 41 62 N/C – Table 15 on page 50 63 MDC0 I, ST, ID Table 8 on page 43 64 MDIO0 I/O, TS, SL, IP Table 8 on page 43 65 VCCD – Table 14 on page 49 66 GNDD – Table 14 on page 49 67 MDINT0 OD, TS, SL, IP Table 8 on page 43 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 26 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 2. SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 68 LED3_3 OD, TS, SO, IP Table 13 on page 48 69 LED3_2 OD, TS, SL, IP Table 13 on page 48 70 LED3_1 OD, TS, SL, IP Table 13 on page 48 71 LED2_3 OD, TS, SL, IP Table 13 on page 48 72 LED2_2 OD, TS, SL, IP Table 13 on page 48 73 LED2_1 OD, TS, SL, IP Table 13 on page 48 74 GNDIO – Table 14 on page 49 75 LED1_3 OD, TS, SL, IP Table 13 on page 48 76 LED1_2 OD, TS, SL, IP Table 13 on page 48 77 LED1_1 OD, TS, SL, IP Table 13 on page 48 78 VCCD – Table 14 on page 49 79 GNDD – Table 14 on page 49 80 LED0_3 OD, TS, SL, IP Table 13 on page 48 81 LED0_2 OD, TS, SL, IP Table 13 on page 48 82 LED0_1 OD, TS, SL, IP Table 13 on page 48 83 AMDIX_EN I, ST, IP Table 12 on page 46 84 MDDIS I, ST, ID Table 8 on page 43 85 CFG_3 I, ST, ID Table 12 on page 46 86 CFG_2 I, ST, ID Table 12 on page 46 87 CFG_1 I, ST, ID Table 12 on page 46 88 ADD_4 I, ST, ID Table 12 on page 46 89 ADD_3 I, ST, ID Table 12 on page 46 90 ADD_2 I, ST, ID Table 12 on page 46 91 ADD_1 I, ST, ID Table 12 on page 46 92 ADD_0 I, ST, ID Table 12 on page 46 93 TxSLEW_1 I, ST, ID Table 12 on page 46 94 TxSLEW_0 I, ST, ID Table 12 on page 46 95 SD_2P5V I, ST, ID Table 9 on page 44 96 SD0 I Table 9 on page 44 97 SD1 I Table 9 on page 44 98 VCCPECL – Table 14 on page 49 99 GNDPECL – Table 14 on page 49 100 SD2 I Table 9 on page 44 101 SD3 I Table 9 on page 44 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 27 LXT9785 — Advanced 10/100 8-Port PHY Table 2. SMII PQFP Pin List (Continued) Pin Symbol 102 N/C 103 104 Type1 Reference for Full Description – Table 15 on page 50 VCCR0 – Table 14 on page 49 TPFIP0 AI/AO Table 10 on page 44 105 TPFIN0 AI/AO Table 10 on page 44 106 GNDR0 – Table 14 on page 49 107 TPFOP0 AO/AI Table 10 on page 44 108 TPFON0 AO/AI Table 10 on page 44 109 VCCT0/1 – Table 14 on page 49 110 TPFON1 AO/AI Table 10 on page 44 111 TPFOP1 AO/AI Table 10 on page 44 112 GNDR1 – Table 14 on page 49 113 GNDT0/1 – Table 14 on page 49 114 TPFIN1 AI/AO Table 10 on page 44 115 TPFIP1 AI/AO Table 10 on page 44 116 VCCR1 – Table 14 on page 49 117 VCCR2 – Table 14 on page 49 118 TPFIP2 AI/AO Table 10 on page 44 119 TPFIN2 AI/AO Table 10 on page 44 120 GNDR2 – Table 14 on page 49 121 TPFOP2 AO/AI Table 10 on page 44 122 TPFON2 AO/AI Table 10 on page 44 123 VCCT2/3 – Table 14 on page 49 124 TPFON3 AO/AI Table 10 on page 44 125 TPFOP3 AO/AI Table 10 on page 44 126 GNDR3 – Table 14 on page 49 127 GNDT2/3 – Table 14 on page 49 128 TPFIN3 AI/AO Table 10 on page 44 129 TPFIP3 AI/AO Table 10 on page 44 130 VCCR3 – Table 14 on page 49 131 VCCR4 – Table 14 on page 49 132 TPFIP4 AI/AO Table 10 on page 44 133 TPFIN4 AI/AO Table 10 on page 44 134 GNDT4/5 – Table 14 on page 49 135 GNDR4 – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 28 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 2. SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 136 TPFOP4 AO/AI Table 10 on page 44 137 TPFON4 AO/AI Table 10 on page 44 138 VCCT4/5 – Table 14 on page 49 139 TPFON5 AO/AI Table 10 on page 44 140 TPFOP5 AO/AI Table 10 on page 44 141 GNDR5 – Table 14 on page 49 142 TPFIN5 AI/AO Table 10 on page 44 143 TPFIP5 AI/AO Table 10 on page 44 144 VCCR5 – Table 14 on page 49 145 VCCR6 – Table 14 on page 49 146 TPFIP6 AI/AO Table 10 on page 44 147 TPFIN6 AI/AO Table 10 on page 44 148 GNDT6/7 – Table 14 on page 49 149 GNDR6 – Table 14 on page 49 150 TPFOP6 AO/AI Table 10 on page 44 151 TPFON6 AO/AI Table 10 on page 44 152 VCCT6/7 – Table 14 on page 49 153 TPFON7 AO/AI Table 10 on page 44 154 TPFOP7 AO/AI Table 10 on page 44 155 GNDR7 – Table 14 on page 49 156 TPFIN7 AI/AO Table 10 on page 44 157 TPFIP7 AI/AO Table 10 on page 44 158 VCCR7 – Table 14 on page 49 159 N/C – Table 15 on page 50 160 N/C – Table 15 on page 50 161 SD4 I Table 9 on page 44 162 SD5 I Table 9 on page 44 163 GNDPECL – Table 14 on page 49 164 VCCPECL – Table 14 on page 49 165 SD6 I Table 9 on page 44 166 SD7 I Table 9 on page 44 167 TDI I, ST, IP Table 11 on page 45 168 TDO O, TS Table 11 on page 45 169 TMS I, ST, IP Table 11 on page 45 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 29 LXT9785 — Advanced 10/100 8-Port PHY Table 2. SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 170 TCK I, ST, ID Table 11 on page 45 171 TRST I, ST, IP Table 11 on page 45 172 N/C – Table 15 on page 50 173 G_FX/TP I, ST, ID Table 12 on page 46 174 PWRDWN I, ST, ID Table 12 on page 46 175 RESET I, ST, IP Table 12 on page 46 176 Section I, ST, ID Table 12 on page 46 177 ModeSel0 I, ST, ID Table 12 on page 46 178 ModeSel1 I, ST, ID Table 12 on page 46 179 SGND – Table 14 on page 49 180 LED4_1 OD, TS, SL, IP Table 13 on page 48 181 LED4_2 OD, TS, SL, IP Table 13 on page 48 182 LED4_3 OD, TS, SL, IP Table 13 on page 48 183 GNDD – Table 14 on page 49 184 VCCD – Table 14 on page 49 185 LED5_1 OD, TS, SL, IP Table 13 on page 48 186 LED5_2 OD, TS, SL, IP Table 13 on page 48 187 LED5_3 OD, TS, SL, IP Table 13 on page 48 188 GNDIO – Table 14 on page 49 189 LED6_1 OD, TS, SL, IP Table 13 on page 48 190 LED6_2 OD, TS, SL, IP Table 13 on page 48 191 LED6_3 OD, TS, SL, IP Table 13 on page 48 192 LED7_1 OD, TS, SL, IP Table 13 on page 48 193 LED7_2 OD, TS, SL, IP Table 13 on page 48 194 LED7_3 OD, TS, SL, IP Table 13 on page 48 195 GNDD – Table 14 on page 49 196 VCCD – Table 14 on page 49 197 N/C O, TS, ID Table 4 on page 39 198 RXD7 O, TS Table 6 on page 41 199 GNDIO – Table 14 on page 49 200 N/C – Table 15 on page 50 201 N/C – Table 15 on page 50 202 N/C – Table 15 on page 50 203 TXD7 I, ID Table 5 on page 41 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 30 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 2. SMII PQFP Pin List (Continued) Pin Symbol 204 SYNC1 205 N/C 206 RXD6 207 208 Type1 Reference for Full Description I, ID Table 6 on page 41 – Table 15 on page 50 O, TS Table 6 on page 41 GNDIO – Table 14 on page 49 VCCIO – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 31 LXT9785 — Advanced 10/100 8-Port PHY Table 3. SS-SMII PQFP Pin List Pin Symbol Type1 Reference for Full Description 1 N/C – Table 15 on page 50 2 N/C – Table 15 on page 50 3 N/C – Table 15 on page 50 4 TXD6 I, ID Table 5 on page 41 5 N/C I, ID Table 15 on page 50 6 REFCLK1 7 RXD5 8 9 I Table 5 on page 41 O, TS, ID Table 7 on page 42 N/C – Table 15 on page 50 GNDIO – Table 14 on page 49 10 N/C – Table 15 on page 50 11 N/C – Table 15 on page 50 12 N/C – Table 15 on page 50 13 TXD5 I, ID Table 5 on page 41 14 N/C 15 RXD4 16 N/C 17 RX_SYNC1 – Table 15 on page 50 O, TS, ID Table 7 on page 42 – Table 15 on page 50 O, TS, ID Table 7 on page 42 18 VCCIO – Table 14 on page 49 19 GNDIO – Table 14 on page 49 20 N/C – Table 15 on page 50 21 RX_CLK1 O, TS, ID Table 7 on page 42 22 TXD4 I, ID Table 5 on page 41 23 N/C – Table 15 on page 50 24 MDC1 I, ST, ID Table 8 on page 43 25 MDIO1 I/O, TS, SL, IP Table 8 on page 43 26 MDINT1 OD, TS, SL, IP Table 8 on page 43 27 RXD3 O, TS, ID Table 7 on page 42 28 N/C – Table 15 on page 50 29 VCCIO – Table 14 on page 49 30 GNDIO – Table 14 on page 49 31 N/C – Table 15 on page 50 32 TX_CLK0 I, ID Table 7 on page 42 33 N/C – Table 15 on page 50 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 32 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 3. SS-SMII PQFP Pin List (Continued) Pin Symbol 34 TXD3 35 TX_SYNC0 36 RXD2 37 Type1 Reference for Full Description I, ID Table 5 on page 41 I, ID Table 7 on page 42 O, TS, ID Table 7 on page 42 N/C – Table 15 on page 50 38 GNDIO – Table 14 on page 49 39 N/C – Table 15 on page 50 40 N/C – Table 15 on page 50 41 N/C – Table 15 on page 50 42 TXD2 I, ID Table 5 on page 41 43 N/C – Table 15 on page 50 44 REFCLK0 I Table 5 on page 41 45 RXD1 O, TS, ID Table 7 on page 42 46 N/C – Table 15 on page 50 47 VCCIO – Table 14 on page 49 48 GNDIO – Table 14 on page 49 49 N/C – Table 15 on page 50 50 PAUSE I, ID Table 12 on page 46 51 N/C 52 TXD1 – Table 15 on page 50 I, ID Table 5 on page 41 53 N/C – Table 15 on page 50 54 RXD0 O, TS, ID Table 7 on page 42 55 56 N/C – Table 15 on page 50 VCCIO – Table 14 on page 49 57 GNDIO – Table 14 on page 49 58 RX_SYNC0 O, TS, ID Table 7 on page 42 59 MDIX I, ID Table 12 on page 46 60 RX_CLK0 – Table 7 on page 42 61 TXD0 I, ID Table 5 on page 41 62 N/C – Table 15 on page 50 63 MDC0 I, ST, ID Table 8 on page 43 64 MDIO0 I/O, TS, SL, IP Table 8 on page 43 65 VCCD – Table 14 on page 49 66 GNDD – Table 14 on page 49 67 MDINT0 OD, TS, SL, IP Table 8 on page 43 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 33 LXT9785 — Advanced 10/100 8-Port PHY Table 3. SS-SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 68 LED3_3 OD, TS, SO, IP Table 13 on page 48 69 LED3_2 OD, TS, SL, IP Table 13 on page 48 70 LED3_1 OD, TS, SL, IP Table 13 on page 48 71 LED2_3 OD, TS, SL, IP Table 13 on page 48 72 LED2_2 OD, TS, SL, IP Table 13 on page 48 73 LED2_1 OD, TS, SL, IP Table 13 on page 48 74 GNDIO – Table 14 on page 49 75 LED1_3 OD, TS, SL, IP Table 13 on page 48 76 LED1_2 OD, TS, SL, IP Table 13 on page 48 77 LED1_1 OD, TS, SL, IP Table 13 on page 48 78 VCCD – Table 14 on page 49 79 GNDD – Table 14 on page 49 80 LED0_3 OD, TS, SL, IP Table 13 on page 48 81 LED0_2 OD, TS, SL, IP Table 13 on page 48 82 LED0_1 OD, TS, SL, IP Table 13 on page 48 83 AMDIX_EN I, ST, IP Table 12 on page 46 84 MDDIS I, ST, ID Table 8 on page 43 85 CFG_3 I, ST, ID Table 12 on page 46 86 CFG_2 I, ST, ID Table 12 on page 46 87 CFG_1 I, ST, ID Table 12 on page 46 88 ADD_4 I, ST, ID Table 12 on page 46 89 ADD_3 I, ST, ID Table 12 on page 46 90 ADD_2 I, ST, ID Table 12 on page 46 91 ADD_1 I, ST, ID Table 12 on page 46 92 ADD_0 I, ST, ID Table 12 on page 46 93 TxSLEW_1 I, ST, ID Table 12 on page 46 94 TxSLEW_0 I, ST, ID Table 12 on page 46 95 SD_2P5V I, ST, ID Table 9 on page 44 96 SD0 I Table 9 on page 44 97 SD1 I Table 9 on page 44 98 VCCPECL – Table 14 on page 49 99 GNDPECL – Table 14 on page 49 100 SD2 I Table 9 on page 44 101 SD3 I Table 9 on page 44 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 34 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 3. SS-SMII PQFP Pin List (Continued) Pin 102 Symbol N/C Type1 Reference for Full Description – Table 15 on page 50 103 VCCR0 – Table 14 on page 49 104 TPFIP0 AI/AO Table 10 on page 44 105 TPFIN0 AI/AO Table 10 on page 44 106 GNDR0 – Table 14 on page 49 107 TPFOP0 AO/AI Table 10 on page 44 108 TPFON0 AO/AI Table 10 on page 44 109 VCCT0/1 – Table 14 on page 49 110 TPFON1 AO/AI Table 10 on page 44 111 TPFOP1 AO/AI Table 10 on page 44 112 GNDR1 – Table 14 on page 49 113 GNDT0/1 – Table 14 on page 49 114 TPFIN1 AI/AO Table 10 on page 44 115 TPFIP1 AI/AO Table 10 on page 44 116 VCCR1 – Table 14 on page 49 117 VCCR2 – Table 14 on page 49 118 TPFIP2 AI/AO Table 10 on page 44 119 TPFIN2 AI/AO Table 10 on page 44 120 GNDR2 – Table 14 on page 49 121 TPFOP2 AO/AI Table 10 on page 44 122 TPFON2 AO/AI Table 10 on page 44 123 VCCT2/3 – Table 14 on page 49 124 TPFON3 AO/AI Table 10 on page 44 125 TPFOP3 AO/AI Table 10 on page 44 126 GNDR3 – Table 14 on page 49 127 GNDT2/3 – Table 14 on page 49 128 TPFIN3 AI/AO Table 10 on page 44 129 TPFIP3 AI/AO Table 10 on page 44 130 VCCR3 – Table 14 on page 49 131 VCCR4 – Table 14 on page 49 132 TPFIP4 AI/AO Table 10 on page 44 133 TPFIN4 AI/AO Table 10 on page 44 134 GNDT4/5 – Table 14 on page 49 135 GNDR4 – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 35 LXT9785 — Advanced 10/100 8-Port PHY Table 3. SS-SMII PQFP Pin List (Continued) Type1 Reference for Full Description TPFOP4 AO/AI Table 10 on page 44 137 TPFON4 AO/AI Table 10 on page 44 138 VCCT4/5 – Table 14 on page 49 139 TPFON5 AO/AI Table 10 on page 44 140 TPFOP5 AO/AI Table 10 on page 44 Pin 136 Symbol 141 GNDR5 – Table 14 on page 49 142 TPFIN5 AI/AO Table 10 on page 44 143 TPFIP5 AI/AO Table 10 on page 44 144 VCCR5 – Table 14 on page 49 145 VCCR6 – Table 14 on page 49 146 TPFIP6 AI/AO Table 10 on page 44 147 TPFIN6 AI/AO Table 10 on page 44 148 GNDT6/7 – Table 14 on page 49 149 GNDR6 – Table 14 on page 49 150 TPFOP6 AO/AI Table 10 on page 44 151 TPFON6 AO/AI Table 10 on page 44 152 VCCT6/7 – Table 14 on page 49 153 TPFON7 AO/AI Table 10 on page 44 154 TPFOP7 AO/AI Table 10 on page 44 155 GNDR7 – Table 14 on page 49 156 TPFIN7 AI/AO Table 10 on page 44 157 TPFIP7 AI/AO Table 10 on page 44 158 VCCR7 – Table 14 on page 49 159 N/C – Table 15 on page 50 160 N/C – Table 15 on page 50 161 SD4 I Table 9 on page 44 162 SD5 I Table 9 on page 44 163 GNDPECL – Table 14 on page 49 164 VCCPECL – Table 14 on page 49 165 SD6 I Table 9 on page 44 166 SD7 I Table 9 on page 44 167 TDI I, ST, IP Table 11 on page 45 168 TDO O, TS Table 11 on page 45 169 TMS I, ST, IP Table 11 on page 45 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 36 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 3. SS-SMII PQFP Pin List (Continued) Pin Symbol Type1 Reference for Full Description 170 TCK I, ST, ID Table 11 on page 45 171 TRST I, ST, IP Table 11 on page 45 172 N/C – Table 15 on page 50 173 G_FX/TP I, ST, ID Table 12 on page 46 174 PWRDWN I, ST, ID Table 12 on page 46 175 RESET I, ST, IP Table 12 on page 46 176 Section I, ST, ID Table 12 on page 46 177 ModeSel0 I, ST, ID Table 12 on page 46 178 ModeSel1 I, ST, ID Table 12 on page 46 179 SGND – Table 14 on page 49 180 LED4_1 OD, TS, SL, IP Table 13 on page 48 181 LED4_2 OD, TS, SL, IP Table 13 on page 48 182 LED4_3 OD, TS, SL, IP Table 13 on page 48 183 GNDD – Table 14 on page 49 184 VCCD – Table 14 on page 49 185 LED5_1 OD, TS, SL, IP Table 13 on page 48 186 LED5_2 OD, TS, SL, IP Table 13 on page 48 187 LED5_3 OD, TS, SL, IP Table 13 on page 48 188 GNDIO – Table 14 on page 49 189 LED6_1 OD, TS, SL, IP Table 13 on page 48 190 LED6_2 OD, TS, SL, IP Table 13 on page 48 191 LED6_3 OD, TS, SL, IP Table 13 on page 48 192 LED7_1 OD, TS, SL, IP Table 13 on page 48 193 LED7_2 OD, TS, SL, IP Table 13 on page 48 194 LED7_3 OD, TS, SL, IP Table 13 on page 48 195 GNDD – Table 14 on page 49 196 VCCD – Table 14 on page 49 197 RXD7 O, TS, ID Table 7 on page 42 198 N/C – Table 15 on page 50 199 GNDIO – Table 14 on page 49 200 N/C – Table 15 on page 50 201 TX_CLK1 I, ID Table 7 on page 42 202 N/C – Table 15 on page 50 203 TXD7 I, ID Table 5 on page 41 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down Datasheet 37 LXT9785 — Advanced 10/100 8-Port PHY Table 3. SS-SMII PQFP Pin List (Continued) Pin 204 Symbol TX_SYNC1 Type1 Reference for Full Description I, ID Table 7 on page 42 205 RXD6 O, TS, ID Table 7 on page 42 206 N/C – Table 15 on page 50 207 GNDIO – Table 14 on page 49 208 VCCIO – Table 14 on page 49 1. AI=Analog Input, AO=Analog Output, I=Input, O=Output, OD=Open Drain output, ST=Schmitt Triggered input, TS=TriState-able output, SL=Slew-rate Limited output, IP=Weak Internal Pull-up, ID=Weak Internal Pull-down 38 Datasheet Advanced 10/100 8-Port PHY — LXT9785 1.1 Signal Name Conventions Signal names may contain either a port designation or a serial designation, or a combination of the two designations. Signal naming conventions are as follows: • Port Number Only. Individual signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit Enable signals would be identified as TXEN0, TXEN1, and TXEN2. • Serial Number Only. A set of signals which are not tied to any specific port are designated by the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3. • Port and Serial Number. In cases where each port is assigned a set of multiple signals, each signal is designated in the following order: Signal Mnemonic, Port Designation, an underscore, and the serial designation. For example, a set of three Port Configuration signals would be identified as RXD0_0 and RXD0_1, RXD1_0 and RXD1_1, and RXD2_0 and RXD2_1. Table 4. LXT9785 RMII Signal Descriptions Pin-Ball Designation PQFP Type1 Symbol Signal Description2,3 PBGA 44 6 E6, E12 REFCLK0 REFCLK1 I Reference Clock. 50 MHz RMII reference clock is always required. RMII inputs are sampled on the rising edge of REFCLK, RMII outputs are sourced on the falling edge. See “Clock/SYNC Requirements” on page 58 for detailed CLK requirements. 61 62 E2, F4 TXD0_0 TXD0_1 I, ID Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits to be transmitted from port 0 are clocked in synchronously to REFCLK. 52 53 C3, D4 TXD1_0 TXD1_1 I, ID Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits to be transmitted from Port 1 are clocked in synchronously to REFCLK 42 43 B5 A4 TXD2_0 TXD2_1 I, ID Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits to be transmitted from port 2 are clocked in synchronously to REFCLK. 34 35 D8, A6 TXD3_0 TXD3_1 I, ID Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits to be transmitted from Port 3 are clocked in synchronously to REFCLK. 22 23 A11, C10 TXD4_0 TXD4_1 I, ID Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits to be transmitted from Port 4 are clocked in synchronously to REFCLK. 13 14 B13, D11 TXD5_0 TXD5_1 I, ID Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits to be transmitted from Port 5 are clocked in synchronously to REFCLK. 4 5 D13, A16 TXD6_0 TXD6_1 I, ID Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits to be transmitted from Port 6 are clocked in synchronously to REFCLK. 203 204 E14, C16 TXD7_0 TXD7_1 I, ID Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits to be transmitted from Port 7 are clocked in synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RXD[0:7]_0, RXD[0:7]_1, CRS_DV[0:7] and RXER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset. Datasheet 39 LXT9785 — Advanced 10/100 8-Port PHY Table 4. LXT9785 RMII Signal Descriptions (Continued) Pin-Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA 60 51 41 33 21 12 3 202 E3, B2, C6, A7, B11, A14, C14, D16 TXEN0 TXEN1 TXEN2 TXEN3 TXEN4 TXEN5 TXEN6 TXEN7 I, ID Transmit Enable - Ports 0-7. Active High input enables respective port transmitter. This signal must be synchronous to the REFCLK. 55 54 C2, B1 RXD0_0 RXD0_1 O, TS O, TS, ID Receive Data - Port 0. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 46 45 A3, B4 RXD1_0 RXD1_1 O, TS O, TS, ID Receive Data - Port 1. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 37 36 B6, C7 RXD2_0 RXD2_1 O, TS O, TS, ID Receive Data - Port 2. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 28 27 D9, B9 RXD3_0 RXD3_1 O, TS O, TS, ID Receive Data - Port 3. