ETC CNY17-3V

GlobalOptoisolator
The CNY17–1, CNY17–2 and CNY17–3 devices consist of a gallium
arsenide infrared emitting diode optically coupled to a monolithic silicon
phototransistor detector.
• Closely Matched Current Transfer Ratio (CTR) to Minimize Unit–to–Unit Variation
• Guaranteed 70 Volt V(BR)CEO Minimum
• To order devices that are tested and marked per VDE 0884 requirements, the
suffix ”V” must be included at end of part number. VDE 0884 is a test option.
Applications
• Feedback Control Circuits, Open Loop Gain Control in Power Supplies
6
• Interfacing and coupling systems of different potentials and impedances
1
STANDARD THRU HOLE
• General Purpose Switching Circuits
• Monitor and Detection Circuits
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
SCHEMATIC
Symbol
Value
Unit
INPUT LED
1
6
Reverse Voltage
VR
6
Volts
2
5
Forward Current — Continuous
IF
60
mA
3
4
IF(pk)
1.5
A
PD
120
mW
1.41
mW/°C
Forward Current — Pk (PW = 1 µs, 330 pps)
LED Power Dissipation @ TA = 25°C
with Negligible Power in Output Detector
Derate above 25°C
OUTPUT TRANSISTOR
Collector–Emitter Voltage
VCEO
70
Volts
Emitter–Base Voltage
VEBO
7
Volts
Collector–Base Voltage
VCBO
70
Volts
Collector Current — Continuous
IC
100
mA
Detector Power Dissipation @ TA = 25°C
with Negligible Power in Input LED
Derate above 25°C
PD
150
mW
1.76
mW/°C
VISO
7500
Vac(pk)
Total Device Power Dissipation @ TA = 25°C
Derate above 25°C
PD
250
2.94
mW
mW/°C
Ambient Operating Temperature Range
TA
– 55 to +100
°C
Tstg
– 55 to +150
°C
TL
260
°C
TOTAL DEVICE
Isolation Surge Voltage(1)
(Peak ac Voltage, 60 Hz, 1 sec Duration)
Storage Temperature Range
Soldering Temperature (10 sec, 1/16″ from case)
1. Isolation surge voltage is an internal device dielectric breakdown rating.
1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
PIN 1.
2.
3.
4.
5.
6.
LED ANODE
LED CATHODE
N.C.
EMITTER
COLLECTOR
BASE
CNY17-1, CNY17-2, CNY17-3
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)(1)
Characteristic
Symbol
Min
Typ
Max
Unit
VF
—
—
—
1.35
1.5
1.25
1.65
—
—
Volts
Reverse Leakage Current (VR = 6 V)
IR
—
—
10
µA
Capacitance (V = 0, f = 1 MHz)
CJ
—
18
—
pF
INPUT LED
Forward Voltage (IF = 60 mA)
TA = 25°C
TA = –55°C
TA = 100°C
OUTPUT TRANSISTOR
Collector–Emitter Dark Current
(VCE = 10 V, TA = 25°C)
CNY17–1,2
CNY17–3
ICEO
—
—
5
5
50
100
nA
(VCE = 10 V, TA = 100°C)
All devices
ICEO
—
1.6
—
µA
ICBO
—
0.5
—
nA
Collector–Emitter Breakdown Voltage (IC = 1 mA)
V(BR)CEO
70
120
—
Volts
Collector–Base Breakdown Voltage (IC = 100 µA)
V(BR)CBO
70
120
—
Volts
Emitter–Base Breakdown Voltage (IE = 100 µA)
Collector–Base Dark Current (VCB = 10 V)
V(BR)EBO
7
7.8
—
Volts
DC Current Gain (IC = 2 mA, VCE = 5 V) (Typical Value)
hFE
—
400
—
—
Collector–Emitter Capacitance (f = 1 MHz, VCE = 0)
