Ultraprecision Operational Amplifier OP177 PIN CONFIGURATION Ultralow offset voltage TA = 25°C, 25 μV maximum Outstanding offset voltage drift 0.1 μV/°C maximum Excellent open-loop gain and gain linearity 12 V/μV typical CMRR: 130 dB minimum PSRR: 115 dB minimum Low supply current 2.0 mA maximum Fits industry-standard precision op amp sockets VOS TRIM 1 –IN +IN 3 V– OP177 2 4 8 VOS TRIM 7 V+ 6 OUT TOP VIEW 5 NC (Not to Scale) NC = NO CONNECT 00289-001 FEATURES Figure 1. 8-Lead PDIP (P-Suffix), 8-Lead SOIC (S-Suffix) GENERAL DESCRIPTION operational amplifier. The combination of outstanding specifications of the OP177 ensures accurate performance in high closed-loop gain applications. The OP177 features one of the highest precision performance of any op amp currently available. Offset voltage of the OP177 is only 25 μV maximum at room temperature. The ultralow VOS of the OP177 combines with its exceptional offset voltage drift (TCVOS) of 0.1 μV/°C maximum to eliminate the need for external VOS adjustment and increases system accuracy over temperature. This low noise, bipolar input op amp is also a cost effective alternative to chopper-stabilized amplifiers. The OP177 provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors. The OP177 open-loop gain of 12 V/μV is maintained over the full ±10 V output range. CMRR of 130 dB minimum, PSRR of 120 dB minimum, and maximum supply current of 2 mA are just a few examples of the excellent performance of this The OP177 is offered in the −40°C to +85°C extended industrial temperature ranges. This product is available in 8-lead PDIP, as well as the space saving 8-lead SOIC. FUNCTIONAL BLOCK DIAGRAM V+ R2A* (OPTIONAL NULL) R2B* C1 R7 R1B R1A Q19 2B Q10 Q9 NONINVERTING INPUT INVERTING INPUT R3 Q3 Q5 Q11 Q8 Q6 Q4 Q1 R4 OUTPUT Q27 Q21 Q23 Q22 Q24 R9 Q12 Q26 C3 C2 Q17 R10 Q16 R5 Q20 Q25 Q15 Q2 Q18 Q14 Q13 V– *R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY. R6 R8 00289-002 Q7 Figure 2. Simplified Schematic Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved. OP177 TABLE OF CONTENTS Features .............................................................................................. 1 Gain Linearity ................................................................................9 Pin Configuration............................................................................. 1 Thermocouple Amplifier with Cold-Junction Compensation................................................................................9 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Electrical Characteristics............................................................. 3 Test Circuits................................................................................... 4 Absolute Maximum Ratings............................................................ 5 Thermal Resistance ...................................................................... 5 ESD Caution.................................................................................. 5 Precision High Gain Differential Amplifier ........................... 10 Isolating Large Capacitive Loads.............................................. 10 Bilateral Current Source ............................................................ 10 Precision Absolute Value Amplifier......................................... 10 Precision Positive Peak Detector.............................................. 