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 16 15 A13, C12 RXD4_0 RXD4_1 O, TS O, TS, ID Receive Data - Port 4. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 8 7 B14, B15 RXD5_0 RXD5_1 O, TS O, TS, ID Receive Data - Port 5. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 206 205 C15, B17 RXD6_0 RXD6_1 O, TS O, TS, ID Receive Data - Port 6. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 198 197 E16, F14 RXD7_0 RXD7_1 O, TS O, TS, ID Receive Data - Port 7. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 58 49 39 31 17 10 1 200 E4, C4, A5, B8, B12, D12, B16, E15 CRS_DV0 CRS_DV1 CRS_DV2 CRS_DV3 CRS_DV4 CRS_DV5 CRS_DV6 CRS_DV7 O, TS, SL, ID Carrier Sense/Receive Data Valid - Ports 0-7. On detection of valid carrier, these signals are asserted asynchronously with respect to REFCLK. CRS_DVn is deasserted on loss of carrier, synchronous to REFCLK. 59 50 40 32 20 11 2 201 D2, D5, D7, C8, A12, A15, A17, D17 RXER0 RXER1 RXER2 RXER3 RXER4 RXER5 RXER6 RXER7 O, TS, SL, ID Receive Error - Ports 0-7. These signals are synchronous to the respective REFCLK. Active High indicates that received code group is invalid, or that PLL is not locked. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RXD[0:7]_0, RXD[0:7]_1, CRS_DV[0:7] and RXER[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset. 40 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 5. LXT9785 SMII / SS-SMII Common Signal Descriptions Pin/Ball Designation PQFP Type1 Symbol Signal Description2 PBGA 61 52 42 34 22 13 4 203 E2, C3, B5, D8, A11, B13, D13, E14 TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 I, ID Transmit Data - Ports 0-7. These serial input streams provide data to be transmitted to the network. The LXT9785 clocks the data in synchronously to REFCLK. 44 6 E6, REFCLK0 REFCLK1 I Reference Clock. The LXT9785 always requires a 125 MHz reference clock input. Refer to Functional Description for detailed clock requirements. REFCLK0 and REFCLK1 are always connected regardless of sectionalization mode. E12 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. Table 6. LXT9785 SMII Specific Signal Descriptions Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA 35 204 A6, C16 SYNC0 SYNC1 55 46 37 28 16 8 206 198 C2, A3, B6, D9, A13, B14, C15, E16 RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 I, ID SMII Synchronization. The MAC must generate a SYNC pulse every 10 REFCLK cycles to synchronize the SMII. SYNC0 is used when 1x8 port sectionalization is selected. SYNC0 and SYNC1 are to be used when 2x4 port sectionalization is chosen. O, TS Receive Data - Ports 0-7. These serial output streams provide data received from the network. The LXT9785 drives the data out synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. RXD[0:7] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset. Datasheet 41 LXT9785 — Advanced 10/100 8-Port PHY Table 7. LXT9785 SS-SMII Specific Signal Descriptions Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA 35 204 A6, C16 TX_SYNC0 TX_SYNC1 58 17 E4, B12 RX_SYNC0 32 201 C8, D17 TX_CLK0 TX_CLK1 RX_SYNC1 I, ID SS-SMII Transmit Synchronization. The MAC must generate a TX_SYNC pulse every 10 TX_CLK cycles to mark the start of TXD segments. TX_SYNC0 is used when 1x8 port sectionalization is selected. O, TS, ID SS-SMII Receive Synchronization. The LXT9785 generates these pulses every 10 RX_CLK cycles to mark the start of RXD segments for the MAC. RX_SYNC1 is used and RX_SYNC0 is tri-stated when 1x8 port sectionalization is selected. These outputs are only enabled when SS-SMII mode is enabled. I, ID SS-SMII Transmit Clock. The MAC sources this 125 MHz clock as the timing reference for TXD and TX_SYNC. Only TX_CLK0 is used when 1x8 port sectionalization is selected. See “Clock/SYNC Requirements” on page 58 for detailed clock requirements. 60 21 E3, B11 RX_CLK0 RX_CLK1 O, TS, ID SS-SMII Receive Clock. The LXT9785 generates these clocks, based on REFCLK, to provide a timing reference for RXD and RX_SYNC to the MAC. RX_CLK1 used and RX_CLK0 is tri-stated when 1x8 port sectionalization is selected. See “Clock/SYNC Requirements” on page 58 for detailed clock requirements. These outputs are only enabled when SS-SMII mode is enabled. 54 45 36 27 15 7 205 197 B1, B4, C7, B9, C12, B15, B17, F14 RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 O, TS, ID Receive Data - Ports 0-7. These serial output streams provide data received from the network. The LXT9785 drives the data out synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RXD[0:7], RXSYNC[0:1], and RXCLK[0:1] outputs are tri-stated in Isolation and H/W Power-Down modes and during H/W reset. 42 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 8. MDIO Control Interface Signals Pin/Ball Designation PQFP 64 25 67 26 63 24 Symbol Type1 Signal Description2,3,4 PBGA F3, A10 F1, C9 E1, B10 MDIO0 MDIO1 MDINT0 MDINT1 MDC0 MDC1 I/O, TS, SL, IP OD,TS, SL, IP I, ST, ID Management Data Input/Output. Bidirectional serial data channel for communication between the PHY and MAC or switch ASIC. Only MDIO0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDIO0 accesses ports 0-3 and MDIO1 accesses Ports 4-7. For an example, refer to Figure 22 on page 72. Management Data Interrupt. When bit 18.1 = 1, an active Low output on this Pin indicates status change. Only MDINT0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDINT0 is associated with Ports 0-3 and MDINT1 is associated with Ports 4-7. For an example, refer to Figure 22 on page 72. Management Data Clock. Clock for the MDIO serial data channel. Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDC0 clocks Ports 0-3 register accesses and MDC1 clocks Ports 4-7 register accesses. For an example, refer to Figure 22 on page 72. Management Disable. When MDDIS is tied High, the MDIO port is completely disabled and the Hardware Control Interface pins set their respective bits at power up and reset. 84 L1 MDDIS I, ST, ID When MDDIS is pulled Low at power up or reset, via the internal pull-down resistor or by tieing it to ground, the Hardware Control Interface Pins control only the initial or “default” values of their respective register bits. After the power-up/reset cycle is complete, bit control reverts to the MDIO serial channel. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. MDIO[0:1] and MDINT[0:1] outputs are tri-stated in H/W Power-Down mode and during H/W reset. 4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is the bit number (0-15). Datasheet 43 LXT9785 — Advanced 10/100 8-Port PHY Table 9. LXT9785 Signal Detect Pin/Ball Designation PQFP Type1 Symbol Signal Description2,3 PBGA 95 P1 SD_2P5V 96 97 100 101 161 162 165 166 P2, N4, P3, N5, P15, P16, P17, N17 SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 I, ST, ID Signal Detect 2.5 Volt Interface. When the SD interface is at 2.5 V, tie this input to VCCPECL. Floating this input or tieing it to GNDPECL indicates that a 3.3 V SD interface is being used. Signal Detect - Ports 0-7. The SD inputs are only applicable for ports set in Fiber mode. I When SD is high, the process of searching for receive idles for the purpose of bring link up is initiated. If SD is low, link is declared lost. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. Tie SD[0:7] inputs to GNDPECL if unused. Table 10. LXT9785 Network Interface Signal Descriptions Pin/Ball Designation Symbol PQFP Type1 Signal Description PBGA 107, 108 111, 110 121, 122 125, 124 136, 137 140, 139 150, 151 154, 153 T2, U1, T3, R4, T6, U5, U7, T7, T10, R10, T11, U11, T14,U15, R14, T15 TPFOP0, TPFON0 TPFOP1, TPFON1 TPFOP2, TPFON2 TPFOP3, TPFON3 TPFOP4, TPFON4 TPFOP5, TPFON5 TPFOP6, TPFON6 TPFOP7, TPFON7 104, 105 115, 114 118, 119 129, 128 132, 133 143, 142 146, 147 157, 156 R2, T1, U3, T4, R6, T5, T8, R8, T9, U9, U13, T12, R12, T13, R16, T16 TPFIP0, TPFIN0 TPFIP1, TPFIN1 TPFIP2, TPFIN2 TPFIP3, TPFIN3 TPFIP4, TPFIN4 TPFIP5, TPFIN5 TPFIP6, TPFIN6 TPFIP7, TPFIN7 Twisted-Pair/Fiber Outputs2, Positive & Negative, Ports 0-7. AO/AI During 100BASE-TX or 10BASE-T operation, TPFO pins drive 802.3 compliant pulses onto the line. During 100BASE-FX operation, TPFO pins produce differential PECL outputs for fiber transceivers. Twisted-Pair/Fiber Inputs3, Positive & Negative, Ports 0-7. AI/AO During 100BASE-TX or 10BASE-T operation, TPFI pins receive differential 100BASE-TX or 10BASE-T signals from the line. During 100BASE-FX operation, TPFI pins receive differential PECL inputs from fiber transceivers. 1. Type Column Coding: AI = Analog Input, AO = Analog Output. 2. Switched to Inputs (see TPFIP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover MDI mode]. 3. Switched to Outputs (see TPFOP/N desc.) when not in Fiber mode and MDIX is not active [i.e., Twisted-Pair, non-crossover MDI mode]. 44 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 11. LXT9785 JTAG Test Signal Descriptions Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA 167 N14 TDI I, ST, IP Test Data Input. Test data sampled with respect to the rising edge of TCK. 168 N15 TDO O, TS Test Data Output. Test data driven with respect to the falling edge of TCK. 169 N16 TMS I, ST, IP Test Mode Select. 170 M16 TCK I, ST, ID Test Clock. Clock input for JTAG test. 171 M17 TRST I, ST, IP Test Reset. Reset input for JTAG test. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Tri-State-able output, SMT = Schmitt Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. TDO output is tri-stated in H/W Power-Down mode and during H/W reset. Datasheet 45 LXT9785 — Advanced 10/100 8-Port PHY Table 12. LXT9785 Miscellaneous Signal Descriptions Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA Tx Output Slew Controls 0 and 1 Defaults. These pins are read at startup or reset. Their value at that time is used to set the default state of register bits 27.11:10 for all ports. These register bits can be read and overwritten after startup / reset. 94 93 N3, M4 TxSLEW_0 TxSLEW_1 These pins select the TX output slew rate for all ports (rise and fall time) as follows: I, ST, ID TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall Time) 0 0 3.3 ns 0 1 3.6 ns 1 0 3.9 ns 1 1 4.2 ns Pause Default. This pin is read at startup or reset. Its value at that time is used to set the default state of register bit 4.10 for all ports. This register bit can be read and overwritten after startup / reset. 50 D5 PAUSE I, ID When High, the LXT9785 advertises Pause capabilities on all ports during auto-negotiation. This pin is shared with RMII-RXER1. An external pull-up resistor (see applications section for value) can be used to set Pause active while RXER1 is tri-stated during H/W reset. If no pull-up is used, the default Pause state is set inactive via the internal pull-down resistor. 174 L14 PWRDWN I, ST, ID Power-Down. When High, forces the LXT9785 into global power-down mode. Pin is not on JTAG chain. 175 M15 RESET I, ST, IP Reset. This active low input is OR’ed with the control register Reset bit (0.15). When held Low, all outputs are forced to inactive state. Pin is not on JTAG chain Address <4:0>. Sets base address. Each port adds its port number (starting with 0) to this address to determine its PHY address. 88 89 90 91 92 L4, M2, M3, N1, N2 ADD_4 ADD_3 ADD_2 ADD_1 ADD_0 I, ST, ID Port 0 Address = Base Port 1 Address = Base + 1 Port 2 Address = Base + 2 Port 3 Address = Base + 3 Port 4 Address = Base + 4 Port 5 Address = Base + 5 Port 6 Address = Base + 6 Port 7 Address = Base + 7 Mode Select[1:0] 178 177 L17, L16 MODESEL_1 MODESEL_0 I, ST, ID 00 = RMII 01 = SMII 10 = SS-SMII 11= Reserved All ports are configured the same. Interfaces cannot be mixed and must be all RMII, SMII, or SS-SMII. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 46 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 12. LXT9785 Miscellaneous Signal Descriptions (Continued) Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA Sectionalization Select. This pin selects sectionalization into separate ports. 176 L15 SECTION I, ST, ID 0 = 1x8 ports, 1 = 2x4 ports 83 K1 AMDIX_EN I, ST, IP Auto-MDIX Enable Default. This pin is read at startup or reset. Its value at that time is used to set the default state of register bit 27.9 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 16 on page 53. When active (high), automatic MDI crossover (MDIX) (regardless of segmentation) is selected for all ports. When inactive (low) MDIX is selected according to the MDIX pin. MDIX Select Default. This pin is read at startup or reset. Its value at that time is used to set the default state of register bit 27.8 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 16 on page 53. When AMDIX_EN is active this pin is ignored. 59 D2 MDIX I, ID When AMDIX_EN is inactive, all ports are forced to the MDI or the MDIX function regardless of segmentation. If this pin is active (high), MDI crossover (MDIX) is selected. If this pin is inactive, non-crossover MDI mode is set. This pin is shared with RMII-RXER0. An external pull-up resistor (see applications section for value) can be used to set MDIX active while RXER0 is tri-stated during H/W reset. If no pull-up is used, the default MDIX state is set inactive via the internal pull-down resistor. Do not tie this pin directly to VCCIO (vs. using a pull-up) in non-RMII modes. 85 86 87 173 L2, L3, M1 M14 CFG_3 CFG_2 CFG_1 G_FX/TP I, ST, ID Global Port Configuration Defaults 1-3. These pins are read at startup or reset. Their value at that time is used to set the default state of register bits shown in Table 18 on page 62 for all ports. These register bits can be read and overwritten after startup / reset. When operating in Hardware Control Mode, these pins provide configuration control options for all the ports (refer to page 62 for details). I, ST, ID Global FX/TP Enable Default. This pin is read at startup or reset. Its value at that time is used to set the default state of register bit 16.0 for all ports. These register bits can be read and overwritten after startup / reset. Refer to “Port Configuration Register (Address 16, Hex 10)” on page 127. This input selects whether all the ports are defaulted to TP vs. FX mode. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. Datasheet 47 LXT9785 — Advanced 10/100 8-Port PHY Table 13. LXT9785 LED Signal Descriptions Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA 82 81 80 K3, K2, J1 LED0_1 LED0_2 LED0_3 OD, TS, SL, IP Port 0 LED Drivers 1-3. These pins drive LED indicators for Port 0. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 77 76 75 J4, J3, H1 LED1_1 LED1_2 LED1_3 OD, TS, SL, IP Port 1 LED Drivers 1-3. These pins drive LED indicators for Port 1. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 73 72 71 H2, H3, G1 LED2_1 LED2_2 LED2_3 OD, TS, SL, IP Port 2 LED Drivers 1-3. These pins drive LED indicators for Port 2. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 70 69 68 F2, G3, G4 LED3_1 LED3_2 LED3_3 OD, TS, SL, IP Port 3 LED Drivers 1-3. These pins drive LED indicators for Port 3. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 180 181 182 K16, K17, J17 LED4_1 LED4_2 LED4_3 OD, TS, SL, IP Port 4 LED Drivers 1-3. These pins drive LED indicators for Port 4. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 185 186 187 J15, J16, H17 LED5_1 LED5_2 LED5_3 OD, TS, SL, IP Port 5 LED Drivers 1-3. These pins drive LED indicators for Port 5. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 189 190 191 H15, H16, G17 LED6_1 LED6_2 LED6_3 OD, TS, SL, IP Port 6 LED Drivers 1-3. These pins drive LED indicators for Port 6. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 192 193 194 G15, F17, F16 LED7_1 LED7_2 LED7_3 OD, TS, SL, IP Port 7 LED Drivers 1-3. These pins drive LED indicators for Port 7. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 70 on page 131 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. The LED outputs are tri-stated in H/W Power-Down mode and during H/W reset. 48 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 14. LXT9785 Power Supply Signal Descriptions Pin/Ball Designation Symbol PQFP Type Signal Description PBGA 65, 78, 184, 196 G13, J14, F5, J5 18, 29, 47, 56, 208 A2, A8, C1, C11, D14 98, 164 - Digital Power Supply - Core. +2.5V supply for core digital circuits. VCCIO - Digital Power Supply - I/O Ring. +2.5/3.3V supply for digital I/O circuits. The digital input circuits running off of this rail, having a TTL-level threshold and over-voltage protection, may be interfaced with 3.3/5.0 V, when the IO supply is 3.3V, and 2.5/3.3/5.0 V when 2.5V. L13, L5 VCCPECL - Digital Power Supply - PECL Signal Detect Inputs. +2.5/3.3V supply for PECL Signal Detect input circuits. If Fiber Mode is not used, tie these pins to GNDPECL to save power. 103, 116, 117, 130, 131, 144, 145, 158 N13, P4, P7, P8, P9, P10, P11, P12 VCCR - Analog Power Supply - Receive. +2.5V supply for all analog receive circuits. 109, 123, 138, 152 N6, N7, N9, N11, N12 VCCT - Analog Power Supply - Transmit. +2.5V supply for all analog transmit circuits. 66, 79, 183, 195 A1, A9, B3, B7, C5, C13, C17, D1, D3, D6, D10, D15, E5, E7, E9, E11, E13, E17, F13, H8, H9, H10, J8, J9, J10, K8, K9, K10 GNDD - Digital Ground. Ground return for core digital supplies (VCCD). All ground pins can be tied together using a single ground plane. GNDIO - Digital GND - I/O Ring. Ground return for digital I/O circuits (VCCIO). 9, 19, 30, 38, 48, 57, 74, 188, 199, 207 VCCD 99, 163 M5, M13 GNDPECL - Digital GND - PECL Signal Detect Inputs. Ground return for PECL Signal Detect input circuits. 106, 112, 120, 126, 135, 141, 149, 155 P5, P6, P13, R7, R9, R11, R13, U8 GNDR - Analog Ground - Receive. Ground return for receive analog supply. All ground pins can be tied together using a single ground plane. 113, 127, 134, 148 P14, R1, R3, R5, R15, R17, T17, U2, U4, U6, U10, U12, U14, U16, U17 GNDT - Analog Ground - Transmit. Ground return for transmit analog supply. All ground pins can be tied together using a single ground plane. 179 K14 SGND - Substrate Ground. Ground for chip substrate. All ground pins can be tied together using a single ground plane. Datasheet 49 LXT9785 — Advanced 10/100 8-Port PHY Table 15. Unused / Reserved Pins Pin/Ball Designation Symbol PQFP N/C Type1 Signal Description PBGA F15, G2, G5, G14, G16, H4, H14, J2, J13, K4, K15 N/C No Connection. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Tri-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pull-Down. 50 Datasheet Advanced 10/100 8-Port PHY — LXT9785 2.0 Functional Description 2.1 Introduction The LXT9785 is an 8-port Fast Ethernet 10/100 PHY transceiver that supports 10Mbps and 100Mbps networks, complying with all applicable requirements of IEEE 802.3 standards. The device incorporates a Serial MII (SMII), Source Synchronous SMII (SS-SMII), and a Reduced MII (RMII) to enable each individual network port to interface with multiple 10/100 MACs. Each port directly drives either a 100BASE-TX line or a 10BASE-T line. The LXT9785 also supports 100BASE-FX operation via a Pseudo-ECL (PECL) interface. The device has a 241-pin BGA or a 208- pin QFP package. 2.1.1 OSP™ Architecture The Intel LXT9785 incorporates high-efficiency Optimal Signal Processing™ design techniques, combining the best properties of digital and analog signal processing to produce a truly optimal device. The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques in the receive equalizer avoids the quantization noise and calculation truncation errors found in traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result is improved receiver noise and cross-talk performance. The OSP architecture also requires substantially less computational logic than traditional DSPbased designs. The result is lower power consumption and reduced logic switching noise generated by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a considerable source of EMI when generated from the device’s power supplies. The OSP-based LXT9785 provides improved data recovery, EMI performance and power consumption. 2.1.2 Comprehensive Functionality The LXT9785 performs all functions of the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This device also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX connections. On power-up, the LXT9785 reads its configuration inputs to check for forced operation settings. If not configured for forced operation, each port uses auto-negotiation/parallel detection to automatically determine line operating conditions. If the PHY device on the other side of the link supports auto-negotiation, the LXT9785 auto-negotiates with it using Fast Link Pulse (FLP) Bursts. If the PHY partner does not support auto-negotiation, the LXT9785 automatically detects the presence of either link pulses (10Mbps PHY) or Idle symbols (100Mbps PHY) and set its operating conditions accordingly. The LXT9785 provides half-duplex and full-duplex operation at 100Mbps and10Mbps. Datasheet 51 LXT9785 — Advanced 10/100 8-Port PHY 2.1.2.1 Sectionalization The LXT9785’s sectional design allows flexibility with large multiport MACs and ASICs. With the use of the Section pin, the LXT9785 can be configured into a single 8-port or two separate 4-port sections, each with its own MDIO (with separate MDC clock) and MII data (with separate REFCLK/TX_CLK/RX_CLK clocks) interfaces. See Figure 17 on page 66, Figure 22 on page 72, and Figure 27 on page 77. 2.2 Interface Descriptions 2.2.1 10/100 Network Interface The LXT9785 supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair, or 100Mbps Ethernet over fiber media (100BASE-FX). Each network interface port consists of four external pins (two differential signal pairs). The pins are shared between twisted-pair (TP) and fiber. The LXT9785 pinout is designed to interface seamlessly with dual-high stacked RJ-45 connectors. Refer to Table 10 on page 44 for specific pin assignments. The LXT9785 output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-FX output. When not transmitting data, the device generates IEEE 802.3-compliant link pulses or idle code. Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input, depending on the mode selected. Auto-negotiation/parallel detection or manual control is used to determine the speed of this interface. Figure 8. LXT9785 Interfaces TXENn TXDn_0 TPFOPn TXDn_1 DATA I/F TXCLK TPFONn RXCLK RXDn_1 TPFIPn RXDn_0 TPFINn Network I/F RXERn CRS_DVn MDIOn MDIO Mgmt I/F MDCn MDINTn MDDIS Direct Drive Port LEDs/ Controls Addr & MDIX/ Contr LEDn_2 LEDn_2 LEDn_3 MDIX_Enb VCCIO +3.3V OR +2.5V VCCD +2.5V Mode Select ADD<4:0> GNDD .01uF 52 Datasheet Advanced 10/100 8-Port PHY — LXT9785 2.2.1.1 Twisted-Pair Interface The LXT9785 supports either 100BASE-TX or 10BASE-T connections over 100Ω, Category 5, Unshielded Twisted-Pair (UTP). Only a transformer, load resistors, RJ-45, and bypass capacitors are required to complete this interface. Using Intel’s patented waveshaping technology, the transmitter shapes the outgoing signal to help reduce the need for external EMI filters. Four slew rate settings (refer to Table 12 on page 46) allow the designer to match the output waveform to the magnetic characteristics. Both transmit and receive terminations are built into the LXT9785 so no external components are required between the LXT9785 and the external transformer. The transmitter uses a transformer with a center tap to help reduce power consumption. When operating at 100Mbps, MLT3 symbols are continuously transmitted and received. When not transmitting data, the LXT9785 generates “IDLE” symbols. During 10Mbps operation, LXT9785 encoded data is exchanged. When no data are being exchanged, the line is left in an idle state. 2.2.1.2 MDI Crossover (MDIX) The LXT9785 crossover function, which is compliant to the IEEE 802.3, clause 23 standard, connects the transmit output of the device to the far-end receiver in a link segment. This function can be disabled via register bit 27.9:8 or by using the hardware configuration pins. Table 16. MDIX Selection AMDIX_EN 2.2.1.3 MDIX MDIX Mode 0 0 MDIX Disabled 0 1 MDIX forced 1 X AUTO-MDIX Fiber Interface The LXT9785 provides a PECL interface that complies with the ANSI X3.166 specification. This interface is suitable for driving a fiber-optic coupler (see Figure 35 on page 93). Fiber ports cannot be enabled via auto-negotiation and must be enabled via the Global Hardware Control Interface pins or MDIO registers. All ports are selected for fiber or twisted-pair when configured via hardware, and can only be intermixed via software. Using external circuitry, the LXT9785 can interface the fiber transceiver with 2.5V, 3.3V, or 5V supply voltages. Fiber mode per port may be selected using register 16.0. Please refer to Table 10 on page 44 for correct pin assignments. 2.3 Media Independent Interface (MII) Interfaces The LXT9785 supports Reduced MII or Serial MII, but not concurrently. The interface mode selection pins configures the device for either RMII or SMII/SS-SMII on all eight ports. Refer to Table 17 for the mode select settings. Datasheet 53 LXT9785 — Advanced 10/100 8-Port PHY 2.3.1 Global MII Mode Select The mode select pins are used for MII interface configuration settings upon power-up sequencing. All ports are configured the same and cannot be intermixed. Table 17. MII Mode Select 2.3.2 ModeSel1 ModeSel0 RMII 0 0 SMII 0 1 SS-SMII 1 0 Reserved 1 1 Internal Loopback A test loopback function is available for 10Mbps and 100Mbps mode testing. Bits 0.8, 0.13, and 0.14 must be set to 1 for correct operation. When data is looped back, whatever the MAC transmits is looped back in its entirety, including the preamble. Figure 9. Internal Loopback LXT9785 RMII/ SMII/ SSSMII inter face 2.3.3 Fx Driver Digital Block Loopback Analog Block Tx Driver RMII Data Interface The LXT9785 provides a separate RMII for each network port, each complying with the RMII standard. The RMII includes both a data interface and an MDIO management interface. The RMII Data Interface exchanges data between the LXT9785 and up to eight Media Access Controllers (MACs). 2.3.4 Serial Media Independent Interface (SMII) and Source Synchronous Data Interfaces 2.3.4.1 SMII Interface The LXT9785 provides an independent serial interface for each network port. All SMII ports use a common reference clock and SYNC signal. The SMII Data Interface exchanges data between the LXT9785 and multiple Media Access Controllers (MACs). All signals are synchronous to the 54 Datasheet Advanced 10/100 8-Port PHY — LXT9785 reference clock. One SYNC control stream is sourced by the MAC to the PHY. Both the transmit and receive data streams are segmented into boundaries delimited by the SYNC pulses. This interface is expected to operate up to 6 inches of trace lengths. 2.3.4.2 Source Synchronous Interface The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps to relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC, RxCLK, and RxSYNC. The transmit TxClk and TxSync are sourced from the MAC to the PHY and referenced to the RefCLK input. The receive RxCLK and RxSync are sourced by the PHY to the MAC and in reference to the RefCLK. 2.3.5 Configuration Management Interface The LXT9785 provides an MDIO Management Interface and a Hardware Control Interface (via the CFG pins) for device configuration and management. Mode control selection is provided via the MDDIS pin as shown in Table 8 on page 43. When sectionalization (2x4) is selected, separate MDIO interfaces are enabled (see Figure 14 on page 60). 2.3.6 MII Isolate In applications where the MII needs to be isolated from the bus, the RMII and the SMII/SS-SMII configurations can be tri-stated using Register 0.10. Ports 0 and 1 control RxClk0, RxClk1, RxSync0, and RxSync1. When 2x4 sectionalization is selected, ports 1-3 and 5-7 can be individually port isolated. For global shut down, Ports 0 and 1 must be isolated to control the RxClkn and RxSyncn synchronization pins. If ports 0 and 1 are individually set to isolate, the remaining associated quad sectionalization ports must also be set to isolate. 2.3.6.1 MDIO Management Interface The LXT9785 supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the LXT9785. The MDIO interface consists of a physical connection, a specific protocol that runs across the connection, and an internal set of addressable registers. Some registers are required and their functions are defined by the IEEE 802.3 specification. Additional registers allow for expanded functionality. Specific bits in the registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is the bit number (0-15). The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are completely disabled. The Hardware Control Interface provides primary configuration control. When MDDIS is Low, the MDIO port is enabled for both read and write operations and the Hardware Control Interface is not used. The timing for the MDIO Interface is shown in Table 53 on page 117. MDIO read and (write) cycles are shown in Figure 10 (read) and Figure 11 (write) on page 56. Datasheet 55 LXT9785 — Advanced 10/100 8-Port PHY Figure 10. Management Interface Read Frame Structure MDC MDIO (Read) 0 32 "1"s 1 Preamble High Z 1 ST A4 0 Op Code A3 A0 R4 PHY Address R3 R0 Z D15 D15D14 D14 D1 0 Turn Around Register Address D1 D0 Data Write Idle Read Figure 11. Management Interface Write Frame Structure MDC MDIO (Write) 32 "1"s Idle Preamble 0 1 0 ST 1 A4 Op Code A3 A0 R4 PHY Address R3 R0 Register Address 1 0 Turn Around D15 D14 D1 Data D0 Idle Write The protocol allows one controller to communicate with multiple LXT9785 chips. Pins ADD_<4:0> determine the base address. Each port adds its port number to the base address to obtain its port address as shown in Figure 12. Figure 12. Port Address Scheme BASE ADD_<4:0> (example ADD_<4:0> = 4) LXT9785 56 Port 0 PHY ADD_<4:0> (BASE+0) Port 1 PHY ADD_<4:0> (BASE+1) Port 2 PHY ADD_<4:0> (BASE+2) Port 3 PHY ADD_<4:0> (BASE+3) Port 4 PHY ADD_<4:0> (BASE+4) Port 5 PHY ADD_<4:0> (BASE+5) Port 7 PHY ADD_<4:0> (BASE+7) ex. 4 ex. 5 ex. 6 ex. 7 ex. 8 ex. 9 ex. 11 Datasheet Advanced 10/100 8-Port PHY — LXT9785 2.3.6.2 MII Sectionalization When sectionalized into two quad sections, the MDIO bus splits into two separate PHY access ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII isolate function is unaffected and operates normally. Sectionalization is selected by pulling pin 176 High on the initial power-up sequence (refer to Figure 14 on page 60). In applications that need sectionalization, such as 1x8 and 2x4 and have a single MDIO bus structure, it is necessary that the addressing scheme be contiguous. For example, the first eight ports are addressed 0-7, so the next four ports must be addressed 8-11. 2.3.6.3 MII Interrupts The LXT9785 provides a single per-section interrupt pin that is available to all ports. Interrupt logic is shown in Figure 13. The LXT9785 also provides two dedicated interrupt registers for each port. Register 18 provides interrupt enable and mask functions and Register 19 provides interrupt status. Setting bit 18.1 to 1 enables a port to request interrupt via the MDINT pin. An active Low on this pin indicates a status change on the device. Because it is a shared interrupt, there is no indication which port is requesting interrupt service (see Figure 13). There are five conditions that may cause an interrupt: • • • • • Auto-negotiation complete. Speed status change. Duplex status change. Link status change. Isolate status change. Figure 13. Interrupt Logic Event X Enable Reg AND Event X Status Reg OR .. . AND Per Event Force Interrupt Interrupt Enable ... Port Combine Logic Interrupt Pin Per port Interrupt (Event) Status Register is cleared on read. X = Any Interrupt capability 2.3.6.4 Hardware Control Interface The LXT9785 provides a Hardware Control Interface for applications where the MDIO is not desired. Refer to “Initialization” on page 59 for additional details. Datasheet 57 LXT9785 — Advanced 10/100 8-Port PHY 2.4 Operating Requirements 2.4.1 Power Requirements The LXT9785 requires four power supply inputs: VCCD, VCCA, VCCPECL and VCCIO. The digital and analog circuits require 2.5V supplies (VCCD, VCCR, and VCCT). These inputs may be supplied from a single source although decoupling is required to each respective ground. The fiber VCCPECL supply can be connected to either 2.5V or 3.3V. A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces. The power supply may be either +2.5V or +3.3V. VCCIO should be supplied from the same power source used to supply the controller on the other side of the interface. Refer to Table 27 on page 94 for I/O characteristics. As a matter of good practice, these supplies should be as clean as possible. Typical filtering and decoupling are shown in Figure 33 on page 92. 2.4.2 Clock/SYNC Requirements 2.4.2.1 Reference Clock The LXT9785 requires a constant enabled reference clock (REFCLK). REFCLK’s frequency must be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The reference clock is used to generate transmit signals and recover receive signals. A crystal-based clock is recommended over a derived clock (i.e., PLL-based) to minimize transmit jitter. Refer to Table 30 on page 96 for clock timing requirements. For applications that use a single 8-port sectionalization, RefClk0 and RefClk1 must always be tied together and to the source. 2.4.2.2 TxClk Signal (SS-SMII only) The LXT9785 requires a 125 MHz input transmit clock synchronous with TxDatan. See Figure 23 on page 73. 2.4.2.3 TxSYNC Signal (SMII/SS-SMII) The LXT9785 requires a 12.5 MHz input pulse for SMII synchronization. See Figure 23 on page 73. 2.4.2.4 RxSYNC Signal (SS-SMII only) The LXT9785 provides a 12.5 MHz output pulse synchronous with the RxDATAn outputs. See Figure 24 on page 73. 2.4.2.5 RxCLK Signal (SS-SMII only) In SMII mode, the LXT9785 provides a 125 MHz clock output in reference to the output RxDATAn. Rx Clk is referenced and synchronized to the RefCLK. See Figure 24 on page 73. 58 Datasheet Advanced 10/100 8-Port PHY — LXT9785 2.5 Initialization When the LXT9785 is first powered on, reset, or encounters a link failure state, it checks the MDIO register configuration bits to determine the line speed and operating conditions to use for the network link. The configuration bits may be set by the Hardware Control or MDIO interface as shown in Figure 14 on page 60. 2.5.1 MDIO Control Mode In the MDIO Control mode, the LXT9785 reads the Hardware Control Interface pins to set the initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to the MDIO interface. 2.5.2 Hardware Control Mode In the Hardware Control Mode, the LXT9785 disables direct write operations to the MDIO registers via the MDIO Interface. On power-up or hardware reset, the LXT9785 reads the Hardware Control Interface pins and sets the MDIO registers accordingly. The following modes are available using either Hardware Control or MDIO Control: • Force network link to 100BASE-FX (Fiber). • Force network link operation to: — 100BASE-TX, Full-Duplex — 100BASE-TX, Half-Duplex — 10BASE-T, Full-Duplex — 10BASE-T, Half-Duplex • • • • Allow auto-negotiation/parallel-detection. Auto/Manual MDIX enable/disable. Pause for full duplex links operation. Global Output Slew Rate Control. When the network link is forced to a specific configuration, the LXT9785 immediately begins operating the network interface as commanded. When auto-negotiation is enabled, the LXT9785 begins the auto-negotiation/ parallel-detection operation. Datasheet 59 LXT9785 — Advanced 10/100 8-Port PHY Figure 14. Initialization Sequence Power-up or Reset Read H/W Control Interface Initialize MDIO Registers MDIO Control Mode Low MDDIS Voltage Level? Hardware Control Mode High Pass Control to MDIO Interface Disable MDIO Writes Software Reset? Hardware Reset? Yes Yes Reset MDIO Registers to values read at H/W Control Interface at last Hardware Reset 2.5.3 Power-Down Mode The LXT9785 incorporates numerous features to maintain the lowest power possible. The device can be put into a low-power state via register 0 as well as a near-zero power state with the power down pin. When in power-down mode, the device is not capable of receiving or transmitting packets. The lowest power operation is achieved using the Global power-down pin. This pin powers down every circuit in the device, including all clocks. This power-down pin is active High. All registers are unaltered and maintained when the Global PWRDWN pin is released. Individual ports (software power down) can be powered down using Control Register 0, bit 1. This bit powers down a significant portion of the port, but clocks to the register section remain active. This allows the management interface to remain active during register power-down. The powerdown bit is active High. 2.5.3.1 Global (Hardware) Power Down The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High, the following conditions are true: • All LXT9785 ports and the clock are shut down. 60 Datasheet Advanced 10/100 8-Port PHY — LXT9785 • • • • 2.5.3.2 All outputs are tri-stated. All weak pad pull-up and pull-down resistors are disabled. The MDIO registers are not accessible. Configuration pins are not read upon release of the PWRDWN pin, and registers are reloaded with the value of the last Hardware reset. Port (Software) Power Down Individual port power-down control is provided by bit 0.11 in the respective port Control Registers (refer to Table 57 on page 120). During individual port power-down, the following conditions are true: • • • • 2.5.4 The individual port is shut down. The MDIO registers remain accessible. Pull-up and pull-down resisters are not affected and the outputs are not tri-stated. The register remains unchanged. Reset The LXT9785 provides both hardware and software resets. Configuration control of AutoNegotiation, speed, and duplex mode selection is handled differently for each. During a hardware reset, settings for bits 0.13, 0.12, and 0.8 are read in from the pins (refer to Table 18 for pin settings and Table 57 on page 120 for register bit definitions). During a software reset (0.15 = 1), the bit settings are not re-read from the pins, and revert back to the values that were read in during the last hardware reset. Any changes to pin values from the last hardware reset is not detected during a software reset. During a hardware reset, register information is unavailable for 1 ms after deassertion of the reset. All MII interface pins are disabled during a hardware reset and released to the bus on deassertion of reset. During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be polled to see when the part has completed reset (0.15 = 0). Pull up and pull down resisters are not affected. Datasheet 61 LXT9785 — Advanced 10/100 8-Port PHY 2.5.5 Hardware Configuration Settings The LXT9785 provides a hardware option to set the initial device configuration. The hardware option uses three Global CFG pins that provide control for all ports (see Table 18). Table 18. Global Hardware Configuration Settings CFG Pin Settings1 Desired Mode AutoNeg Speed Resulting Register Bit Values Duplex 1 2 3 Half Low Low Low 0.12 0.13 0.8 4.8 4.7 4.6 4.5 0 10 0 Full Low Low High Disabled 1 N/A 0 Auto-Negotiation Advertisement 0 Half Low High Low Full Low High High Half High Low Low 1 0 0 1 Full High Low High 1 1 1 1 Half High High Low 1 0 0 Full High High High 1 1 1 100 1 1 100 Enabled N/A 0 1 0 1 1 1 1 1 10/100 1. Refer to for CFG pin assignments. 