GlobalOptoisolator The CNY17–1, CNY17–2 and CNY17–3 devices consist of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon phototransistor detector. • Closely Matched Current Transfer Ratio (CTR) to Minimize Unit–to–Unit Variation • Guaranteed 70 Volt V(BR)CEO Minimum • To order devices that are tested and marked per VDE 0884 requirements, the suffix ”V” must be included at end of part number. VDE 0884 is a test option. Applications • Feedback Control Circuits, Open Loop Gain Control in Power Supplies 6 • Interfacing and coupling systems of different potentials and impedances 1 STANDARD THRU HOLE • General Purpose Switching Circuits • Monitor and Detection Circuits MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating SCHEMATIC Symbol Value Unit INPUT LED 1 6 Reverse Voltage VR 6 Volts 2 5 Forward Current — Continuous IF 60 mA 3 4 IF(pk) 1.5 A PD 120 mW 1.41 mW/°C Forward Current — Pk (PW = 1 µs, 330 pps) LED Power Dissipation @ TA = 25°C with Negligible Power in Output Detector Derate above 25°C OUTPUT TRANSISTOR Collector–Emitter Voltage VCEO 70 Volts Emitter–Base Voltage VEBO 7 Volts Collector–Base Voltage VCBO 70 Volts Collector Current — Continuous IC 100 mA Detector Power Dissipation @ TA = 25°C with Negligible Power in Input LED Derate above 25°C PD 150 mW 1.76 mW/°C VISO 7500 Vac(pk) Total Device Power Dissipation @ TA = 25°C Derate above 25°C PD 250 2.94 mW mW/°C Ambient Operating Temperature Range TA – 55 to +100 °C Tstg – 55 to +150 °C TL 260 °C TOTAL DEVICE Isolation Surge Voltage(1) (Peak ac Voltage, 60 Hz, 1 sec Duration) Storage Temperature Range Soldering Temperature (10 sec, 1/16″ from case) 1. Isolation surge voltage is an internal device dielectric breakdown rating. 1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. PIN 1. 2. 3. 4. 5. 6. LED ANODE LED CATHODE N.C. EMITTER COLLECTOR BASE CNY17-1, CNY17-2, CNY17-3 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1) Characteristic Symbol Min Typ Max Unit VF — — — 1.35 1.5 1.25 1.65 — — Volts Reverse Leakage Current (VR = 6 V) IR — — 10 µA Capacitance (V = 0, f = 1 MHz) CJ — 18 — pF INPUT LED Forward Voltage (IF = 60 mA) TA = 25°C TA = –55°C TA = 100°C OUTPUT TRANSISTOR Collector–Emitter Dark Current (VCE = 10 V, TA = 25°C) CNY17–1,2 CNY17–3 ICEO — — 5 5 50 100 nA (VCE = 10 V, TA = 100°C) All devices ICEO — 1.6 — µA ICBO — 0.5 — nA Collector–Emitter Breakdown Voltage (IC = 1 mA) V(BR)CEO 70 120 — Volts Collector–Base Breakdown Voltage (IC = 100 µA) V(BR)CBO 70 120 — Volts Emitter–Base Breakdown Voltage (IE = 100 µA) Collector–Base Dark Current (VCB = 10 V) V(BR)EBO 7 7.8 — Volts DC Current Gain (IC = 2 mA, VCE = 5 V) (Typical Value) hFE — 400 — — Collector–Emitter Capacitance (f = 1 MHz, VCE = 0) CCE — 8 — pF Collector–Base Capacitance (f = 1 MHz, VCB = 0) CCB — 21 — pF Emitter–Base Capacitance (f = 1 MHz, VEB = 0) CEB — 8 — pF IC (CTR)(2) 4 (40) 6.3 (63) 10 (100) 6 (60) 10 (100) 15 (150) 8 (80) 12.5 (125) 20 (200) mA (%) VCE(sat) — 0.18 0.4 Volts Delay Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11) td — 1.6 5.6 µs Rise Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11) tr — 1.6 4 µs Storage Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11) ts — 0.7 4.1 µs Fall Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11) tf — 2.3 3.5 µs Delay Time (IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3) (IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3) td CNY17–1 CNY17–2,3 — — 1.2 1.8 5.5 8 Rise Time (IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3) (IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3) CNY17–1 CNY17–2,3 — — 3.3 5 4 6 Storage Time (IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3) (IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3) CNY17–1 CNY17–2,3 — — 4.4 2, 7 34 39 Fall Time (IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3) (IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3) Isolation Voltage (f = 60 Hz, t = 1 sec)(4) CNY17–1 CNY17–2,3 — — 9.7 9.4, 20 20 24 COUPLED Output Collector Current (IF = 10 mA, VCE = 5 V) CNY17–1 CNY17–2 CNY17–3 Collector–Emitter Saturation Voltage (IC = 2.5 mA, IF = 10 mA) µs µs tr µs ts µs tf VISO 7500 — — Vac(pk) Isolation Resistance (V = 500 V)(4) RISO 1011 — — Ω Isolation Capacitance (V = 0, f = 1 MHz)(4) CISO — 0.2 0.5 pF 1. 