12 Precision Threshold Detector/Amplifier ................................ 12 Outline Dimensions ....................................................................... 13 Ordering Guide .......................................................................... 14 Typical Performance Characteristics ............................................. 6 Application Information.................................................................. 9 REVISION HISTORY 5/06—Rev. D to Rev. E Changes to Figure 1.......................................................................... 1 Change to Specifications Table 1 .................................................... 3 Changes to Specifications Table 2................................................... 4 Changes to Table 3............................................................................ 5 Changes to Figure 23 and Figure 24............................................... 9 Changes to Figure 32...................................................................... 12 Updated the Ordering Guide ........................................................ 14 4/06—Rev. C to Rev. D Change to Pin Configuration Caption........................................... 1 Changes to Features.......................................................................... 1 Change to Table 2 ............................................................................. 4 Change to Figure 2 ........................................................................... 4 Changes to Figure 10 and Figure 11............................................... 6 Changes to Figure 12 through Figure 17 ....................................... 7 Changes to Figure 18 through Figure 22 ....................................... 8 Change to Figure 27 ....................................................................... 10 Changes to Figure 30 and Figure 31............................................. 11 Updated Outline Dimensions....................................................... 13 Changes to Ordering Guide .......................................................... 13 1/05—Rev. B to Rev. C Edits to Features.................................................................................1 Edits to General Description ...........................................................1 Edits to Pin Connections..................................................................1 Edits to Electrical Characteristics .............................................. 2, 3 Global deletion of references to OP177E ............................ 3, 4, 10 Edits to Absolute Maximum Ratings ..............................................5 Edits to Package Type .......................................................................5 Edits to Ordering Guide ...................................................................5 Edit to Outline Dimensions .......................................................... 