2.6 Link Establishment 2.6.1 Auto-Negotiation The LXT9785 attempts to auto-negotiate with its link partner by sending Fast Link Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses (clock pulses) are always present. Link pulses (data pulses) may also be present or absent to indicate a “1” or a “0”. Each FLP burst exchanges 16 bits of data, referred to as a “page”. All devices that support auto-negotiation must implement the “Base Page”, defined by IEEE 802.3 (registers 4 and 5). The LXT9785 also supports the optional “Next Page” function (registers 7 and 8). 2.6.1.1 Base Page Exchange By exchanging Base Pages, the LXT9785 and its link partner communicate their capabilities to each other. Both sides must receive at least three identical base pages for negotiation to proceed. Each side finds their highest common capabilities, exchange more pages, and agree on the operating state of the line. 2.6.1.2 Next Page Exchange Additional information, exceeding that required by base page exchange, is also sent via “Next Pages”. The LXT9785 fully supports the IEEE 802.3 method of negotiation via Next Page exchange. The Next Page exchange uses register 7 to send information and register 8 to receive it. Next Page exchange occurs only if both ends of the link advertise their ability to exchange Next Pages. A special mode has been added to make next page exchange easier for software. When register 6 “page” is received, it stays set until read. This bit should be cleared whenever a new negotiation occurs, preventing the user from reading an old value in register 6 and assuming there is valid information in registers 5 and 8. Additionally, register 6 contains a new bit that indicates 62 Datasheet Advanced 10/100 8-Port PHY — LXT9785 when the current received page is the base page. This information is useful for recognizing when next pages must be re-sent due to the start of a new negotiation process. Bit 16.1 and the page received bit are also cleared upon reading register 6. 2.6.1.3 Controlling Auto-Negotiation When auto-negotiation is controlled by software, the following steps are recommended: • After power-up, power-down, or reset, the power-down recovery time, as specified in Table 54 on page 118, must be exhausted before proceeding. • Set the auto-negotiation advertisement register bits. • Enable auto-negotiation (set MDIO bit 0.12 = 1). 2.6.1.4 Link Criteria In 100Mbps mode, link is established when the scrambler becomes locked and remains locked for approximately 50ms. Link remains up unless the descrambler receives less than 12 consecutive idle symbols in any 2 ms period. This provides a very robust operation, filtering out any small noise hits that may disrupt the link. In 10Mbps mode, link is established based on the link state machine found in IEEE 802.3, 14.X. Receiving 100Mbps idle patterns does not bring up a 10Mbps link. 2.6.1.5 Parallel Detection In parallel with auto-negotiation, the LXT9785 also monitors for 10Mbps Normal Link Pulses (NLP) or 100Mbps Idle symbols. If either symbol is detected, the device automatically reverts to the corresponding operating mode. Parallel detection allows the LXT9785 to communicate with devices that do not support auto-negotiation. Figure 15. Auto-Negotiation Operation Power-Up, Reset, Link Failure Start Disable Auto-Negotiation Go To Forced Settings Done Datasheet 0.12 = 0 0.12 = 1 Check Value 0.12 Attempt AutoNegotiation YES Enable Auto-Neg/Parallel Detection Listen for 100TX Idle Symbols Link Set? Listen for 10T Link Pulses NO 63 LXT9785 — Advanced 10/100 8-Port PHY 2.7 Serial MII Operation The LXT9785 exchanges transmit and receive data with the controller via the Serial MII (SMII). The SMII performs the following functions: • • • • Conveys complete MII information between a 10/100 PHY and MAC with two pins per port. Allows a multi-port MAC/PHY communication with one system clock. Operates in both half and full duplex. Supports per-packet switching between 10Mbps and 100Mbps data rates. The Serial MII operates at 125 MHz using a global reference clock and frame synchronization signal (REFCLK and SYNC). Each port has an individual two-line data interface (TXDn and RXDn). All signals are synchronous to REFCLK. Table 19 summarizes the SMII signals. Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of 4B coded data) and two status bits. When the port is operating at 100Mbps, each word contains a new data byte. When the port is operating at 10Mbps, each data byte is repeated 10 times. Table 19. SMII Signal Summary Signal To From Purpose TXD PHY MAC Transmit data & control SYNC PHY MAC Synchronization RXD MAC PHY Receive data & control REFCLK MAC & PHY System Synchronization 1. Refer to Table 5 on page 41 for detailed signal descriptions. 64 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 16. Typical SMII Interface Diagram Typical SMII Interface in a 16-Port System SECTION RxDatan MDIO0 MDC0 Magnetics/Fiber Transceiver 8 TxDatan SYNC0 LXT9785 8-Port Phy 8-Port Media Access Controller ( MAC) 8 MDINT0 RefCLK0 125 MHz Sourced Externally or from Switch ASIC RefCLK1 SYSTEM CLK RefCLK0 RefCLK1 RxDatan MDIO0 MDC0 Magnetics/Fiber Transceiver 8 TxDatan SYNC0 LXT9785 8-Port Phy 8-Port Media Access Controller (MAC) 8 MDINT0 SECTION Datasheet 65 LXT9785 — Advanced 10/100 8-Port PHY Figure 17. Typical SMII Quad Sectionalization Diagram Typical SMII Interface in a 24-Port System RefClk0 8 RefClk1 TxDatan 8 12-Port Media Access Controller ( MAC) RxDatan MDIO0 MDC0 MDINT0 4 SECTION TxDatan RxDatan LXT9785 4-Port (sec) MDIO0 MDC0 MDINT0 RefClk0 125 MHz Sourced Externally or from Switch ASIC RefClk1 TxDatan 4 SYNC1 4 RxDatan VCC SECTION 8 TxDatan SYNC0 8 RxData n Magnetics/Fiber Transceiver MDINT0 MDIO0 MDC0 LXT 9785 8-Port Phy 12-Port Media Access Controller ( MAC) MDINT1 MDIO1 MDC1 Magnetics/Fiber Transceiver 4-Port (sec) SYNC0 4 Magnetics/Fiber Transceiver LXT9785 8-Port Phy SYNC0 SECTION RefClk0 RefClk1 66 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 18. 100Mbps Serial MII Data Flow Serial Data Stream To/From MAC S0 S1 D0 D1 D2 Strip TX_EN & TX_ER Status Bits 2 Nibbles Tx/Rx Data 2 Symbols Tx/Rx Data D0 D1 D2 D3 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 4B/5B D3 D4 D5 D6 D7 2.7.1 Insert CRS & RX_DV Status Bits D0 D1 D2 D3 To/From PMD Sublayer SMII Reference Clock The REFCLK operates at 125 MHz. The transmit and receive data and control streams must always be synchronized to the REFCLK by the MAC and PHY. The LXT9785 samples these signals on the rising edge of the REFCLK. 2.7.2 TxSYNC Pulse (SMII/SS-SMII) The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The MAC must continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The TxSYNC pulse signals the start of each new segment (see Figure 22 on page 72). 2.7.3 Transmit Data Stream Transmit data and control information are signaled in ten- bit segments. In 100Mbps mode, each segment contains a new byte of data. In 10Mbps mode, the MAC must repeat a 10M serial word ten times on TXD. The LXT9785 may sample that serial word at any point. The TxSYNC pulse signals the start of a new segment as shown in Figure 19 on page 68. 2.7.3.1 Transmit Enable The MAC must assert the TX_EN bit in each segment of TXData, and de-assert TX_ENn after the last segment of the packet. 2.7.3.2 Transmit Error When the MAC asserts the TX_ER bit in 100BASE-X mode, the LXT9785 drives “H” symbols onto the network interface. TX_ER does not have any function in 10M operation. Datasheet 67 LXT9785 — Advanced 10/100 8-Port PHY Figure 19. Serial MII Transmit Synchronization CLOCK TxSYNC TX 2.7.4 TX_ER TX_EN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TX_ER Receive Data Stream Receive data and control information are signalled in ten- bit segments. In 100Mbps mode, each segment contains a new byte of data. In 10Mbps mode, each segment is repeated ten times (except for the CRS bit), and the MAC can sample any of the ten segments. 2.7.4.1 Carrier Sense The CRS bit (slot 0) is generated when a packet is received from the network interface. The CRS bit is set in real time, even in 10Mbps mode (all other bits are repeated in 10 sequential segments). 2.7.4.2 Receive Data Valid The LXT9785 asserts the RX_DV bit (slot 1) when it receives a valid packet. The assertion timing changes depending on line operating speed: • For 100 TX and 100 FX links, the RX_DV bit is asserted from the first nibble of preamble to the last nibble of the data packet. • For 10 BT links, the entire preamble is truncated. The RX_DV bit is asserted with the first nibble of the Start-of-Frame Delimiter (SFD) “5D” and remains asserted until the end of the packet. 2.7.4.3 Receive Error When the LXT9785 receives an invalid symbol from the network in 100BASE-TX mode, it drives “1110” on the associated RXD pin. 2.7.4.4 Receive Status Encoding The LXT9785 encodes status information onto the RXD line during IPG as seen in Table 20 on page 69. Status bit RXD<5> indicates the validity of the upper nibble (RXD<7:4> of the last byte of the previous frame). RXD and RX_DV are passed through the internal elasticity FIFO to smooth any clock rate differences between the recovered clock and the 125 MHz reference clock. 2.7.5 Collision The SMII interface does not provide a collision output and relies on the MAC to interpret COL conditions using CRS and TX_EN. CRS is unaffected by the transmit path. 68 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 20. Serial MII Receive Synchronization CLOCK RxSYNC RX CRS RXD0 RX_DV RXER RXD1 Speed RXD2 Duplex RXD3 Link RXD4 J abber RXD5 Valid RXD6 FCE RXD7 RXD7 CRS Table 20. RX Status Encoding Bit Definitions Signal Definition CRS Carrier Sense - identical to MII, except that it is not an asynchronous signal. RX_DV Receive Data Valid - identical to MII. When RX_DV = 0, status information is transmitted to the MAC. When RX_DV = 1, received data is transmitted to the MAC. 0 = Status Byte 1 = Valid Data Byte RX_ER (RXD0) Inter-frame status bit RXD0 indicates whether or not the PHY detected an error somewhere in the previous frame. 0 = No Error 1 = Error SPEED (RXD1) Inter-frame status bit RXD1 indicates port operating speed. 0 = 10Mbps 1 = 100Mbps DUPLEX (RXD2) Inter-frame status bit RXD2 indicates port duplex condition. 0 = Half 1 = Full LINK (RXD3) Inter-frame status bit RXD3 indicates port link status. 0 = Down 1 = Up JABBER (RXD4) Inter-frame status bit RXD4 indicates port jabber status. 0 = OK 1 = Error VALID (RXD5) Inter-frame status bit RXD5 conveys the validity of the upper nibble of the last byte of the previous frame. 0 = Invalid 1 = Valid False Carrier (RXD6) Inter-frame status bit RXD6 indicates whether or not the PHY has detected a false carrier event. 0 = No FC detected 1 = FC detected RXD7 This bit is set to 1. Always = 1 1. Both RXD0 and RXD5 bits are valid in the segment immediately following a frame, and remain valid until the first data segment of the next frame begins. Datasheet 69 LXT9785 — Advanced 10/100 8-Port PHY 2.7.5.1 Source Synchronous SMII Some system designs require the PHY to be placed between 3 to 12 inches away from the MAC. A new source synchronous SMII definition has been added because of this requirement. To provide a source synchronous interface between the PHY and MAC, the PHY must drive the RxClk and the RxSYNC signals to the MAC. Also, the MAC must drive the TxClk and the TxSYNC signal to the PHY. The RefClk is also needed to synchronize the data to the PHY’s core clock domain. TxData is clocked in using TxClk and then synchronized to RefClk and transmitted to the twisted-pair. The RxData is synchronized to the RxClk. See Figure 24 on page 73. Table 21. Source Synchronous SMII Signal 70 To From Purpose TxData PHY MAC Transmit data & control TxCLK PHY MAC Transmit clock TxSYNC PHY MAC Synchronization pulses RxData MAC PHY Receive data & control RxCLK MAC PHY Receive clock RxSYNC MAC PHY Receive Synchronization RefClk MAC System Synchronization Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 21. Typical SS-SMII Interface Diagram Typical SS-SMII Interface in a 16-Port System SECTION TxDatan 8 RxDatan RxSYNC1 RxCLK1 MDIO0 MDC0 Magnetics/Fiber Transceiver TxSYNC0 TxCLK0 LXT9785 8-Port Phy 8-Port Media Access Controller ( MAC) 8 MDINT0 RefCLK0,1 125 MHz Sourced Externally or from Switch ASIC SYS_CLK RxDatan RxSYNC1 RxCLK1 MDIO0 MDC0 MDINT0 Magnetics/Fiber Transceiver 8 RefCLK0,1 TxDatan TxSYNC0 TxCLK0 LXT9785 8-Port Phy 8-Port Media Access Controller (MAC) 8 SECTION Note: Datasheet For SMII operation TxCLK1, RxSYNCn and RxCLKn pins are ignored 71 LXT9785 — Advanced 10/100 8-Port PHY Figure 22. Typical SS-SMII Quad Sectionalization Diagram Typical SS-SMII Interface in a 24-Port System RefClk0 8 RefClk1 RxSYNC1 12-Port Media Access Controller ( MAC) RxCLK1 MDIO0 MDC0 MDINT0 SECTION 4 MDINT0 RefClk0 125 MHz Sourced Externally or from Switch ASIC RefClk1 TxData n TxSYNC1 TxCLK1 RxData n RxSYNC1 RxCLK1 4 4 LXT9785 4-port (sec) MDIO0 MDC0 Magnetics/Fiber Transceiver TxDatan TxSYNC0 TxCLK0 RxData n RxSYNC0 RxCLK0 4-port (sec) 4 VCC MDINT1 MDIO1 SECTION MDC1 MDINT0 MDIO0 TxData n TxSYNC0 TxCLK0 8 RxData n RxSYNC1 RxCLK1 Magnetics/Fiber Transceiver MDC0 8 LXT9785 8-Port Phy 12-Port Media Access Controller ( MAC) Magnetics/Fiber Transceiver TxCLK0 RxDatan 8 LXT9785 8-Port Phy TxDatan TxSYNC0 SECTION RefClk0 RefClk1 72 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 23. Source Synchronous Transmit Timing SS-SMII Transmit Timing TxCLK TxSYNC TXER TXEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TXER TxData TxCLK TxSYNC TXER TXEN Frcerr Speed Dplx LINK Jabr TxData TXER All signals are synchronous to the clock Figure 24. Source Synchronous Receive Timing SS-SMII Receive Timing RxCLK RxSYNC RxData CRS RXDV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS RxCLK RxSYNC RxData CRS RXDV RXER Speed Dplx LINK Jabr UPnib FlsCar CRS All signals are synchronous to the clock Datasheet 73 LXT9785 — Advanced 10/100 8-Port PHY 2.8 RMII Operation The LXT9785 provides an independent Reduced MII port for each network port. Each RMII uses four signals to pass received data to the MAC: RXDn<1:0>, RXERn, and CRS_DVn (where n reflects the port number). Three signals are used to transmit data from the MAC: TXDn_<1:0> and TXENn. Both receive and transmit signals are clocked by REFCLK. Data transmission across the RMII is implemented in di-bit pairs which equal a 4-bit wide nibble. 2.8.1 RMII Reference Clock The LXT9785 requires a 50 MHz reference clock (REFCLK). The device samples the RMII input signals on the rising edge of REFCLK and drives RMII output signals on the falling edge. 2.8.2 Transmit Enable TXENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert TXENn at the same time as the first nibble of preamble. TXENn must be de-asserted after the last bit of the packet. 2.8.3 Carrier Sense & Data Valid The LXT9785 asserts CRS_DVn when it detects activity on the line. However, RXDn outputs zeros until the received data is decoded and available for transfer to the controller. 2.8.4 Receive Error Whenever the LXT9785 receives an errored symbol from the network, it asserts RXERn. When it detects a bad Start-of-Stream Delimiter (SSD) it drives a “10” jam pattern on the RXD pins to indicate a false carrier event. 2.8.5 Out-of-Band Signalling The LXT9785 has the capability of encoding status information in the RXData stream during IPG. See “Monitoring Operations” on page 84 for details. 2.8.6 4B/5B Coding Operations The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However, data is normally transmitted across the RMII interface in 2-bit nibblets or “di-bits”. The LXT9785 incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit nibbles, and a 4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit symbols for the 100BASE-X connection. Figure 25 on page 75 shows the data conversion flow from nibbles to symbols. Table 22 on page 80 shows 4B/5B symbol coding (not all symbols are valid). 74 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 25. RMII Data Flow Reduced MII Mode Data Flow D0 D2 +1 Parallel to Serial D0 D1 D2 D3 D1 D3 di-bit pairs Datasheet Serial to Parallel 0 Scramble 4-bit nibbles 4B/5B S0 S1 S2 5-bit symbols S3 S4 DeScramble MLT3 0 0 -1 Transition = 1. No Transition = 0. All transitions must follow pattern: 0, +1, 0, -1, 0, +1... 