CCE
—
8
—
pF
Collector–Base Capacitance (f = 1 MHz, VCB = 0)
CCB
—
21
—
pF
Emitter–Base Capacitance (f = 1 MHz, VEB = 0)
CEB
—
8
—
pF
IC (CTR)(2)
4 (40)
6.3 (63)
10 (100)
6 (60)
10 (100)
15 (150)
8 (80)
12.5 (125)
20 (200)
mA (%)
VCE(sat)
—
0.18
0.4
Volts
Delay Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11)
td
—
1.6
5.6
µs
Rise Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11)
tr
—
1.6
4
µs
Storage Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11)
ts
—
0.7
4.1
µs
Fall Time (IF = 10 mA, VCC = 5 V, RL = 75 Ω, Figure 11)
tf
—
2.3
3.5
µs
Delay Time
(IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3)
(IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3)
td
CNY17–1
CNY17–2,3
—
—
1.2
1.8
5.5
8
Rise Time
(IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3)
(IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3)
CNY17–1
CNY17–2,3
—
—
3.3
5
4
6
Storage Time
(IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3)
(IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3)
CNY17–1
CNY17–2,3
—
—
4.4
2, 7
34
39
Fall Time
(IF = 20 mA, VCC = 5 V, RL = 1 kΩ)(3)
(IF = 10 mA, VCC = 5 V, RL = 1 kΩ)(3)
Isolation Voltage (f = 60 Hz, t = 1 sec)(4)
CNY17–1
CNY17–2,3
—
—
9.7
9.4, 20
20
24
COUPLED
Output Collector Current
(IF = 10 mA, VCE = 5 V)
CNY17–1
CNY17–2
CNY17–3
Collector–Emitter Saturation Voltage (IC = 2.5 mA, IF = 10 mA)
µs
µs
tr
µs
ts
µs
tf
VISO
7500
—
—
Vac(pk)
Isolation Resistance (V = 500 V)(4)
RISO
1011
—
—
Ω
Isolation Capacitance (V = 0, f = 1 MHz)(4)
CISO
—
0.2
0.5
pF
1.
2.
3.
4.
Always design to the specified minimum/maximum electrical limits (where applicable).
Current Transfer Ratio (CTR) = IC/IF x 100%.
For test circuit setup and waveforms, refer to Figure 11.
For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.
CNY17-1, CNY17-2, CNY17-3
2
VF, FORWARD VOLTAGE (VOLTS)
PULSE ONLY
PULSE OR DC
1.8
1.6
1.4
TA = –55°C
1.2
25°C
100°C
1
1
10
100
IF, LED FORWARD CURRENT (mA)
1000
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
TYPICAL CHARACTERISTICS
10
NORMALIZED TO:
IF = 10 mA
1
0.1
0.01
0.1
IF = 10 mA
10
8
6
5 mA
4
2
0
2 mA
1 mA
1
0
2
3
4
5
6
7
8
9
10
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
I C , OUTPUT COLLECTOR CURRENT (NORMALIZED)
I CURRENT (mA)
C, COLLECTOR
12
50 100
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
7
5
NORMALIZED TO TA = 25°C
2
1
0.7
0.5
0.2
0.1
–60
–40
–20
0
20
40
60
80
100
TA, AMBIENT TEMPERATURE (°C)
Figure 3. Collector Current versus
Collector–Emitter Voltage
Figure 4. Output Current versus
Ambient Temperature
100
NORMALIZED TO:
VCE = 10 V
TA = 25°C
103
102
VCE = 70 V
50
30 V
20
t, TIME (µs)
ICEO, COLLECTOR–EMITTER DARK CURRENT (NORMALIZED)
0.5
Figure 2. Output Current versus Input Current
Figure 1. LED Forward Voltage versus Forward Current