11 11/95—Rev. 0: Initial Version Rev. E | Page 2 of 16 OP177 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = ±15 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT OFFSET VOLTAGE LONG-TERM INPUT OFFSET 1 Voltage Stability INPUT OFFSET CURRENT INPUT BIAS CURRENT INPUT NOISE VOLTAGE INPUT NOISE CURRENT INPUT RESISTANCE Differential Mode 3 INPUT RESISTANCE COMMON MODE INPUT VOLTAGE RANGE 4 COMMON-MODE REJECTION RATIO POWER SUPPLY REJECTION RATIO LARGE SIGNAL VOLTAGE GAIN OUTPUT VOLTAGE SWING Symbol VOS SLEW RATE2 CLOSED-LOOP BANDWIDTH2 OPEN-LOOP OUTPUT RESISTANCE POWER CONSUMPTION SR BW RO PD SUPPLY CURRENT OFFSET ADJUSTMENT RANGE ISY Conditions Min OP177F Typ 10 Max 25 −0.2 0.3 0.3 +1.2 118 3 1.5 +2 150 8 Min OP177G Typ Max 20 60 Unit μV T ΔVOS/time IOS IB en in RIN RINCM IVR CMRR PSRR AVO VO 2 fO = 1 Hz to 100 Hz fO = 1 Hz to 100 Hz2 26 VCM = ±13 V VS = ±3 V to ±18 V RL ≥ 2 kΩ, VO = ±10 V 5 RL ≥ 10 kΩ RL ≥ 2 kΩ RL ≥ 1 kΩ RL ≥ 2 kΩ AVCL = 1 VS = ±15 V, no load VS = ±3 V, no load VS = ±15 V, no load RP = 20 kΩ 1 ±13 130 115 5000 ±13.5 ±12.5 ±12.0 0.1 0.4 45 200 ±14 140 125 12,000 ±14.0 ±13.0 ±12.5 0.3 0.6 60 50 3.5 1.6 ±3 −0.2 18.5 ±13 115 110 2000 ±13.5 ±12.5 ±12.0 0.1 0.4 60 4.5 2 0.4 0.3 +1.2 118 3 45 200 ±14 140 120 6000 ±14.0 ±13.0 ±12.5 0.3 0.6 60 50 3.5 1.6 ±3 2.8 +2.8 150 8 60 4.5 2 μV/mo nA nA nV rms pA rms MΩ GΩ V dB dB V/mV V V V V/μs MHz Ω mW mW mA mV Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μV. 2 Sample tested. 3 Guaranteed by design. 4 Guaranteed by CMRR test condition. 5 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and –10 V ≤ VO ≤ +10 V. Rev. E | Page 3 of 16 OP177 @ VS = ±15 V, −40°C ≤ TA ≤ +85°C, unless otherwise noted. Table 2. Parameter INPUT Input Offset Voltage Average Input Offset Voltage Drift 1 Input Offset Current Average Input Offset Current Drift 2 Input Bias Current Average Input Bias Current Drift2 Input Voltage Range 3 COMMON-MODE REJECTION RATIO POWER SUPPLY REJECTION RATIO LARGE-SIGNAL VOLTAGE GAIN 4 OUTPUT VOLTAGE SWING POWER CONSUMPTION SUPPLY CURRENT Symbol Conditions VOS TCVOS IOS TCIOS IB TCIB IVR CMRR PSRR AVO VO PD ISY OP177F Typ Min 15 0.1 0.5 1.5 +2.4 8 ±13.5 140 120 6000 ±13 60 20 −0.2 VCM = ±13 V VS = ±3 V to ±18 V RL ≥ 2 kΩ, VO = ±10 V RL ≥ 2 kΩ VS = ±15 V, no load VS = ±15 V, no load ±13 120 110 2000 ±12 1 Max Min 40 0.3 2.2 40 +4 40 ±13 110 106 1000 ±12 75 2.5 OP177G Typ 20 0.7 0.5 1.5 +2.4 15 ±13.5 140 115 4000 ±13 60 2 TCVOS is sample tested. Guaranteed by endpoint limits. 3 Guaranteed by CMRR test condition. 4 To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and −10 V ≤ VO ≤ +10 V. 2 TEST CIRCUITS 200kΩ 50Ω – OP177 VOS = VO 00289-003 + VO 4000 Figure 3. Typical Offset Voltage Test Circuit 20kΩ V+ – – INPUT OUTPUT OP177 VOS TRIM RANGE IS TYPICALLY ±3.0mV V– Figure 4. Optional Offset Nulling Circuit 20kΩ +20V – OP177 + –20V Figure 5. Burn-In Circuit Rev. E | Page 4 of 16 00289-005 PINOUTS SHOWN FOR P AND Z PACKAGES 00289-004 + + Max Unit 100 1.2 4.5 85 ±6 60 μV μV/°C nA pA/°C nA pA/°C V dB dB V/mV V mW mA 75 2.5 OP177 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Internal Power Dissipation1 Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 60 sec) DICE Junction Temperature (TJ) 1 Ratings ±22 V 500 mW ±30 V ±22 V Indefinite −65°C to +125°C −40°C to +85°C 300°C −65°C to +150°C For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL RESISTANCE θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for PDIP; θJA is specified for device soldered to printed circuit board for SOIC package. Table 4. Thermal Resistance Package Type 8-Lead PDIP (P-Suffix) 8-Lead SOIC (S-Suffix) ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Rev. E | Page 5 of 16 θJA 103 158 θJC 43 43 Unit °C/W °C/W OP177 TYPICAL PERFORMANCE CHARACTERISTICS 20 TA = 25°C VS = ±15V RL = 10kΩ VS = ±15V ABSOLUTE CHANGE IN INPUT OFFSET VOLTAGE (µV) 25 1 0 –1 DEVICE