75 LXT9785 — Advanced 10/100 8-Port PHY Figure 26. Typical RMII Interface Diagram Typical RMII Interface in a 16-Port System SECTION 8 TxD0n 8 8 8 8 TxENn RxD0n RxD1n CRS_DVn RxERn MDIO0 Magnetics/Fiber Transceiver 8 TxD1n LXT9785 8-Port Phy 8-Port Media Access Controller ( MAC) 8 MDC0 MDINT0 50 Mhz Sourced Externally or from Switch ASIC RefClk0 RefClk1 RefClk0 RefClk1 MDINT0 MDIO0 TxD0 n 8 TxD1 n 8 8 TxEN n RxD0 n Magnetics/Fiber Transceiver 8 LXT9785 8-Port Phy 8-Port Media Access Controller ( MAC) MDC0 8 RxD1n 8 8 CRS_DV n RxER n SECTION 76 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 27. Typical RMII Quad Sectionalization Diagram Typical RMII Interface in a 24-Port System RefClk0 RefClk1 8 TxENn 8 RxD0n 8 RxD1n 12-Port Media Access Controller ( MAC) 8 CRS_DVn 8 RxERn MDIO0 MDC0 MDINT0 4 4 TxD0n TxD1n TxENn RxD0n RxD1n CRS_DV n RxERn 50 MHz Sourced Externally or from Switch ASIC RefClk1 4 4 4 4 4 MDINT1 MDIO1 MDC1 4-Port (sec) TxD0n TxD1n TxEN n RxD0 n RxD1n CRS_DVn RxER n 4 4 VCC SECTION MDINT0 8 8 8 8 8 8 8 TxD0 n TxD1n TxEN n RxD0 n RxD1n CRS_DV n RxER n Magnetics/Fiber Transceiver MDIO0 MDC0 LXT9785 8-Port Phy 12-Port Media Access Controller ( MAC) LXT9785 MDIO0 MDC0 MDINT0 RefClk0 Magnetics/Fiber Transceiver 4 4 4 SECTION 4-Port (sec) 4 4 Magnetics/Fiber Transceiver 8 LXT9785 8-Port Phy TxD0n TxD1n 8 SECTION RefClk0 RefClk1 Datasheet 77 LXT9785 — Advanced 10/100 8-Port PHY 2.9 100Mbps Operation 2.9.1 100BASE-X Network Operations During 100BASE-X operation, the LXT9785 transmits and receives 5-bit symbols across the network link. Figure 28 shows the structure of a standard frame packet. When the MAC is not actively transmitting data, the LXT9785 sends out Idle symbols on the line. In 100BASE-TX mode, the device scrambles the data and transmits it to the network using MLT-3 line code. The MLT-3 signals received from the network are descrambled and decoded, and sent across the RMII to the MAC. In 100BASE-FX mode, the LXT9785 transmits and receives NRZI signals across the PECL interface. An external 100FX transceiver module is required to complete the fiber connection. As shown in Figure 28, the MAC starts each transmission with a preamble pattern. As soon as the LXT9785 detects the start of preamble, it transmits a J/K Start-of-Stream Delimiter (SSD) symbol to the network. It then encodes and transmits the rest of the packet, including the balance of the preamble, the Start-of-Frame Delimiter (SFD), packet data, and CRC. Once the packet ends, the LXT9785 transmits the T/R End-of-Stream Delimiter (ESD) symbol and then returns to transmitting Idle symbols. Figure 28. 100BASE-X Frame Format 64-Bit Preamble (8 Octets) P0 P1 Replaced by /J/K/ code-groups Start-of-Stream Delimiter (SSD) 2.9.2 P6 Destination and Source Address (6 Octets each) SFD DA DA SA Packet Length (2 Octets) SA L1 L2 Data Field Frame Check Field InterFrame Gap / Idle Code (Pad to minimum packet size) (4 Octets) (> 12 Octets) D0 Start-of-Frame Delimiter (SFD) D1 Dn CRC I0 IFG Replaced by /T/R/ code-groups End-of-Stream Delimiter (ESD) 100BASE-X Protocol Sublayer Operations In a 7-layer communications model, the LXT9785 is a Physical Layer 1 (PHY) device. The LXT9785 implements the Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model defined by the IEEE 802.3u specification. The following paragraphs discuss the LXT9785 operation from the reference model point of view. 2.9.2.1 PCS Sublayer The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/ decoding function. For 100TX and 100FX operation, the PCS layer provides IDLE symbols to the PMD-layer line driver as long as TXEN is de-asserted. For 10T operation, the PCS layer merely provides a bus interface and serialization/de-serialization function. 10T operation does not use the 4B/5B encoder. 78 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Preamble Handling When the MAC asserts TXEN, the PCS substitutes a /J/K/ symbol pair, also known as the Start-ofStream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer continues to encode the remaining RMII data until TXEN is de-asserted (see Table 22 on page 80). It then returns to supplying IDLE symbols to the line driver. The PCS layer performs the opposite function in the receive direction by substituting two preamble nibbles for the SSD. Dribble Bits The LXT9785 handles dribbles bits in all modes. If one through four dribble bits are received, the nibble is passed across the RMII, padded with ones if necessary. If five through seven dribble bits are received, the second nibble is not sent to the RMII bus. Figure 29. Protocol Sublayers MII Interface PCS Sublayer PMA Sublayer LXT9785 Encoder/Decoder Serializer/De-serializer Link/Carrier Detect PECL Interface PMD Sublayer Scrambler/ De-scrambler 100BASE-TX Datasheet Fiber Transceiver 100BASE-FX 79 LXT9785 — Advanced 10/100 8-Port PHY 2.9.3 PMA Sublayer Table 22. 4B/5B Coding Code Type DATA IDLE CONTROL INVALID 1. 2. 3. 4. 80 4B Code 3210 Name 5B Code 43210 0000 0 11110 Data 0 0001 1 01001 Data 1 0010 2 10100 Data 2 0011 3 10101 Data 3 0100 4 01010 Data 4 0101 5 01011 Data 5 Interpretation 0110 6 01110 Data 6 0111 7 01111 Data 7 1000 8 10010 Data 8 1001 9 10011 Data 9 1010 A 10110 Data A 1011 B 10111 Data B 1100 C 11010 Data C 1101 D 11011 Data D 1110 E 11100 Data E 1111 F 11101 Data F undefined I1 1 1 1 11 Idle. Used as inter stream fill code. 0101 J2 11000 Start-of-Stream Delimiter (SSD), part 1 of 2. 0101 2 10001 Start-of-Stream Delimiter (SSD), part 2 of 2. undefined T3 01101 End-of-Stream Delimiter (ESD), part 1 of 2. undefined R3 00111 End-of-Stream Delimiter (ESD), part 2 of 2. undefined H4 00100 Transmit Error. Used to force signalling errors. undefined Invalid 00000 Invalid undefined Invalid 00001 Invalid undefined Invalid 00010 Invalid undefined Invalid 00011 Invalid undefined Invalid 00101 Invalid undefined Invalid 00110 Invalid undefined Invalid 01000 Invalid undefined Invalid 01100 Invalid undefined Invalid 10000 Invalid undefined Invalid 11001 Invalid K The /I/ (Idle) code group is sent continuously between frames. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/. An /H/ (Error) code group is used to signal an error condition. Datasheet Advanced 10/100 8-Port PHY — LXT9785 Link In 100Mbps mode, the LXT9785 establishes a link whenever the scrambler becomes locked and remains locked for approximately 50 ms. Whenever the scrambler loses lock (<12 consecutive idle symbols during a 2 ms window), the link is taken down. This provides a robust link, filtering out any small noise hits that may otherwise disrupt the link. Furthermore, 100Mbps idle patterns will not bring up a 10Mbps link. The LXT9785 reports link failure via the RMII status bits (1.2, 17.10, and 19.4) and interrupt functions. If auto-negotiate is enabled, link failure causes the device to re-negotiate. Link Failure Override The LXT9785 normally transmits 100Mbps data packets or Idle symbols only if it detects the link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1 overrides this function, allowing the LXT9785 to transmit data packets even when the link is down. This feature is provided as a diagnostic tool. Note: Auto-negotiation must be disabled to transmit data packets in the absence of link. If autonegotiation is enabled, the LXT9785 automatically begins transmitting FLP bursts if the link goes down. Carrier Sense/Data Valid (RMII) The LXT9785 asserts CRS_DV whenever the respective port receiver is in a non-idle state (as defined by the RMII Specification Revision 1.2), including false carrier events. Assertion of CRS_DV is asynchronous with respect to REFCLK. In the event that signal decoding is not complete when CRS_DV is asserted, the LXT9785 outputs 00 on the RXD1:0 lines until the decoded data are available. When the line returns to an idle state, CRS_DV is de-asserted asynchronously with respect to REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS is deasserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For 100BASE-X signals, CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at 2.5 MHz. Carrier Sense (SMII) For 100TX and 100FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol pair causes assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/ symbol pair causes de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE symbols are received without /T/ R/. In this event, the RX_ER bit in the RX Status Frame is asserted for one clock cycle when CRS is de-asserted. For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on receipt of an End-of-Frame (EOF) marker. Receive Data Valid (SMII) The LXT9785 asserts the RX_DV bit when it receives a valid packet. However, RXD outputs zeros until the received data are decoded and available for transfer to the controller. Datasheet 81 LXT9785 — Advanced 10/100 8-Port PHY 2.9.3.1 Twisted-Pair PMD Sublayer The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10T), as well as receiving, polarity correction, and baseline wander correction functions. Scrambler/Descrambler (100TX Only) The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial whenever IDLE symbols are received. The scrambler/descrambler can be bypassed by setting bit 16.12 = 1. The scrambler is automatically bypassed when the fiber port is enabled. Scrambler bypass is provided for diagnostic and test support. Baseline Wander Correction The LXT9785 provides a baseline wander correction function which makes the device robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is, by definition, “unbalanced”. This means that the DC average value of the signal voltage can “wander” significantly over short time intervals (tenths of seconds). This wander may cause receiver errors, particularly in less robust designs, at long line lengths (100 meters). The exact characteristics of the wander are completely data dependent. The LXT9785 baseline wander correction characteristics allow the device to recover error-free data while receiving worst-case “killer” packets over all cable lengths. Polarity Correction The LXT9785 automatically detects and corrects for the condition where the receive signal (TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses or four inverted End-of-Frame (EOF) markers are received consecutively. If link pulses or data are not received by the maximum receive time-out period, the polarity state is reset to a non-inverted state. 2.9.3.2 Fiber PMD Sublayer The LXT9785 provides a PECL interface for connection to an external fiber-optic transceiver. (The external transceiver provides the PMD function for fiber media.) The device uses an NRZI format for the fiber interface. The fiber interface operates at 100Mbps and does not support 10FL applications. Far End Fault Indications The LXT9785 Signal Detect pins independently detect signal faults from the local fiber transceivers via the SD pins. The device also uses bit 1.4 to report Remote Fault indications received from its link partner. The device “ORs” both fault conditions to set bit 1.4. Bit 1.4 is set once and clears when read. Either fault condition causes the LXT9785 to drop the link unless Forced Link Pass is selected (16.14 = 1). Link down condition is then reported via interrupts and status bits. 82 Datasheet Advanced 10/100 8-Port PHY — LXT9785 In response to locally detected signal faults (SD activated by the local fiber transceiver), the affected port can transmit the far end fault code if fault code transmission is enabled by bit 16.2. • When bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT9785 transmits far end fault code if fault conditions are detected by the Signal Detect pins. • When bit 16.2 = 0, the LXT9785 does not transmit far end fault code. It continues to transmit idle code and may or may not drop link depending on the setting for bit 16.14. The occurrence of a Far End Fault causes all transmission of data from the Reconciliation Sublayer to stop and the Far End fault code to begin. The Far End Fault code consists of 84 ones’s followed by a single “0” and is repeated until the Far End Fault condition is removed. 2.10 10Mbps Operation The LXT9785 operates as a standard 10BASE-T transceiver and supports all the standard 10Mbps functions. During 10BASE-T (10T) operation, the LXT9785 transmits and receives Manchesterencoded data across the network link. When the MAC is not actively transmitting data, the device sends out link pulses on the line. In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals received from the network are decoded by the LXT9785 and sent across the RMII to the MAC. Note: 2.10.1 The LXT9785 does not support fiber connections at 10Mbps. Preamble Handling The LXT9785 offers two options for preamble handling, selected by bit 16.5. In 10T Mode when bit 16.5 = 0, the device strips the entire preamble off the received packets. CRS_DV is asserted simultaneously with SFD. CRS_DV is held Low for the duration of the preamble. When CRS_DV is asserted, the very first two nibbles driven by the LXT9785 are the SFD “5D” hex followed by the body of the packet. When bit 16.5 = 1 in 10T mode, the LXT9785 passes the preamble through the RMII and asserts CRS_DV simultaneously. 2.10.2 Dribble Bits The LXT9785 device handles dribble bits in all modes. If one through four dribble bits are received, the nibble is passed across the RMII. If five through seven dribble bits are received, the second nibble is not sent onto the RMII bus. 2.10.3 Link Test The LXT9785 always transmits link pulses in 10T mode. When enabled, the link test function monitors the connection for link pulses. Once link pulses are detected, data transmission is enabled and remains enabled as long as either the link pulses or data transmission continue. If link pulses stop, the data transmission is disabled. If the link test function is disabled, the LXT9785 transmits to the connection regardless of detected link pulses. The link test function is disabled by setting bit 16.14 = 1. Datasheet 83 LXT9785 — Advanced 10/100 8-Port PHY 2.10.3.1 Link Failure Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this condition occurs, the LXT9785 returns to the auto-negotiation phase if auto-negotiation is enabled. 2.10.4 Jabber If a transmission exceeds the jabber timer, the LXT9785 disables the transmit and loopback functions. The RMII does not include a Jabber pin, but the MAC may read Register 1 or 25 to determine Jabber status. The LXT9785 automatically exits jabber mode after the unjab time has expired. This function is disabled by setting bit 16.10 = 1. 2.11 Monitoring Operations 2.11.1 Monitoring Auto-Negotiation Auto-negotiation may be monitored as follows: • Bits 1.2 and 17.10 = 1 once the link is established. • Additional bits in Register 1 (refer to Table 58 on page 121) and Register 17 (refer to Table 67 on page 128) can be used to determine the link operating conditions and status. 2.11.2 Per-Port LED Driver Functions The LXT9785 incorporates three direct drive LEDs per port (LEDn_1, LEDn_2, and LEDn_3). On power up, all the LEDs lights up for approximately one second after reset de-asserts. Each LED may be programmed to one of several different display modes using the LED Configuration Register. Each per-port LED may be programmed (refer to Table 70 on page 131) to indicate one of the following conditions: • • • • • • • Operating Speed Transmit Activity Receive Activity Collision Condition Link Status Duplex Mode Isolate Condition The LEDs can also be programmed to display various combined status conditions. For example, setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications: • If Link is down, LED is off. • If Link is up, LED is on. • If Link is up AND activity is detected, the LED blinks at the stretch interval selected by bits 20.3:2 and continues to blink as long as activity is present. 84 Datasheet Advanced 10/100 8-Port PHY — LXT9785 The LED driver pins are open drain circuits (10mA max current rating). Refer to “LED Circuit” on page 90 under the Application Information Section for LED circuit design details. The LED Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms. If during this pulse stretch period, the event occurs again, the pulse stretch time is further extended (see Table 70 on page 131). When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer. The LED driver remains asserted until the stretch timer expires. If another event occurs before the stretch timer expires, the stretch timer is reset and the stretch time extended. When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer. When the stretch timer expires, the edge detector is reset so that a long event causes another pulse to be generated from the edge detector. The edge detector resets the stretch timer, causing the LED driver to remain asserted. Figure 30 shows how the stretch operation functions. Figure 30. LED Pulse Stretching Event LED stretch stretch stretch Note: The direct drive LED outputs in this diagram are shown as active Low. 2.11.3 Out-of-Band Signalling The LXT9785 provides an out-of-band signalling option to transfer status information across the RMII receive interface. This feature is enabled when register 25.0 = 1 and uses the RXD(1:0) data bus during the Inter-Packet Gap (IPG) time as shown in Figure 31. The two status bits transferred across the RXD bus are software selectable via Register 25 (see Table 72 on page 133). In normal operation, the LXT9785 stuffs the RXD bus with zeros during the IPG. A softwareselectable bit enables the RMII out-of-band signalling feature. Once this bit is set, the LXT9785 replaces the zeros with selected status bits during the IPG. Datasheet 85 LXT9785 — Advanced 10/100 8-Port PHY Figure 31. RMII Programmable Out-of-Bank Signaling REFCLK CRS_DV RXD(1) sta tus 1 status 1 0s data data data data status 1 status 1 status 1 status 1 status 1 RXD(0) sta tus 0 status 0 0s data data data data status 0 status 0 status 0 status 0 status 0 1. When network activity is detected, the LXT9785 asserts CRS_DV asynchronously with respect to REFCLK. 2. After CRS_DV is asserted, the LXT9785 will zero-stuff the RXData bits until the received data has been processed through the FIFO. 3. When network activity ceases, the LXT9785 de-asserts CRS_DV synchronously with respect to REFCLK. CRS_DV will toggle until all data in the FIFO has been processed through the RMII. Once the FIFO is empty, LXT9785 will drive the status bits selected by the Out-of-Band Signalling Register (refer to Table 72 on page 133) on the RXD outputs. The LXT9785 includes an IEEE 1149.1 boundary scan test port for board level testing. All digital input, output, and input/output pins are accessible. 