14
0.2
10 V
101
VCC = 5 V
10
RL = 1000
5
RL = 100
100
{
{
0
20
40
60
80
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Dark Current versus
Ambient Temperature
100
1
0.1
tr
tf
tr
2
10–1
tf
0.2
0.5
1
2
5
10
20
IF, LED INPUT CURRENT (mA)
Figure 6. Rise and Fall Times
CNY17–1 and CNY17–2
50 100
CNY17-1, CNY17-2, CNY17-3
100
100
20
RL = 1000
10
VCC = 5 V
50
VCC = 5 V
t
TIME (µs)
off , TURN–OFF
t
TIME ( µs)
on, TURN–ON
50
100
5
10
2
70
RL = 1000
10
5
100
10
2
1
0.1
0.2
0.5
1
2
5
10
IF, LED INPUT CURRENT (mA)
20
1
0.1
50 100
0.2
1
2
5
10
IF, LED INPUT CURRENT (mA)
20
50
100
Figure 8. Turn–Off Switching Times
CNY17–1 and CNY17–2
20
4
IF = 0
IB = 8 µA
18
7 µA
16
3
6 µA
5 µA
4 µA
2
3 µA
2 µA
1
1 µA
0
2
4
6
8
10
12
14
16
18
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
20
C, CAPACITANCE (pF)
IC, TYPICAL COLLECTOR CURRENT (mA)
Figure 7. Turn–On Switching Times
0.5
f = 1 MHz
14
12
10
CCB
CCE
8
CEB
6
4
2
0
0.5
0.1
Figure 9. DC Current Gain (Detector Only)
0.2
0.5
1
2
5
V, VOLTAGE (VOLTS)
20
WAVEFORMS
VCC = 5 V
IC
10
Figure 10. Capacitances versus Voltage
TEST CIRCUIT
IF
CLED
INPUT PULSE
RL = 100 Ω
10%
OUTPUT PULSE
INPUT
90%
OUTPUT
td
tr
ton
Figure 11. Switching Time Test Circuit and Waveforms
ts
tf
toff
50
CNY17-1, CNY17-2, CNY17-3
PACKAGE DIMENSIONS
–A–
6
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4
–B–
1
3
F 4 PL
C
N
–T–
L
K
SEATING
PLANE
J 6 PL
0.13 (0.005)
G
M
E 6 PL
D 6 PL
0.13 (0.005)
M
T A
B
M
M
T B
M
M
A
M
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.300 BSC
0_
15 _
0.015
0.100
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
7.62 BSC
0_
15 _
0.38
2.54
ANODE
CATHODE
NC
EMITTER
COLLECTOR
BASE
THRU HOLE
–A–
6
4
–B–
1
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3
F 4 PL
L
H
C
–T–
G
J
K 6 PL
E 6 PL
0.13 (0.005)
D 6 PL
0.13 (0.005)
M
T A
M
B
M
SEATING
PLANE
T B
M
A
M
M
SURFACE MOUNT
DIM
A
B
C
D
E
F
G
H
J
K
L
S
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.020
0.025
0.008
0.012
0.006
0.035
0.320 BSC
0.332
0.390
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.51
0.63
0.20
0.30
0.16
0.88
8.13 BSC
8.43
9.90
CNY17-1, CNY17-2, CNY17-3
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
–A–
6
4
–B–
1
3
L
N
F 4 PL
C
–T–
SEATING
PLANE
G
J
K
D 6 PL
E 6 PL
0.13 (0.005)
M
T A
M
B
M
0.4" LEAD SPACING
DIM
A
B
C
D
E
F
G
J
K
L
N
INCHES
MIN
MAX
0.320
0.350
0.240
0.260
0.115
0.200
0.016
0.020
0.040
0.070
0.010
0.014
0.100 BSC
0.008
0.012
0.100
0.150
0.400
0.425
0.015
0.040
MILLIMETERS
MIN
MAX
8.13
8.89
6.10
6.60
2.93
5.08
0.41
0.50
1.02
1.77
0.25
0.36
2.54 BSC
0.21
0.30
2.54
3.81
10.16
10.80
0.38
1.02
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
www.fairchildsemi.com
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
© 2000 Fairchild Semiconductor Corporation