IMMERSED IN 70° OIL BATH (20 UNITS) 30 35 40 –2 –10 –5 0 OUTPUT VOLTAGE (V) 5 00289-009 45 00289-006 INPUT VOLTAGE (µV) (NULLED TO 0mV @ VOUT = 0V) 2 50 10 0 50 60 70 25 100 VS = ±15V TA = 25°C OPEN-LOOP GAIN (V/µV) 20 10 15 10 1 0 10 20 30 TOTAL SUPPLY VOLTAGE, V+ TO V– (V) 0 –55 40 00289-010 5 00289-007 POWER CONSUMPTION (mW) 20 30 40 TIME (Seconds) Figure 9. Offset Voltage Change Due to Thermal Shock Figure 6. Gain Linearity (Input Voltage vs. Output Voltage) –35 –15 5 25 45 65 TEMPERATURE (°C) 85 105 125 Figure 10. Open-Loop Gain vs. Temperature Figure 7. Power Consumption vs. Power Supply 16 5 TA = 25°C RL = 2kΩ 4 3 1 OPEN-LOOP GAIN (V/µV) LOT A LOT B LOT C LOT D 2 0 –1 –2 12 8 4 –4 –5 0 20 40 60 80 100 120 TIME (Seconds) 140 160 0 180 00289-011 –3 00289-008 VOS (µV) 10 0 ±5 ±10 ±15 POWER SUPPLY VOLTAGE (V) Figure 11. Open-Loop Gain vs. Power Supply Voltage Figure 8. Warm-Up VOS Drift (Normalized) Z Package Rev. E | Page 6 of 16 ±20 OP177 4 160 VS = ±15V TA = 25°C VS = ±15V OPEN-LOOP GAIN (dB) 3 2 1 –50 0 50 TEMPERATURE (°C) 100 80 60 40 0 0.01 100 00289-015 0 120 20 00289-012 INPUT BIAS CURRENT (nA) 140 0.1 1 10 100 1k FREQUENCY (Hz) 10k 100k 1M Figure 15. Open-Loop Frequency Response Figure 12. Input Bias Current vs. Temperature 2.0 150 VS = ±15V TA = 25°C 1.5 CMRR (dB) 130 1.0 110 90 –50 0 50 TEMPERATURE (°C) 80 100 00289-016 0 120 100 0.5 00289-013 1 100 1k FREQUENCY (Hz) 10k 100k Figure 16. CMRR vs. Frequency Figure 13. Input Offset Current vs. Temperature 130 100 TA = 25°C VS = ±15V TA = 25°C 120 80 110 60 PSRR (dB) CLOSED-LOOP GAIN (dB) 10 40 20 90 80 0 70 00289-014 –20 100 10 100 1k 10k 100k FREQUENCY (Hz) 1M 60 0.1 10M Figure 14. Closed-Loop Response for Various Gain Configurations 00289-017 INPUT OFFSET CURRENT (nA) 140 1 10 100 FREQUENCY (Hz) Figure 17. PSRR vs. Frequency Rev. E | Page 7 of 16 1k 10k OP177 20 TA = 25°C VS = +15V VIN = ±10mV 100 EXCLUDED RS = 0 10 1 1 00289-018 TA = 25°C VS = ±15V 10 100 POSITIVE SWING 15 NEGATIVE SWING 10 5 0 100 1k FREQUENCY (Hz) Figure 18. Total Input Noise Voltage vs. Frequency 1k 10k TA = 25°C VS = ±15V 24 20 16 12 8 00289-020 10k 100k FREQUENCY (Hz) +ISC 30 25 –ISC 20 0 1 2 3 TIME FROM OUTPUT BEING SHORTED (Minutes) Figure 22. Output Short-Circuit Current vs. Time 32 4 35 15 100k Figure 19. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated) 28 TA = 25°C VS = ±15V 00289-022 OUTPUT SHORT-CIRCUIT CURRENT (mA) 00289-019 RMS NOISE (µV) 1 BANDWIDTH (Hz) PEAK-TO-PEAK AMPLITUDE (V) 10k 40 TA = 25°C VS = ±15V 0 1k 1k LOAD RESISTANCE TO GROUND (Ω) Figure 21. Maximum Output Voltage vs. Load Resistance 10 0.1 100 00289-021 RS1 = RS2 = 200kΩ THERMAL NOISE OF SOURCE RESISTORS INCLUDED MAXIMUM OUTPUT (V) INPUT NOISE VOLTAGE (nV√Hz) 1000 1M Figure 20. Maximum Output Swing vs. Frequency Rev. E | Page 8 of 16 4 OP177 APPLICATION INFORMATION GAIN LINEARITY The actual open-loop gain of most monolithic op amps varies at different output voltages. This nonlinearity causes errors in high closed-loop gain circuits. It is important to know that the manufacturer’s AVO specification is only a part of the solution because all automated testers use endpoint testing and, therefore, show only the average gain. For example, Figure 23 shows a typical precision op amp with a respectable open-loop gain of 650 V/mV. However, the gain is not constant through the output voltage range, causing nonlinear errors. An ideal op amp shows a horizontal scope trace. Figure 24 shows the OP177 output gain linearity trace with its truly impressive average AVO of 12,000 V/mV. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. Analog Devices also performs additional testing to ensure consistent high open-loop gain at various output voltages. Figure 25 is a simple open-loop gain test circuit. VX 0V An example of a precision circuit is a thermocouple amplifier that must accurately amplify very low level signals without introducing linearity and offset errors to the circuit. In this circuit, an S-type thermocouple with a Seebeck coefficient of 10.3 μV/°C produces 10.3 mV of output voltage at a temperature of 1000°C. The amplifier gain is set at 973.16, thus, it produces an output voltage of 10.024 V. Extended temperature ranges beyond 1500°C are accomplished by reducing the amplifier gain. The circuit uses a low cost diode to sense the temperature at the terminating junctions and, in turn, compensates for any ambient temperature change. The OP177, with its high openloop gain plus low offset voltage and drift, combines to yield a precise temperature sensing circuit. Circuit values for other thermocouple types are listed in Table 5. Table 5. Thermocouple Type K J S Seebeck Coefficient 39.2 μV/°C 50.2 μV/°C 10.3 μV/°C R1 110 Ω 100 Ω 100 Ω R2 5.76 kΩ 4.02 kΩ 20.5 kΩ 2 REF01 2.2µF 00289-023 AVO ≥ 650V/mV RL = 2kΩ 10.000V 6 4 + R9 1.07MΩ 0.05% R7 392kΩ 1% R3 47kΩ 1% Figure 23. Typical Precision Op Amp +15V 10µF 0.1µF + VY – + VX 0V R5 100Ω (ZERO ADJUSTMENT) COPPER 00289-024 R1 100Ω 1% R4 50Ω 1% 10µF – OP177 + 10µF 10µF 0.1µF VOUT –15V ANALOG GROUND ANALOG GROUND Figure 26. Thermocouple Amplifier with Cold Junction Compensation VY 10kΩ 1MΩ VX – 10Ω COPPER COLD-JUNCTION COMPENSATION Figure 24. Output Gain Linearity Trace VIN = ±10V R8 1.0kΩ 0.05% ISOTHERMAL BLOCK +10V AVO ≥ 12000V/mV RL = 2kΩ R2 20.5kΩ 1% ISOTHERMAL COLDJUNCTIONS TYPES 10kΩ R9 269 kΩ 200 kΩ 1.07 MΩ +10V +15V –10V R7 102 kΩ 80.6 kΩ 392 kΩ OP177 RL 00289-025 + Figure 25. Open-Loop Gain Linearity Test Circuit Rev. E | Page 9 of 16 00289-026 –10V THERMOCOUPLE AMPLIFIER WITH COLDJUNCTION COMPENSATION OP177 PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER ISOLATING LARGE CAPACITIVE LOADS The high gain, gain linearity, CMRR, and low TCVOS of the OP177 make it possible to obtain performance not previously available in single stage, very high gain amplifier applications. See Figure 27. The circuit shown in Figure 28 reduces maximum slew rate but allows driving capacitive loads of any size without instability. Because the 100 Ω resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high open loop gain of the OP177. R1 R3 must equal R2 R4 RF 10pF In this example, with a 10 mV differential signal, the maximum errors are listed in Table 6. +15V 0.1µF R2 1MΩ INPUT RS 2 +15V 3 0.1µF 2 R3 1kΩ 3 R4 1MΩ OP177 + 6 100Ω 4 0.1µF OUTPUT CLOAD 7 – OP177 + 4 –15V 6 Figure 28. Isolating Capacitive Loads 0.1µF –15V BILATERAL CURRENT SOURCE 00289-027 R1 1kΩ 7 – 00289-028 For best CMR, Figure 27. Precision High Gain Differential Amplifier The current sources shown in Figure 29 supply both positive and negative currents into a grounded load. Note that Table 6. High Gain Differential Amp Performance Type Common-Mode Voltage Gain Linearity, Worst Case TCVOS TCIOS Amount 0.1%/V 0.02% 0.0003%/°C 0.008%/°C ⎛ R4 ⎞ + 1⎟ R5⎜ ⎝ R2 ⎠ ZO = R5 + R 4 R3 − R2 R1 