2.11.4 Boundary Scan Interface This interface consists of five pins (TMS, TDI, TDO, TCK and TRST). It includes a state machine, data register array, and instruction register. The TMS and TDI pins are internally pulled up and the TCK pin is internally pulled down. TDO does not have an internal pull-up or pull-down. 2.11.5 State Machine The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are High for five TCK periods. 2.11.6 Instruction Register The IDCODE instruction is always invoked after the state machine resets. The decode logic ensures the correct data flow to the Data registers according to the current instruction. Valid instructions are listed in Table 24 on page 87. 86 Datasheet Advanced 10/100 8-Port PHY — LXT9785 2.11.7 Boundary Scan Register Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the serial shift stage and the parallel output stage. There are four modes of operation as listed in Table 23. Table 23. BSR Mode of Operation Mode Description 1 Capture 2 Shift 3 Update 4 System Function Table 24. Supported JTAG Instructions Name Datasheet Code Description Data Register EXTEST 0000000000000000 External Test BSR IDCODE 1111111111111110 ID Code Inspection ID REG SAMPLE 1111111111111000 Sample Boundary BSR High Z 1111111111001111 Force Float Bypass Clamp 1111111111101111 Clamp BSR BYPASS 1111111111111111 Bypass Scan Bypass 87 LXT9785 — Advanced 10/100 8-Port PHY 3.0 Application Information 3.1 Design Recommendations The LXT9785 is designed to comply with IEEE 802.3 requirements to provide outstanding receive Bit Error Rate (BER), and long-line-length performance. To achieve maximum performance from the LXT9785, attention to detail and good design practices are required. Refer to the LXT9785 Design and Layout Guide application note for detailed design and layout information. 3.2 General Design Guidelines Adherence to generally accepted design practices is essential to minimize noise levels on power and ground planes. Up to 50 mV maximum of noise is considered acceptable. High-frequency switching noise can be reduced, and its effects eliminated, by following these simple guidelines throughout the design: • Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC or ground plane that is not located adjacent to the signal layer. • Use ample bulk and decoupling capacitors throughout the design (a value of 0.01 µF is recommended for decoupling caps). • • • • • • Provide ample power and ground planes. Provide termination on all high-speed switching signals and clock lines. Provide impedance matching on long traces to prevent reflections. Route high-speed signals next to a continuous, unbroken ground plane. Filter and shield DC-DC converters, oscillators, etc. Do not route any digital signals between the LXT9785 and the RJ-45 connectors at the edge of the board. • Do not extend any circuit power and ground plane past the center of the magnetics or to the edge of the board. Use this area for chassis ground, or leave it void. 3.2.1 Power Supply Filtering Power supply ripple and digital switching noise on the VCC plane may cause EMI problems and degrade line performance. The best approach to this problem is to minimize ground noise as much as possible using good general techniques and by filtering the VCC plane. It is generally difficult to predict in advance the performance of any design, although certain factors greatly increase the risk of having problems: • Poorly-regulated or over-burdened power supplies. • Wide data busses (32-bits+) running at a high clock rate. • DC-to-DC converters. 88 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Intel recommends filtering the power supply to the analog VCC pins of the LXT9785. This has two benefits. First, it keeps digital switching noise out of the analog circuitry inside the LXT9785, helping with line performance. Second, if the VCC planes are laid out correctly, digital switching noise is kept away from external connectors, reducing EMI problems. The recommended implementation is to break the VCC plane into two sections. The digital section supplies power to the VCCD and VCCIO pins of the LXT9785. The analog section supplies power to the VCCA pins. The break between the two planes should run underneath the device. In designs with more than one the LXT9785, a single continuous analog VCC plane can be used to supply them all. The digital and analog VCC planes should be joined at one or more points by ferrite beads. The beads should produce at least a 100Ω impedance at 100 MHz. Beads should be placed so that current flow is evenly distributed. The maximum current rating of the beads should be at least 150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10 uF) should be placed on each side of each bead. In addition, a high-frequency bypass cap (0.01uF) should be placed near each analog VCC pin. 3.2.2 Power and Ground Plane Layout Considerations Great care needs to be taken when laying out the power and ground planes. • Follow the guidelines in the LXT9785 Design and Layout Guide (Application Note 151) for locating the split between the digital and analog VCC planes. • Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the magnetics, and the RJ-45 connectors. • Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N. 3.2.2.1 Chassis Ground For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the board and is isolated via moats and keep-out areas from all circuit-ground planes and active signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be used to terminate unused signal pairs (Bob Smith termination). In single-point grounding applications, provide a single connection between chassis and circuit grounds with a 2 kV isolation capacitor. In multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide 2 kV isolation to the Bob Smith termination. 3.2.3 MII Terminations Series termination resistors are required on all the SS-SMII output signals driven by the LXT9785. Special trace layout consideration should be used when using the SMII interface. Keep all traces orthogonal and as short as possible. Whenever possible, route the clock and sync traces evenly between the longest and shortest data routes. This minimizes round-trip, clock-to-data delays and allows a larger margin to the setup and hold requirements. Datasheet 89 LXT9785 — Advanced 10/100 8-Port PHY 3.2.4 Twisted-Pair Interface Use the following standard guidelines for a twisted-pair interface: • • • • • Place the magnetics as close as possible to the LXT9785. Keep transmit pair traces as short as possible; both traces should have the same length. Avoid vias and layer changes as much as possible. Keep the transmit and receive pairs apart to avoid cross-talk. Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the transmit traces two to three layers from the ground plane, with no intervening signals. • Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at 400 mA may be used to supply center tap current to all ports. 3.2.4.1 Magnetics Information The LXT9785 requires a 1:1 ratio for the receive transformers and a 1:1 ratio for the transmit transformers. The transformer isolation voltage should be rated at 2 kV to protect the circuitry from static voltages across the connectors and cables. Refer to Table 25 on page 91 for transformer requirements. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and validate the magnetics for the specific application. 3.2.5 The Fiber Interface The fiber interface consists of a PECL transmit and receive pair to an external fiber-optic transceiver. The transmit and receive pair should be DC-coupled to the transceiver, and biased appropriately. Refer to the fiber transceiver manufacturer’s recommendations for termination circuitry. Figure 35 on page 93 shows a typical example. 3.2.6 LED Circuit Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected via a currentlimiting resistor to a positive-voltage rail. The LEDs are turned on when the output pin drives Low. The open-drain LED pins are 5V tolerant, allowing use of either a 3.3V or 5V rail. A 5V rail eases LED component selection by allowing more common, high-forward voltage LEDs to be used. Refer to Figure 32 for a circuit illustration. 90 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 32. LED Circuit VLED R LEDn_m Inside IC Outside IC VLED = 3.3 to 5 Volts +/- 5% Table 25. Magnetics Requirements Parameter Min Nom Max Units Rx turns ratio – 1:1 – – Tx turns ratio – 1:1 – – Insertion loss 0.0 0.6 1.1 dB Primary inductance Test Condition 350 – – µH Transformer isolation – 2 – kV Differential to common mode rejection 40 – – dB .1 to 60 MHz 35 – – dB 60 to 100 MHz -16 – – dB 30 MHz -10 – – dB 80 MHz Return Loss Datasheet 91 LXT9785 — Advanced 10/100 8-Port PHY 3.3 Typical Application Circuits Figure 33 through Figure 35 show typical application circuits for the LXT9785. Figure 33. Power and Ground Supply Connections SGND GNDR/GNDT 0.01µF VCCR/VCCT 10µF Analog Supply Plane LXT9785 + Ferrite Bead Digital Supply Plane 10µF VCCD +2.5V 0.01µF GNDD 0.01µF + 2.5V or +3.3V VCCIO +2.5V or +3.3V VCCPECL 0.1µF GNDPECL 92 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 34. Typical Twisted-Pair Interface TPFOP 1 1 2 3 50 Ω TPFON 50 Ω 4 TPFIP 50 Ω 1:1 5 LXT9785 6 50 Ω 2 To Twisted-Pair Network RJ-45 1:1 7 50 Ω 50 Ω 8 TPFIN .01 µF * = 0.001 µF / 2.0 kV * = 0.001 µF / 2.0 kV VCCT .01µF 0.1µF GNDA 1. The 100Ω transmit load termination resistor typically required is integrated in the LXT9785. 2. The 100Ω receive load termination resistor typically required is integrated in the LXT9785. Figure 35. Typical Fiber Interface VCCPECL +3.3V +3.3V 27 Ω 50 Ω 0.01- 0.1uF 50 Ω TPFONn TD- TPFOPn Fiber Txcvr LXT9785 130 Ω SD/TPn SD 82 Ω To Fiber Network TD+ VCCPECL +3.3V 1 GNDS TPFINn RD- TPFIPn RD+ 2D_2P5V 130 Ω 130 Ω GNDPECL 3.3V GNDS VCCPECL 1. The SD_2P5V pin must be connected to the VCCPECL supply. Datasheet 93 LXT9785 — Advanced 10/100 8-Port PHY 4.0 Test Specifications Note: Table 26 through Table 55 and Figure 36 through Figure 59 represent the target specifications of the LXT9785. These specifications are not guaranteed and are subject to change without notice. Minimum and maximum values listed in Table 28 through Table 55 apply over the recommended operating conditions specified in Table 27. Table 26. Absolute Maximum Ratings Parameter Sym Min Max Units VCC -0.3 3.46 V Ambient TOPA 0 +85 ºC Case TOPC – +120 ºC TST -65 +150 ºC Supply voltage Operating temperature Storage temperature Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 27. Operating Conditions Parameter Sym Min Typ1 (2.5 VCCIO) Typ1 (3.3 VCCIO) Max Units Ambient TOPA 0 – 70 ºC Case TOPC 0 – 108 ºC Analog & Digital Vcca, Vccd 2.38 2.5 2.5 2.63 V I/O Vccio 2.38 2.5 3.3 3.46 V 3.14 N/A 3.3 3.46 V 2.38 2.5 N/A 2.63 V 810 mA 130 160 mA 410 mA 170 200 mA 765 mA 90 mA 20 mA 4 mA 540 mA 4 mA Operating temperature Supply voltage2 I/O (SD_2P5V = 0) VCCPECL I/O (SD_2P5V = 1) ICC – ICCIO – 780 100BASE-TX ICC – ICCIO – ICC – ICCIO – 60 380 100BASE-FX Operating Current - RMII 90 710 10BASE-T Power-Down Mode Hardware ICC – ICCIO – ICC – ICCIO – 30 70 20 2 3 500 Auto-Negotiation 2 4 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Voltages with respect to ground unless otherwise specified. 94 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 27. Operating Conditions (Continued) Parameter Sym Typ1 (2.5 VCCIO) Min ICC – ICCIO – ICC – ICCIO – ICC – Typ1 (3.3 VCCIO) 800 Max Units 830 mA 100BASE-TX 70 130 380 160 mA 410 mA 200 mA 770 mA 130 mA 50 mA 5 mA 570 mA 100BASE-FX Operating Current - SMII 90 170 740 10BASE-T Power-Down Mode Hardware ICCIO – ICC – ICCIO – ICC – 60 110 50 3 5 520 Auto-Negotiation ICCIO – ICC – ICCIO – ICC – 20 30 800 30 mA 835 mA 200 mA 410 mA 100BASE-TX 90 170 380 100BASE-FX Operating Current SS-SMII ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – 90 170 740 200 mA 770 mA 180 mA 40 mA 10BASE-T Power-Down Mode Hardware 90 150 30 3 5 530 5 mA 570 mA 80 mA Auto-Negotiation 50 70 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Voltages with respect to ground unless otherwise specified. Table 28. Digital I/O Characteristics (VCCIO = 2.5V +/- 5%) Parameter Sym Min Typ1 Max Units Test Conditions Input Low voltage VIL – – 0.75 V – Input High voltage VIH 1.75 – – V – II -100 – 100 µA 0.0 < VI < VCC VOL – – 0.2 V IOL = 4 mA VOL-LED – – 0.5 V IOL = 10 mA VOH 2.07 – – V IOH = -4 mA Input Low voltage SD pins VIL-SD – – 0.755 V – Input High voltage SD pins VIH-SD 1.58 – – V – Input current Output Low voltage Output Low voltage (LEDm_n pins) Output High voltage 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 95 LXT9785 — Advanced 10/100 8-Port PHY Table 29. Digital I/O Characteristics (VCCIO = 3.3V +/- 5%) Parameter Sym Min Typ1 Max Units Test Conditions Input Low voltage VIL – – 0.8 V – Input High voltage VIH 2.0 – – V – II -100 – 100 µA 0.0 < VI < VCC VOL – – 0.2 V IOL = 4 mA VOL-LED – – 0.4 V IOL = 10 mA VOH 2.4 – – V IOH = -4 mA Input Low voltage SD pins VIL-SD – – 1.515 V – Input High voltage SD pins VIH-SD 2.42 – – V – Input current Output Low voltage Output Low voltage (LEDm_n pins) Output High voltage 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Table 30. Required Clock Characteristics Sym Min Typ2 Max Units Test Conditions SMII Input frequency – – 125 – MHz – RMII Input frequency F – 50 – MHz – ∆f – – ± 50 ppm – Tdc 35 50 65 % RMII selection Tdc 40 50 60 % SMII/SS-SMII selection Tdc 45 50 55 % SS-SMII only Parameter Input clock frequency tolerance Input clock duty cycle 1 1 Input clock duty cycle - RefClk,TxCLK 1 Output RxClk duty cycle 1. Parameter is guaranteed by design; not subject to production testing. 2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Table 31. 100BASE-TX Transceiver Characteristics Sym Min Typ1 Max Units Test Conditions Peak differential output voltage VP 0.95 – 1.05 V Note 2 Signal amplitude symmetry Vss 98 – 102 % Note 2 Signal rise/fall time trf 3 – 5 ns Note 2 Rise/fall time symmetry trfs – – 0.5 ns Note 2 Parameter – – – +/- 0.5 ns Offset from 16 ns pulse width at 50% of pulse peak Overshoot VO – – 5 % – Jitter magnitude (measured differentially) ttx-jit – – 14 ns – Duty cycle distortion 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Measured at the line side of the transformer, line replaced by 100Ω (+/-1%) resistor. 96 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 32. 100BASE-FX Transceiver Characteristics Parameter Sym Min Typ1 Max Units Test Conditions Transmitter Peak differential output voltage (single ended) VOP 0.6 1.44 – V – trf – – 1.6 ns 10 to 90%, 2.0 pF load ttx-jit – – 1.4 ns – Signal rise/fall time Jitter magnitude (measured differentially) Receiver Peak differential input voltage Common mode input range VIP 0.55 – – V – VCMIR – – VCC - 0.5 V – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Table 33. 10BASE-T Transceiver Characteristics Parameter Sym Min Typ1 Max Units Test Conditions Transmitter Peak differential output voltage Link transmit period Jitter magnitude added by the MAU and PLS sections 3, 4 VOP 2.2 2.5 2.8 V Note 2 – 8 – 24 ms – ttx-jit – – 11 ns – Receiver ZIN – 100 – Ω Between TPFIP and TPFIN Link min receive timer TLRmin 2 – 7 ms – Link max receive timer TLRmax 50 – 150 ms – VDS – 475 – mV Peak 5 MHz square wave input Receive input impedance3 Differential squelch threshold 1. 2. 3. 4. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Parameter is guaranteed by design; not subject to production testing. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU. After line model specified by IEEE 802.3 for 10BASE-T MAU. Datasheet 97 LXT9785 — Advanced 10/100 8-Port PHY Figure 36. SMII - 100BASE-TX Receive Timing REFCLK t5 t6 SYNC t1 t2 RXD t3 t4 TPFI Table 34. SMII - 100BASE-TX Receive Timing Parameters Parameter Sym Min Typ1 Max Units RXD output delay from REFCLK rising edge t1 1.5 – 5 ns RXD Rise/Fall Time t2 – 1.0 – ns Receive start of /J/ to CRS asserted t3 – 21 29 BT2 Synchronous sampling of SMII Receive start of /T/ to CRS deasserted t4 – 25 30 BT2 Synchronous sampling of SMII SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – Test Conditions Minimum CL = 5 pF Maximum CL = 20 pF – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 98 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 37. SMII - 100BASE-TX Transmit Timing REFCLK t1 t2 SYNC t1 t2 TXD t3 TPFO Table 35. SMII - 100BASE-TX Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TXD setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold from REFCLK rising edge and TXD hold from REFCLK rising edge t2 1.0 – – ns – TXEN sampled to start of /J/ t3 – 11 14 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 99 LXT9785 — Advanced 10/100 8-Port PHY Figure 38. SMII - 100BASE-FX Receive Timing REFCLK t5 t6 SYNC t1 t2 RXD t3 t4 TPFI Table 36. SMII - 100BASE-FX Receive Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions RXD output delay from REFCLK rising edge t1 1.5 – 5 ns Minimum CL = 5 pF Maximum CL = 20 pF RXD Rise/Fall Time t2 – 1 – ns – Receive start of /J/ to CRS asserted t3 – 18 26 BT2 Synchronous sampling of SMII Receive start of /T/ to CRS deasserted t4 – 23 27 BT2 Synchronous sampling of SMII SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 100 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 39. SMII - 100BASE-FX Transmit Timing REFCLK t1 t2 SYNC t1 t2 TXD t3 TPFO Table 37. SMII - 100BASE-FX Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TXD setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold from REFCLK rising edge and TXD hold from REFCLK rising edge t2 1.0 – – ns – TXEN sampled to start of /J/ t3 – 10 13 BT2 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 101 LXT9785 — Advanced 10/100 8-Port PHY Figure 40. SMII - 10BASE-T Receive Timing REFCLK t5 t6 SYNC t1 t2 RXD t3 t4 TPFI Table 38. SMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units RXD output delay from REFCLK rising edge t1 1.5 – 5 ns Parameter Test Conditions Minimum CL = 5 pF Maximum CL = 20 pF RXD Rise/Fall Time t2 – 1 – ns Receive Start-of-Frame to CRS asserted – t3 – 17 18 BT3 Synchronous sampling of SMII2 Receive Start-of-Idle to CRS de-asserted t4 – 17 18 BT3 Synchronous sampling of SMII2 SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Assumes each SMII segment is sampled for CRS. 3. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 102 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 41. SMII - 10BASE-T Transmit Timing REFCLK t1 t2 SYNC t1 t2 TXD t3 TPFO Table 39. SMII-10BASE-T Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TXD setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold to REFCLK rising edge and TXD hold from REFCLK rising edge t2 1.0 – – ns – TXEN sampled to start-of-frame t3 – 10 12.5 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 103 LXT9785 — Advanced 10/100 8-Port PHY Figure 42. Source Synchronous SMII 100BASE-TX Receive Timing REFCLK t1 RX_CLK t2 RX_SYNC t3 t3 t3 RXD t4 t5 TPFI Table 40. Source Synchronous SMII 100BASE-TX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions REFCLK rising edge to RX_CLK rising edge t1 – 1.5 – ns – RXD/RX_SYNC output delay from RX_CLK rising edge t2 1.5 – 5 ns Minimum CL = 5 pF Maximum CL = 40 pF RXD/RX_SYNC Rise/Fall time t3 – 1.0 – ns – Receive start of /J/ to CRS asserted t4 – 21 25 BT2 – Receive start of /T/ to CRS deasserted t5 – 25 30 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 104 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 43. Source Synchronous SMII 100BASE-TX Transmit Timing TX_CLK t1 t2 TX_SYNC t1 t2 TXD t3 TPFO Table 41. Source Synchronous SMII 100BASE-TX Transmit Timing Sym Min Typ1 Max Units Test Conditions SYNC setup to TX_CLK rising edge and TXD setup to TX_CLK rising edge t1 1.5 – – ns – SYNC hold from TX_CLK rising edge and TXD hold to TX_CLK rising edge t2 1.0 – – ns – TXEN sampled to start of /J/ t3 – 11 14 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 105 LXT9785 — Advanced 10/100 8-Port PHY Figure 44. Source Synchronous SMII - 100BASE-FX Receive Timing REFCLK t1 RX_CLK t2 RX_SYNC t3 t3 t3 RXD t4 t5 TPFI Table 42. Source Synchronous SMII - 100BASE-FX Receive Timing Parameters Parameter Sym Min Typ1 REFCLK rising edge to RxCLK rising edge t1 – 1.5 RXD/RX_SYNC output delay from RX_CLK rising edge t2 1.5 – RXD/RX_SYNC Rise/Fall time t3 – 1 Receive start of /J/ to CRS asserted Receive start of /T/ to CRS deasserted t4 t5 – – 18 21 Max Units Test Conditions ns – 5 ns Minimum CL = 5 pF Maximum CL = 40 pF – ns – 23 26 BT 2 – BT 2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 106 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 45. Source Synchronous SMII - 100BASE-FX Transmit Timing TX_CLK t1 t2 TX_SYNC t1 t2 TXD t3 TPFO Table 43. Source Synchronous SMII - 100BASE-FX Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TXD setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold from REFCLK rising edge and TXD hold to REFCLK rising edge t2 1.0 – – ns – TXD to TPFO Latency t3 – 11 13 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 107 LXT9785 — Advanced 10/100 8-Port PHY Figure 46. Source Synchronous SMII - 10BASE-T Receive Timing REFCLK t1 RX_CLK t2 RX_SYNC t3 RXD t4 t5 TPFI Table 44. Source Synchronous SMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions REFCLK rising edge to RX_CLK rising edge t1 – 1.5 – ns – RXD/RX_SYNC output delay from RX_CLK rising edge t2 1.5 – 5 ns RXD/RX_SYNC Rise/Fall time t3 – 1 – ns – Parameter Minimum CL = 5 pF Maximum CL = 40 pF Receive Start-of-Frame to CRS asserted t4 – 10 11 BT3 Synchronous sampling of SMII2 Receive Start-of-Idle to CRS de-asserted t5 – 18 19 BT3 Synchronous sampling of SMII2 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Assumes each SMII segment is sampled for CRS. 3. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 108 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 47. Source Synchronous SMII - 10BASE-T Transmit Timing TX_CLK t1 t2 TX_SYNC t1 t2 TXD t3 TPFO Table 45. Source Synchronous SMII - 10BASE-T Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions TX_SYNC setup to TX_CLK rising edge and TXD setup to TX_CLK rising edge t1 1.5 – – ns – TX_SYNC hold to TX_CLK rising edge and TXD hold from TX_CLK rising edge t2 1.0 – – ns – TXD to TPFO Latency t3 – 10 12.5 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 109 LXT9785 — Advanced 10/100 8-Port PHY Figure 48. RMII - 100BASE-TX Receive Timing REFCLK t1 t5 t2 t6 RXD(1:0) TPFI t3 t4 CRS_DV Table 46. RMII - 100BASE-TX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RXD<1:0>/CRS_DV output delay from REFCLK rising edge3 t1 2 – 14 ns – Receive start of /J/ to CRS_DV asserted t2 – 20 27 BT2 – 27 2 – Parameter Receive start of /T/ to CRS_DV de-asserted t3 – 20 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. 110 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 49. RMII - 100BASE-TX Transmit Timing REFCLK t1 t2 TXD(1:0) TPFO t1 t3 t2 TX_EN Table 47. RMII - 100BASE-TX Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions TXD<1:0>/TX_EN setup to REFCLK rising edge t1 4 – – ns – TXD<1:0>/TX_EN hold from REFCLK rising edge t2 2 – – ns – TX_EN sampled to TPFO out (Tx latency) t3 – 12 13 BT2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 111 LXT9785 — Advanced 10/100 8-Port PHY Figure 50. RMII - 100BASE-FX Receive Timing REFCLK t1 t1 RXD(1:0) TPFI t2 t3 CRS_DV Table 48. RMII - 100BASE-FX Receive Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions RXD<1:0>/CRS_DV output delay from REFCLK rising edge3 t1 2 – 14 ns – Receive start of /J/ to CRS_DV asserted t2 – 18 25 BT2 – 25 2 – Receive start of /T/ to CRS_DV de-asserted t3 – 18 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. 112 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 51. RMII - 100BASE-FX Transmit Timing REFCLK t1 t2 TXD(1:0) TPFO t1 t3 t2 TX_EN Table 49. RMII - 100BASE-FX Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions TXD<1:0>/TX_EN setup to REFCLK rising edge t1 4 – – ns – TXD<1:0>/TX-EN hold from REFCLK rising edge t2 2 – – ns – TX_EN sampled to TPFO out (Tx latency) t3 – 10 12 BT 2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 113 LXT9785 — Advanced 10/100 8-Port PHY Figure 52. RMII - 10BASE-T Receive Timing REFCLK t1 t1 RXD(1:0) TPFI t2 t3 CRS_DV Table 50. RMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RXD<1:0>/CRS_DV output delay from REFCLK rising edge3 t1 2 – 14 ns – TPFI in to CRS_DV asserted t2 1.5 3 4 BT2 – 2 – Parameter TPFI quiet to CRS_DV de-asserted t3 14 15 16 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. 114 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 53. RMII - 10BASE-T Transmit Timing REFCLK t1 t2 TXD(1:0) TPFO t1 t3 t2 TX_EN Table 51. RMII - 10BASE-T Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions TXD<1:0>/TX_EN setup to REFCLK rising edge t1 4 – – ns – TXD<1:0>/TX_EN hold from REFCLK rising edge t2 2 – – ns – TX_EN sampled to TPFO out (Tx latency) t3 – 8.5 10.5 BT2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (i.e., BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASETX or 100BASE-FX). Datasheet 115 LXT9785 — Advanced 10/100 8-Port PHY Figure 54. Auto-Negotiation and Fast Link Pulse Timing Clock Pulse Data Pulse t1 t1 Clock Pulse TPFOP t2 t3 Figure 55. Fast Link Pulse Timing FLP Burst FLP Burst TPFOP t4 t5 Table 52. Auto-Negotiation and Fast Link Pulse Timing Parameters Sym Min Typ1 Max Units Test Conditions Clock/Data pulse width t1 – 100 – ns – Clock pulse to Data pulse t2 55.5 – 69.5 µs – Clock pulse to Clock pulse t3 111 – 139 µs – FLP burst width t4 – – – ms – FLP burst to FLP burst t5 8 – 24 ms – Clock/Data pulses per burst – 17 – 33 ea – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 116 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 56. MDIO Write Timing (MDIO Sourced by MAC) MDC t2 t1 MDIO Figure 57. MDIO Read Timing (MDIO Sourced by PHY) MDC t3 MDIO Table 53. MDIO Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions MDIO setup before MDC, sourced by STA t1 10 – – ns – MDIO hold after MDC, sourced by STA t2 10 – – ns – MDC to MDIO output delay, sourced by PHY t3 0 – 40 ns – 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. Datasheet 117 LXT9785 — Advanced 10/100 8-Port PHY Figure 58. Power-Up Timing v1 VCC tPDR MDIO,etc Table 54. Power-Up Timing Parameters Parameter Sym Voltage Threshold Power-Up recovery time Min Typ1 Max Units Test Conditions v1 2.1 – – V – tPDR 100 – – ms – 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. Figure 59. Reset Recovery Timing tPW RESET tRcdly MDIO,etc Table 55. Reset Recovery Timing Parameters Parameter Reset pulse width Reset recovery delay Sym Min Typ1 Max Units Test Conditions tPW 10 – – ns – tRcdly 0.4 – – ms – 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. 118 Datasheet Advanced 10/100 8-Port PHY — LXT9785 5.0 Register Definitions The LXT9785 register set includes multiple 16-bit registers, 17 registers per port. Table 56 presents a complete register listing. Table 57 through Table 72 define individual registers and Table 74 provides a consolidated memory map of all registers. Base registers (0 through 8) are defined in accordance with the “Reconciliation Sublayer and Media Independent Interface” and “Physical Layer Link Signalling for 10/100Mbps AutoNegotiation” sections of the IEEE 802.3 standard. Additional registers (16 through 20) are defined in accordance with the IEEE 802.3 standard for adding unique chip functions. Table 56. Register Set Address Bit Assignments 0 Control Register Refer to Table 57 on page 120 1 Status Register Refer to Table 58 on page 121 2 PHY Identification Register 1 Refer to Table 59 on page 122 3 PHY Identification Register 2 Refer to Table 60 on page 122 4 Auto-Negotiation Advertisement Register Refer to Table 61 on page 123 5 Auto-Negotiation Link Partner Base Page Ability Register Refer to Table 62 on page 124 6 Auto-Negotiation Expansion Register Refer to Table 63 on page 125 7 Auto-Negotiation Next Page Transmit Register Refer to Table 64 on page 125 8 Auto-Negotiation Link Partner Next Page Receive Register Refer to Table 65 on page 126 9 1000BASE-T/100BASE-T2 Control Register Not Implemented 10 1000BASE-T/100BASE-T2 Status Register Not Implemented 15 Extended Status Register Not Implemented 16 Port Configuration Register Refer to Table 66 on page 127 17 Quick Status Register Refer to Table 67 on page 128 18 Interrupt Enable Register Refer to Table 68 on page 128 19 Interrupt Status Register Refer to Table 69 on page 130 20 LED Configuration Register Refer to Table 70 on page 131 21 Receive Error Count Register Refer to Table 71 on page 132 22 Reserved 23 - 24 Reserved 25 RMII Out-of-Band Signalling Register 26 Reserved 27 Trim Enable Register 28-31 Datasheet Register Name Refer to Table 72 on page 133 Refer to Table 73 on page 133 Reserved 119 LXT9785 — Advanced 10/100 8-Port PHY Table 57. Control Register (Address 0) Bit Name 0.15 Reset 0.14 Loopback Description Type 2 Default 1 = PHY reset R/W 0 = normal operation SC 1 = Enable loopback mode 0 = Disable loopback mode R/W 0 R/W LHR3 R/W LHR3 0.6 0.13 1 1 0 0 1 = Reserved 0 = 1000Mbps (not allowed) 1 = 100Mbps 0 = 10Mbps 01 0.134 Speed Selection 0.124 Auto-Negotiation Enable 0.11 Power-Down 1 = power-down 0 = normal operation R/W 0 0.10 Isolate 1 = Electrically isolate PHY from RMII or SMII interface 0 = normal operation R/W 0 0.9 Restart Auto-Negotiation 0.84 Duplex Mode 0.7 Collision Test 1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiation Process 1 = Restart Auto-Negotiation Process 0 = normal operation 1 = Full Duplex 0 = Half Duplex R/W SC 01 R/W LHR3 R/W 0 R/W 00 R/W 00000 This bit is ignored by the LXT9785 1 = Enable COL signal test 0 = Disable COL signal test 0.6 0.13 1 = Reserved 0 = 1000Mbps (not allowed) 1 = 100Mbps 0 = 10Mbps 0.6 Speed Selection 1000 Mb/s 1 1 0 0 0.5:0 Reserved Write as 0, ignore on Read 1. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the LHR information is not re-read from the pins. This information reverts back to the information that was read in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after deassertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit should be polled to see when the part has completed reset. 2. R/W = Read/Write, RO = Read Only, SC = Self Clearing when read. 3. LHR = Latched on Hardware Reset. Bits 0.12, 0.13, and 0.8 are initialized based on the pin configuration value. 4. Default value of bits 0.12, 0.13, and 0.8 are determined by hardware pins. 120 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 58. Status Register (Address 1) Bit Name Description Type 1 Default 1.15 100BASE-T4 1 = PHY able to perform 100BASE-T4 0 = PHY not able to perform 100BASE-T4 RO 0 1.14 100BASE-X Full Duplex 1 = PHY able to perform full-duplex 100BASE-X 0 = PHY not able to perform full-duplex 100BASE-X RO 1 1.13 100BASE-X Half Duplex 1 = PHY able to perform half-duplex 100BASE-X 0 = PHY not able to perform half-duplex 100BASE-X RO 1 1.12 10Mbps Full Duplex 1 = PHY able to operate at 10Mbps in full-duplex mode 0 = PHY not able to operate at 10Mbps full-duplex mode RO 1 1.11 10Mbps Half Duplex 1 = PHY able to operate at 10Mbps in half-duplex mode 0 = PHY not able to operate at 10Mbps in half-duplex RO 1 1.10 100BASE-T2 Full Duplex 1 = PHY able to perform full-duplex 100BASE-T2 0 = PHY not able to perform full-duplex 100BASE-T2 RO 0 1.9 100BASE-T2 Half Duplex 1 = PHY able to perform half duplex 100BASE-T2 0 = PHY not able to perform half-duplex 100BASE-T2 RO 0 1.8 Extended Status 1 = Extended status information in register 15 0 = No extended status information in register 15 RO 0 1.7 Reserved 1 = Ignore on read RO 0 1.6 MF Preamble Suppression 1 = PHY accepts management frames with preamble suppressed 0 = PHY will not accept management frames with preamble suppressed RO 0 1.5 Auto-Negotiation complete 1 = Auto-negotiation complete 0 = Auto-negotiation not complete RO 0 1.4 Remote Fault 1 = Remote fault condition detected 0 = No remote fault condition detected 1.3 Auto-Negotiation Ability 1 = PHY is able to perform Auto-Negotiation 0 = PHY is not able to perform Auto-Negotiation 1.2 Link Status 1 = Link is up 0 = Link is down 1.1 Jabber Detect 1 = Jabber condition detected 0 = Jabber condition not detected 1.0 Extended Capability 1 = Extended register capabilities 0 = Basic register capabilities RO/LH Note 2 RO RO/LL Note 2 RO/LH Note 2 RO 0 1 0 0 1 1. RO = Read Only 2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read. Datasheet 121 LXT9785 — Advanced 10/100 8-Port PHY Table 59. PHY Identification Register 1 (Address 2) Bit Name Description Type 1 Default 2.15:0 PHY ID Number The PHY identifier composed of bits 3 through 18 of the OUI RO 0013 hex 1. RO = Read Only Table 60. PHY Identification Register 2 (Address 3) Type 1 Default The PHY identifier composed of bits 19 through 24 of the OUI RO 011110 Manufacturer’s Model Number 6 bits containing manufacturer’s part number RO Manufacturer’s Revision Number 4 bits containing manufacturer’s revision number RO Bit Name Description 3.15:10 PHY ID Number 3.9:4 3.3:0 001111 XXXX (See Table 3 in Specification Update) 1. RO = Read Only Figure 60. PHY Identifier Bit Mapping a b r c s x 18 19 24 Organizationally Unique Identifier 1 2 3 0 I/G 0 1 3 15 0 10 15 PHY ID Register #1 (Address 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 4 0 2 1 0 1 1 1 B 1 1 0 X X X X X 20 The Level One OUI is 00207B hex. 122 0 X X 0 3 X X X 7 5 00 3 PHY ID Register #2 (Address 3) 7B Manufacturer’s Model Number 0 Revision Number Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 61. Auto-Negotiation Advertisement Register (Address 4)4 Type 1 Default 1 = Port has ability to send multiple pages 0 = Port has no ability to send multiple pages R/W 0 Reserved Ignore on read RO 0 4.13 Remote Fault 1 = Remote fault 0 = No remote fault R/W 0 4.12 Reserved Ignore R/W 0 4.11 Asymmetric Pause Pause operation defined in Clause 40 and 27 R/W 0 4.10 Pause 1 = Pause operation enabled for full-duplex links 0 = Pause operation disabled R/W Note 2 & Note 3 R/W 0 Bit Name 4.15 Next Page 4.14 Description 1 = 100BASE-T4 capability is available 0 = 100BASE-T4 capability is not available 4.9 100BASE-T4 (The LXT9785 does not support 100BASE-T4 but allows this bit to be set to advertise in the Auto-Negotiation sequence for 100BASE-T4 operation. An external 100BASE-T4 transceiver could be switched in if this capability is desired.) 4.8 100BASE-TX full duplex 1 = Port is 100BASE-TX full duplex capable 0 = Port is not 100BASE-TX full duplex capable. R/W Note 3 4.7 100BASE-TX 1 = Port is 100BASE-TX capable 0 = Port is not 100BASE-TX capable R/W Note 3 4.6 10BASE-T full duplex R/W Note 3 4.5 10BASE-T R/W Note 3 R/W 00001 4.4:0 Selector Field, S<4:0> 1 = Port is 10BASE-T full duplex capable 0 = Port is not 10BASE-T full duplex capable 1 = Port is 10BASE-T capable 0 = Port is not 10BASE-T capable <00001> = IEEE 802.3 <00010> = IEEE 802.9 ISLAN-16T <00000> = Reserved for future Auto-Negotiation development <11111> = Reserved for future Auto-Negotiation development Unspecified or reserved combinations should not be transmitted 1. R/W = Read/Write, RO = Read Only 2. The default setting of bit 4.10 (PAUSE) is determined by pin 50. Pause operation is only valid for full-duplex modes. 3. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 18 on page 62. 4. Restart Auto-Negotiation process whenever Reg 4. is written/modified. Datasheet 123 LXT9785 — Advanced 10/100 8-Port PHY Table 62. Auto-Negotiation Link Partner Base Page Ability Register (Address 5) Bit Name Description Type 1 Default 5.15 Next Page 1 = Link Partner has ability to send multiple pages 0 = Link Partner has no ability to send multiple pages RO 0 5.14 Acknowledge 1 = Link Partner has received Link Code Word from the LXT9785. 0 = Link Partner has not received Link Code Word from the the LXT9785 RO 0 5.13 Remote Fault 1 = Remote fault 0 = No remote fault RO 0 5.12 Reserved Ignore on read RO 0 5.11 Asymmetric Pause RO 0 5.10 Pause 1 = Link Partner is Pause capable 0 = Link Partner is not Pause capable RO 0 5.9 100BASE-T4 1 = Link Partner is 100BASE-T4 capable 0 = Link Partner is not 100BASE-T4 capable RO 0 5.8 100BASE-TX full duplex 1 = Link Partner is 100BASE-TX full duplex capable 0 = Link Partner is not 100BASE-TX full duplex capable RO 0 5.7 100BASE-TX 1 = Link Partner is 100BASE-TX capable 0 = Link Partner is not 100BASE-TX capable RO 0 1 = Link Partner is 10BASE-T full duplex capable 0 = Link Partner is not 10BASE-T full duplex capable RO 0 10BASE-T 1 = Link Partner is 10BASE-T capable 0 = Link Partner is not 10BASE-T capable RO 0 Selector Field S<4:0> <00001> = IEEE 802.3 <00010> = IEEE 802.9 ISLAN-16T <00000> = Reserved for future Auto-Negotiation development <11111> = Reserved for future Auto-Negotiation development Unspecified or reserved combinations shall not be transmitted RO 00000 5.6 5.5 5.4:0 10BASE-T full duplex Pause operation defined in Clause 40 and 27 1 = Link Partner is Pause capable 0 = Link Partner is not Pause capable 1. RO = Read Only 124 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 63. Auto-Negotiation Expansion (Address 6) Bit 6.15:6 6.5 Type 1 Default Ignore on read RO 0 This bit indicates the status of the Auto-Negotiation variable, base page. It flags synchronization with the AutoNegotiation state diagram allowing detection of interrupted links. This bit is only used if bit 16.1 (Alternate NP feature) is set. RO/ LH 0 Name Reserved Base Page Description 1 = base_page = true 0 = base_page = false 6.4 Parallel Detection Fault 1 = Parallel detection fault has occurred. 