2. 3. 4. Always design to the specified minimum/maximum electrical limits (where applicable). Current Transfer Ratio (CTR) = IC/IF x 100%. For test circuit setup and waveforms, refer to Figure 11. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. CNY17-1, CNY17-2, CNY17-3 2 VF, FORWARD VOLTAGE (VOLTS) PULSE ONLY PULSE OR DC 1.8 1.6 1.4 TA = –55°C 1.2 25°C 100°C 1 1 10 100 IF, LED FORWARD CURRENT (mA) 1000 I C , OUTPUT COLLECTOR CURRENT (NORMALIZED) TYPICAL CHARACTERISTICS 10 NORMALIZED TO: IF = 10 mA 1 0.1 0.01 0.1 IF = 10 mA 10 8 6 5 mA 4 2 0 2 mA 1 mA 1 0 2 3 4 5 6 7 8 9 10 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) I C , OUTPUT COLLECTOR CURRENT (NORMALIZED) I CURRENT (mA) C, COLLECTOR 12 50 100 1 2 5 10 20 IF, LED INPUT CURRENT (mA) 7 5 NORMALIZED TO TA = 25°C 2 1 0.7 0.5 0.2 0.1 –60 –40 –20 0 20 40 60 80 100 TA, AMBIENT TEMPERATURE (°C) Figure 3. Collector Current versus Collector–Emitter Voltage Figure 4. Output Current versus Ambient Temperature 100 NORMALIZED TO: VCE = 10 V TA = 25°C 103 102 VCE = 70 V 50 30 V 20 t, TIME (µs) ICEO, COLLECTOR–EMITTER DARK CURRENT (NORMALIZED) 0.5 Figure 2. Output Current versus Input Current Figure 1. LED Forward Voltage versus Forward Current 14 0.2 10 V 101 VCC = 5 V 10 RL = 1000 5 RL = 100 100 { { 0 20 40 60 80 TA, AMBIENT TEMPERATURE (°C) Figure 5. Dark Current versus Ambient Temperature 100 1 0.1 tr tf tr 2 10–1 tf 0.2 0.5 1 2 5 10 20 IF, LED INPUT CURRENT (mA) Figure 6. Rise and Fall Times CNY17–1 and CNY17–2 50 100 CNY17-1, CNY17-2, CNY17-3 100 100 20 RL = 1000 10 VCC = 5 V 50 VCC = 5 V t TIME (µs) off , TURN–OFF t TIME ( µs) on, TURN–ON 50 100 5 10 2 70 RL = 1000 10 5 100 10 2 1 0.1 0.2 0.5 1 2 5 10 IF, LED INPUT CURRENT (mA) 20 1 0.1 50 100 0.2 1 2 5 10 IF, LED INPUT CURRENT (mA) 20 50 100 Figure 8. Turn–Off Switching Times CNY17–1 and CNY17–2 20 4 IF = 0 IB = 8 µA 18 7 µA 16 3 6 µA 5 µA 4 µA 2 3 µA 2 µA 1 1 µA 0 2 4 6 8 10 12 14 16 18 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 20 C, CAPACITANCE (pF) IC, TYPICAL COLLECTOR CURRENT (mA) Figure 7. Turn–On Switching Times 0.5 f = 1 MHz 14 12 10 CCB CCE 8 CEB 6 4 2 0 0.5 0.1 Figure 9. DC Current Gain (Detector Only) 0.2 0.5 1 2 5 V, VOLTAGE (VOLTS) 20 WAVEFORMS VCC = 5 V IC 10 Figure 10. Capacitances versus Voltage TEST CIRCUIT IF CLED INPUT PULSE RL = 100 Ω 10% OUTPUT PULSE INPUT 90% OUTPUT td tr ton Figure 11. Switching Time Test Circuit and Waveforms ts tf toff 50 CNY17-1, CNY17-2, CNY17-3 PACKAGE DIMENSIONS –A– 6 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4 –B– 1 3 F 4 PL C N –T– L K SEATING PLANE J 6 PL 0.13 (0.005) G M E 6 PL D 6 PL 0.13 (0.005) M T A B M M T B M M A M DIM A B C D E F G J K L M N INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.300 BSC 0_ 15 _ 0.015 0.100 STYLE 1: PIN 1. 2. 3. 4. 5. 6. MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 7.62 BSC 0_ 15 _ 0.38 2.54 ANODE CATHODE NC EMITTER COLLECTOR BASE THRU HOLE –A– 6 4 –B– 1 S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3 F 4 PL L H C –T– G J K 6 PL E 6 PL 0.13 (0.005) D 6 PL 0.13 (0.005) M T A M B M SEATING PLANE T B M A M M SURFACE MOUNT DIM A B C D E F G H J K L S INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.020 0.025 0.008 0.012 0.006 0.035 0.320 BSC 0.332 0.390 MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.51 0.63 0.20 0.30 0.16 0.88 8.13 BSC 8.43 9.90 CNY17-1, CNY17-2, CNY17-3 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. –A– 6 4 –B– 1 3 L N F 4 PL C –T– SEATING PLANE G J K D 6 PL E 6 PL 0.13 (0.005) M T A M B M 0.4" LEAD SPACING DIM A B C D E F G J K L N INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.400 0.425 0.015 0.040 MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 10.16 10.80 0.38 1.02 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. www.fairchildsemi.com 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. © 2000 Fairchild Semiconductor Corporation