and that for ZO to be infinite R5 + R 4 R2 must = R3 R1 PRECISION ABSOLUTE VALUE AMPLIFIER The high gain and low TCVOS assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the op amps (for details, see Figure 30). Rev. E | Page 10 of 16 OP177 BASIC CURRENT SOURCE 100mA CURRENT SOURCE R3 1kΩ R3 +15V 3 – OP177 R1 VIN 6 2 R2 + – 3 + R5 10Ω R4 990Ω 6 50Ω OP177 2N2222 2N2907 R4 IOUT ≤ 15mA R5 –15V IOUT ≤ 100mA IOUT = VIN R3 R1 × R5 GIVEN R3 = R4 + R5, R1 = R2 Figure 29. Bilateral Current Source 1kΩ 1kΩ +15V +15V 0.1µF 0.1µF 2 VIN 3 – C1 30pF D1 1N4148 2 7 3 6 OP177 2N4393 + – 7 + 4 R3 2kΩ 4 0.1µF 6 OP177 VOUT 0 < VOUT < 10V 0.1µF –15V –15V Figure 30. Precision Absolute Value Amplifier 1kΩ +15V +15V 0.1µF 2 VIN 1kΩ 3 – NC 7 OP177 + 4 0.1µF 1N4148 2 6 2N930 1kΩ 0.1µF CH –15V 7 – AD820 3 + 4 6 VOUT 0.1µF –15V RESET 1kΩ Figure 31. Precision Positive Peak Detector Rev. E | Page 11 of 16 00289-029 2 00289-030 R2 100kΩ 00289-031 VIN R1 100kΩ OP177 CC PRECISION POSITIVE PEAK DETECTOR RF 100kΩ In Figure 31, CH must be polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the AD820. VTH In Figure 32, when VIN < VTH, amplifier output swings negative, reverse biasing diode D1. VOUT = VTH if RL = ∞. When VIN ≥ VTH, the loop closes. ⎛ R ⎞ VOUT = VTH + (VIN − VTH ) ⎜⎜1 + F ⎟⎟ RS ⎠ ⎝ VIN RS 1kΩ R1 2kΩ 0.1µF 2 3 – 7 OP177 + 6 D1 1N4148 VOUT 4 0.1µF –15V Figure 32. Precision Threshold Detector/Amplifier CC is selected to smooth the response of the loop. Rev. E | Page 12 of 16 00289-032 PRECISION THRESHOLD DETECTOR/AMPLIFIER +15V OP177 OUTLINE DIMENSIONS 0.400 (10.16) 0.365 (9.27) 0.355 (9.02) 8 5 1 4 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) PIN 1 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.150 (3.81) 0.130 (3.30) 0.115 (2.92) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) MIN 0.015 (0.38) GAUGE PLANE SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.430 (10.92) MAX 0.005 (0.13) MIN 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.070 (1.78) 0.060 (1.52) 0.045 (1.14) COMPLIANT TO JEDEC STANDARDS MS-001-BA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 33. 8-Lead Plastic Dual In-Line Package (PDIP) P-Suffix (N-8) Dimensions show in inches and (millimeters) 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 1 5 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 6.20 (0.2440) 4 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) COPLANARITY SEATING 0.31 (0.0122) 0.10 PLANE 0.50 (0.0196) × 45° 0.25 (0.0099) 8° 0.25 (0.0098) 0° 1.27 (0.0500) 0.40 (0.0157) 0.17 (0.0067) COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 34. 8-Lead Standard Small Outline Package (SOIC_N) S-Suffix (R-8) Dimensions shown in millimeters and( inches) Rev. E | Page 13 of 16 OP177 ORDERING GUIDE Model OP177FP OP177FPZ 1 OP177GP OP177GPZ1 OP177FS OP177FS-REEL OP177FS-REEL7 OP177FSZ1 OP177FSZ-REEL1 OP177FSZ-REEL71 OP177GS OP177GS-REEL OP177GS-REEL7 OP177GSZ1 OP177GSZ-REEL1 OP177GSZ-REEL71 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead PDIP 8-Lead PDIP 8-Lead PDIP 8-Lead PDIP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N Z = Pb-free part. Rev. E | Page 14 of 16 Package Option P-Suffix (N-8) P-Suffix (N-8) P-Suffix (N-8) P-Suffix (N-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) OP177 NOTES Rev. E | Page 15 of 16 OP177 NOTES ©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00289-0-5/06 (E) Rev. E | Page 16 of 16