0 = Parallel detection fault has not occurred. RO/ LH 0 6.3 Link Partner Next Page Able 1 = Link partner is next page able 0 = Link partner is not next page able RO 0 6.2 Next Page Able 1 = Local device is next page able 0 = Local device is not next page able RO 1 RO LH 0 RO 0 Indicates that a new page has been received and the received code word has been loaded into register 5 or register 8 as specified in clause 28 of 802.3. 6.1 Page Received 1 = Three identical and consecutive link code words have been received from link partner 0 = Three identical and consecutive link code words have not been received from link partner 6.0 Link Partner A/ N Able 1 = Link partner is auto-negotiation able 0 = Link partner is not auto-negotiation able 1. RO = Read Only, LH = Latching High cleared when read Table 64. Auto-Negotiation Next Page Transmit Register (Address 7) Bit 7.15 7.14 7.13 7.12 7.11 7.10:0 Type 1 Default R/W 0 RO 0 R/W 1 R/W 0 1 = Previous value of the transmitted Link Code Word equalled logic zero 0 = Previous value of the transmitted Link Code Word equalled logic one R/W 0 MP = 1: Code interpreted as “message page” MP = 0: Code interpreted as “unformatted page” R/W 00000000001 Name Description Next Page 1 = Additional next pages follow (NP) 0 = Last page Reserved Write as 0, ignore on read Message Page 1 = Message page (MP) 0 = Unformatted page Acknowledge 2 1 = Complies with message (ACK2) 0 = Cannot comply with message Toggle (T) Message/ Unformatted Code Field 1. R/W = Read Write, RO = Read Only Datasheet 125 Advanced 10/100 8-Port PHY — LXT9785 Table 65. Auto-Negotiation Link Partner Next Page Receive Register (Address 8) Bit 8.15 8.14 8.13 8.12 8.11 8.10:0 Name Type 1 Default RO 0 RO 0 RO 0 RO 0 1 = Previous value of the transmitted Link Code Word equalled logic zero 0 = Previous value of the transmitted Link Code Word equalled logic one RO 0 MP = 1: Code interpreted as “message page” MP = 0: Code interpreted as “unformatted page” RO 00000000000 Description Next Page 1 = Link Partner has additional next pages to send (NP) 0 = Link Partner has no additional next pages to send Acknowledge 1 = Link Partner has received Link Code Word from the LXT9785 (ACK) Message Page 0 = Link Partner has not received Link Code Word from the LXT9785 1 = Page sent by the Link Partner is a Message Page (MP) 0 = Page sent by the Link Partner is an Unformatted Page Acknowledge 2 1 = Link Partner will comply with the message (ACK2) 0 = Link Partner cannot comply with the message Toggle (T) Message/ Unformatted Code Field 1. RO = Read Only Product Specification 126 Advanced 10/100 8-Port PHY — LXT9785 Table 66. Port Configuration Register (Address 16, Hex 10) Bit Name Description Type 1 Default 0 16.15 Reserved Write as 0, ignore on read R/W 16.14 Link Disable 1 = Force Link pass. Sets appropriate registers and LEDs to Pass. 0 = Normal operation R/W 16.13 Transmit Disable 1 = Disable Twisted-Pair transmitter 0 = Normal Operation R/W 0 16.12 Bypass Scramble (100BASE-TX) 1 = Bypass Scrambler and Descrambler 0 = Normal Operation R/W 0 16.11 Bypass 4B5B (100BASE-TX) 1 = Bypass 4B5B encoder and decoder 0 = Normal Operation R/W 0 16.10 Jabber (10BASE-T) 1 = Disable Jabber 0 = Normal operation R/W 0 16.9 SQE (10BASE-T) 16.8 TP Loopback (10BASE-T) 1 = Disable TP loopback during half duplex operation 0 = Normal Operation R/W 1 16.7 Reserved Write as one. Ignore on read R/W 1 16.6 FIFO Size This bit is ignored by the LXT9785 1 = Enable Heart Beat 0 = Disable Heart Beat 0 = FIFO allows packets up to 2 KBytes 1 = FIFO allows packets up to 9 KBytes Packet sizes assume a 100 ppm difference between the reference clock and the recovered clock. 0 0 R/W 0 R/W Preamble Enable. The implementation of this bit is 10BASE-T only. 0 16.5 PRE_EN 0 = Set RX_DV high coincident with SFD 1 = Set RX_DV high and RXD=preamble when CRS is asserted. R/W 16.4 Reserved Write as zero. Ignore on read R/W 0 16.3 Reserved Write as zero. Ignore on read R/W 0 16.2 Far End Fault Transmission Enable 1 = Enable Far End Fault Transmission 0 = Disable Far End Fault Transmission R/W 16.1 Alternate NP Feature 1 = Enable alternate auto-negotiate next page feature 0 = Disable alternate auto-negotiate next page feature R/W 0 16.0 Fiber Select 1 = Select fiber mode for this port 0 = Select TP mode for this port R/W Note 2 1 1. R/W = Read/Write 2. The default value of bit 16.0 is determined by the G_FX/TP pin for the respective port. If G_FX/TPn is tied Low, the default value of bit 16.0 = 0. If G_FX/TPn is not tied Low, the default value of bit 16.0 = 1. Datasheet 127 Table 67. Quick Status Register (Address 17, Hex 11) Bit 17.15 Name Description Type 1 Default Reserved Always 0 RO 0 17.14 10/100 Mode 1 = The LXT9785 is operating in 100BASE-TX mode. 0 = The LXT9785 is not operating 100BASE-TX mode. RO 0 17.13 Transmit Status 1 = The LXT9785 is transmitting a packet 0 = The LXT9785 is not transmitting a packet RO LH 0 17.12 Receive Status 1 = The LXT9785 is receiving a packet 0 = The LXT9785 is not receiving a packet RO LH 0 17.11 Collision Status 1 = Collision is occurring 0 = No collision RO LH 0 17.10 Link 1 = Link is up 0 = Link is down RO 0 17.9 Duplex Mode 1 = Full duplex 0 = Half duplex RO 0 17.8 Auto-Negotiation 1 = The LXT9785 is in Auto-Negotiation Mode 0 = The LXT9785 is in manual mode RO 0 17.7 Auto-Negotiation Complete RO 0 17.6 FIFO Error RO LH 0 17.5 Polarity 1 = Polarity is reversed 0 = Polarity is not reversed RO 0 17.4 Pause 1 = The LXT9785 is Pause capable 0 = The LXT9785 is Not Pause capable RO 0 17:3 Error 1 = Error Occurred (Remote Fault, RxERCntFUL, FIFO error, Jabber, Parallel Detect Fault) 0 = No error occurred RO LH 0 17:2 Reserved Reserved RO 0 17:1 Reserved Ignore RO 0 17.0 Reserved Always 0 RO 0 1 = Auto-negotiation process completed 0 = Auto-negotiation process not completed This bit is only valid when auto-negotiate is enabled, and is equivalent to bit 1.5. 1 = FIFO error has occurred (Overflow or Underflow) 0 = No FIFO error has occurred 1. RO = Read Only, LH = Latching High cleared when read. Table 68. Interrupt Enable Register (Address 18, Hex 12) Bit 18.15:9 Name Reserved Description Write as 0, ignore on read Type 1 Default R/W 0 R/W 0 R/W 0 Mask for Counter Full 18.8 CNTRMSK 18.7 ANMSK 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt Mask for Auto-Negotiate Complete 1. R/W = Read/Write 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt Advanced 10/100 8-Port PHY — LXT9785 Table 68. Interrupt Enable Register (Address 18, Hex 12) (Continued) Bit Name Type 1 Default R/W 0 R/W 0 R/W 0 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt R/W 0 Description Mask for Speed Interrupt 18.6 SPEEDMSK 18.5 DUPLEXMSK 18.4 LINKMSK 18.3 ISOLMSK 18.2 Reserved Write as 0, ignore on read R/W 0 18.1 INTEN 1 = Enable interrupts on this port 0 = Disable interrupts on this port R/W 0 18.0 TINT 1 = Test Force interrupt on MDINT 0 = Normal operation R/W 0 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt Mask for Duplex Interrupt 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt Mask for Link Status Interrupt 1 = Enable event to cause interrupt 0 = Do not allow event to cause interrupt Mask for Isolate Interrupt 1. R/W = Read/Write Datasheet 129 LXT9785 — Advanced 10/100 8-Port PHY Table 69. Interrupt Status Register (Address 19, Hex 13) Bit 19.15:9 Name Reserved Description Ignore on read Type 1 Default RO 0 RxER Counter Full Status 19.8 RxERCntFUL 19.7 ANDONE 1 = One of the internal counters has reached its maximum value 0 = The internal counters have not reached maximum values RO/SC 0 Auto-Negotiation Status 1= Auto-Negotiation has completed 0= Auto-Negotiation has not completed RO/SC N/A RO/SC 0 RO/SC 0 RO/SC 0 RO/SC 0 RO/SC 0 Speed Change Status 19.6 SPEEDCHG 1 = A Speed Change has occurred since last reading this register 0 = A Speed Change has not occurred since last reading this register Duplex Change Status 19.5 DUPLEXCHG 1 = A Duplex Change has occurred since last reading this register 0 = A Duplex Change has not occurred since last reading this register Link Status Change Status 19.4 LINKCHG 1 = A Link Change has occurred since last reading this register 0 = A Link Change has not occurred since last reading this register MII Isolate Change Status 19.3 Isolate 1 = A Isolate change has occurred since last reading this register 0 = A Isolate change has not occurred since last reading this register 1 = RMII/SMII/SS-SMII interrupt pending 19.2 MDINT 19.1 Reserved Ignore on read RO/SC 0 19.0 Reserved Ignore on read RO 0 0 = No RMII/SMII/SS-SMII interrupt pending 1. R/W = Read/Write, RO = Read Only, SC = Self Clearing - cleared when read 130 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 70. LED Configuration Register (Address 20, Hex 14) Bit Name LED1 20.15:12 Programming bits LED2 20.11:8 Programming bits Type 1 Default 0000 = Display Speed Status (Continuous, Default) 0001 = Display Transmit Status (Stretched) 0010 = Display Receive Status (Stretched) 0011 = Display Collision Status (Stretched) 0100 = Display Link Status (Continuous) 0101 = Display Duplex Status (Continuous) 0110 = Display Isolate Status (Continuous) 0111 = Display Receive or Transmit Activity (Stretched) 1000 = Test mode- turn LED on (Continuous) 1001 = Test mode- turn LED off (Continuous) 1010 = Test mode- blink LED fast (Continuous) 1011 = Test mode- blink LED slow (Continuous) 1100 = Display Link and Receive Status combined 2 (Stretched)3 1101 = Display Link and Activity Status combined 2 (Stretched)3 1110 = Display Duplex and Collision Status combined 4 (Stretched)3 1111 = Display Link and Rx_ERR Status combined 2 (Blink) R/W 0000 0000 = Display Speed Status 0001 = Display Transmit Status 0010 = Display Receive Status 0011 = Display Collision Status 0100 = Display Link Status 0101 = Display Duplex Status 0110 = Display Isolate Status 0111 = Display Receive or Transmit Activity 1000 = Test mode- turn LED on 1001 = Test mode- turn LED off 1010 = Test mode- blink LED fast 1011 = Test mode- blink LED slow 1100 = Display Link and Receive Status combined 2 (Stretched)3 1101 = Display Link and Activity Status combined 2 (Default)(Stretched)3 1110 = Display Duplex and Collision Status combined 4 (Stretched)3 1111 = Display Link and Rx_ERR Status combined 2 (Blink) R/W 1101 Description 1. R/W = Read/Write, RO = Read Only, LH = Latching High. 2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up. The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink). 3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of the value of 20.1. 4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex. Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs. Datasheet 131 LXT9785 — Advanced 10/100 8-Port PHY Table 70. LED Configuration Register (Address 20, Hex 14) (Continued) Bit Type 1 Default 0000 = Display Speed Status 0001 = Display Transmit Status 0010 = Display Receive Status 0011 = Display Collision Status 0100 = Display Link Status 0101 = Display Duplex Status 0110 = Display Isolate Status 0111 = Display Receive or Transmit Activity 1000 = Test mode- turn LED on 1001 = Test mode- turn LED off 1010 = Test mode- blink LED fast 1011 = Test mode- blink LED slow 1100 = Display Link and Receive Status combined 2 (Stretched)3 1101 = Display Link and Activity Status combined 2 (Stretched)3 1110 = Display Duplex and Collision Status combined 4 (Default) (Blink)3 1111 = Display Link and Rx_ERR Status combined 2 (Blink) R/W 1110 Name LED3 Description 20.7:4 Programming bits 20.3:2 LEDFREQ 00 = Stretch LED events to 30 ms 01 = Stretch LED events to 60 ms 10 = Stretch LED events to 100 ms 11 = Reserved R/W 00 20.1 PULSESTRETCH 1 = Enable pulse stretching of all LEDs 0 = Disable pulse stretching of all LEDs 2 R/W 1 20.0 Reserved Reserved R/W 0 1. R/W = Read/Write, RO = Read Only, LH = Latching High. 2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up. The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink). 3. Combined event LED settings are not affected by Pulse Stretch bit 20.1. These display settings are stretched regardless of the value of 20.1. 4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full duplex. Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs. Table 71. Receive Error Count Register (Address 21) Bit 21.15:0 Name Description Receive Error Count A 16-bit counter value indicating the number of times a receive packet with errors occurred. Only one event gets counted per packet. When maximum count is reached, the 16-bit counter remains full until cleared. Refer to the discussion of “Out-of-Band Signalling” on page 74 for details. Type 1 RO/ SC Default 0 1. RO = Read Only S/C = Self Clearing when read 132 Datasheet Advanced 10/100 8-Port PHY — LXT9785 Table 72. RMII Out-of-Band Signalling Register (Address 25) Bit 25:15:7 Name Reserved Description Reserved Type 1 Default R/W 0 R/W 000 R/W 000 R/W 0 These three bits select which status information is available on the RXD(1) bit of the RMII bus. 000 = Link 001 = Speed 010 = Duplex 25:6:4 BIT1 011 = Auto-negotiation complete 100 = Polarity reversed 101 = Jabber detected 110 = Interrupt pending 111 = Isolate These three bits select which status information is available on the RXD(0) bit of the RMII bus. 000 = Link 001 = Speed 010 = Duplex 25.3:1 BIT0 011 = Auto-negotiation complete 100 = Polarity reversed 101 = Jabber detected 110 = Interrupt pending 111 = Isolate 25.0 PROGRMII 1 = Enable programmable RMII Out-of-Band signalling. When enabled, bits 6:1 specify which status bits are available on the RMII RXD data bus. 0 = Disable Out-of-Band signalling. 1. R/W = Read/Write RO = Read Only Table 73. Trim Enable Register (Address 27) 00 = 3.3 ns (default is pins SLEWCTRL<1:0> 27.11:10 Per-Port Rise Time Control 01 = 3.6 ns 10 = 3.9 ns R/W 00 R/W 0 R/W Note 2 R/W 0 11 = 4.2 ns 27.9 AMDIX_EN 27.8 MDIX 0 = Disable auto MDIX (default is pin auto_mdix_en) 1 = Enable auto MDIX Manual MDI/MDIX selection: 0 = MDI, transmit on pair A and receive on pair B 1 = MDIX transmit on pair B and receive on pair A 27.7 Analog Loop back 1 = Enable analog loop back (transmits on twisted-pair) 0 = Disable analog loop back 1. The default setting of register bit 27.8 is determined by pin 59. Datasheet 133 Bit Fields Reg Title Addr B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Control Register Control Reset Loopback Speed Select A/N Enable Power Down Isolate Re-start A/N Duplex Mode COL Test Speed Select 0 Reserved Status Register Status 100Base-T4 100BaseX Full Duplex 100Base-X Half Duplex 10Mbps Full Duplex 10Mbps Half Duplex 100BaseT2 Full Duplex 100Base-T2 Half Duplex Extended Status Reserved MF Preamble Suppress A/N Complete Remote Fault A/N Ability Link Status Jabber Detect Extended Capability 1 6 5 4 3 2 1 0 2 PHY ID Registers PHY ID 1 15 14 PHY ID2 13 12 11 10 9 8 PHY ID No 7 MFR Model No 3 MFR Rev No Auto-Negotiation Advertisement Register A/N Advertise Next Page Reserved Remote Fault Reserved Asymm Pause Pause 100Base-T4 100BaseTX Full Duplex 100BaseTX 10Base-T Full Duplex 10Base-T IEEE Selector Field 4 IEEE Selector Field 5 Auto-Negotiation Link Partner Base Page Ability Register A/N Link Ability Next Page Ack Remote Fault Reserved Asymm Pause Pause 100Base-T4 100BaseTX Full Duplex 100BaseTX 10Base-T Full Duplex 10Base-T Auto-Negotiation Expansion Register A/N Expansion Reserved Base Page Parallel Detect Fault Link Partner Next Page Able Next Page Able Page Received Link Partner A/N Able 6 Auto-Negotiation Next Page Transmit Register A/N Next Page Txmit Next Page Reserved Message Page Ack 2 Toggle Message / Unformatted Code Field 7 Auto-Negotiation Link Partner Next Page Ability Register Datasheet A/N Link Next Page Next Page Ack Message Page Ack 2 Toggle Message / Unformatted Code Field 8 LXT9785 — Advanced 10/100 8-Port PHY 134 Table 74. Register Bit Map Table 74. Register Bit Map (Continued) Datasheet Bit Fields Reg Title Addr B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 FIFO Size PRE_EN Reserved Reserved Remote Fault Enable Alternate Next Page Fiber Select 16 FIFO Error Polarity Pause Error Reserved Reserved Reserved 17 Speed Mask Duplex Mask Link Mask Isolate Mask Reserved Interrupt Enable Test Interrupt 18 Speed Change Duplex Change Link Change Isolate Change MD Interrupt Reserved Reserved 19 Pulse Stretch Reserved 20 Port Configuration Register Port Config Reserved Link Disable Txmit Disable Bypass Scrambler (100TX) Bypass 4B/5B (100TX) Jabber (10T) SQE (10T) TP Loopback (10T) Reserved Quick Status Register Quick Status Reserved 10/100 Mode Transmit Status Receiver Status Collision Status Duplex Mode Link Auto-Neg Auto-Neg Complete Interrupt Enable Register Interrupt Enable Counter Mask Reserved Auto-Neg Mask Interrupt Status Register Interrupt Status Rx_ER Counter Full Reserved Auto-Neg Done LED Configuration Register LED1 LED2 LED3 LED Freq Receive Error Count Register Rcv Error Count 21 Receive Error Count False Carrier Counter Register Reserved 22 Reserved Programmable RMII Out-of-Band Signalling Register RMII OOB Signalling Reserved Bit 1 Bit 0 Program RMII 25 Programmable RMII Out-of-Band Signalling Register 135 Trim Enable Reserved Per Port Slew Control Auto-MDIX Manual MDIX Analog Loop Reserved 27 Advanced 10/100 8-Port PHY — LXT9785 LED Config LXT9785 — Advanced 10/100 8-Port PHY 6.0 Package Specifications Figure 61. LXT9785 208-Pin PQFP Plastic Package Specification 208-Pin Plastic Quad Flat Package • Part Number LXT9785HC • Commercial Temperature Range (0°C to 70°C) Millimeters Dim Min Max A - 4.10 A1 0.25 - A2 3.20 3.60 b 0.17 0.27 D 30.30 30.90 D1 27.70 28.30 E 30.30 30.90 E1 27.70 28.30 D D1 e E1 E e /2 e L θ2 A2 θ A1 0.75 1.30 REF q 0° 7° θ2 5° 16° θ3 5° 16° θ3 L 136 0.50 L1 L1 A .50 BASIC b Datasheet Advanced 10/100 8-Port PHY — LXT9785 Figure 62. LXT9785 241-Ball PBGA Package Specification (LXT9785BC) Datasheet 137