AD OP177GS-REEL

Ultraprecision
Operational Amplifier
OP177
PIN CONFIGURATION
Ultralow offset voltage
TA = 25°C, 25 μV maximum
Outstanding offset voltage drift 0.1 μV/°C maximum
Excellent open-loop gain and gain linearity
12 V/μV typical
CMRR: 130 dB minimum
PSRR: 115 dB minimum
Low supply current 2.0 mA maximum
Fits industry-standard precision op amp sockets
VOS TRIM 1
–IN
+IN 3
V–
OP177
2
4
8
VOS TRIM
7
V+
6 OUT
TOP VIEW
5 NC
(Not to Scale)
NC = NO CONNECT
00289-001
FEATURES
Figure 1. 8-Lead PDIP (P-Suffix),
8-Lead SOIC (S-Suffix)
GENERAL DESCRIPTION
operational amplifier. The combination of outstanding
specifications of the OP177 ensures accurate performance in
high closed-loop gain applications.
The OP177 features one of the highest precision performance of
any op amp currently available. Offset voltage of the OP177 is
only 25 μV maximum at room temperature. The ultralow VOS of
the OP177 combines with its exceptional offset voltage drift
(TCVOS) of 0.1 μV/°C maximum to eliminate the need for
external VOS adjustment and increases system accuracy over
temperature.
This low noise, bipolar input op amp is also a cost effective
alternative to chopper-stabilized amplifiers. The OP177
provides chopper-type performance without the usual problems
of high noise, low frequency chopper spikes, large physical size,
limited common-mode input voltage range, and bulky external
storage capacitors.
The OP177 open-loop gain of 12 V/μV is maintained over the
full ±10 V output range. CMRR of 130 dB minimum, PSRR of
120 dB minimum, and maximum supply current of 2 mA are
just a few examples of the excellent performance of this
The OP177 is offered in the −40°C to +85°C extended industrial
temperature ranges. This product is available in 8-lead PDIP, as
well as the space saving 8-lead SOIC.
FUNCTIONAL BLOCK DIAGRAM
V+
R2A*
(OPTIONAL NULL)
R2B*
C1
R7
R1B
R1A
Q19
2B
Q10
Q9
NONINVERTING
INPUT
INVERTING
INPUT
R3
Q3
Q5
Q11
Q8
Q6
Q4
Q1
R4
OUTPUT
Q27
Q21
Q23
Q22
Q24
R9
Q12
Q26
C3
C2
Q17
R10
Q16
R5
Q20
Q25
Q15
Q2
Q18
Q14
Q13
V–
*R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY.
R6
R8
00289-002
Q7
Figure 2. Simplified Schematic
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2006 Analog Devices, Inc. All rights reserved.
OP177
TABLE OF CONTENTS
Features .............................................................................................. 1
Gain Linearity ................................................................................9
Pin Configuration............................................................................. 1
Thermocouple Amplifier with Cold-Junction
Compensation................................................................................9
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications..................................................................................... 3
Electrical Characteristics............................................................. 3
Test Circuits................................................................................... 4
Absolute Maximum Ratings............................................................ 5
Thermal Resistance ...................................................................... 5
ESD Caution.................................................................................. 5
Precision High Gain Differential Amplifier ........................... 10
Isolating Large Capacitive Loads.............................................. 10
Bilateral Current Source ............................................................ 10
Precision Absolute Value Amplifier......................................... 10
Precision Positive Peak Detector.............................................. 12
Precision Threshold Detector/Amplifier ................................ 12
Outline Dimensions ....................................................................... 13
Ordering Guide .......................................................................... 14
Typical Performance Characteristics ............................................. 6
Application Information.................................................................. 9
REVISION HISTORY
5/06—Rev. D to Rev. E
Changes to Figure 1.......................................................................... 1
Change to Specifications Table 1 .................................................... 3
Changes to Specifications Table 2................................................... 4
Changes to Table 3............................................................................ 5
Changes to Figure 23 and Figure 24............................................... 9
Changes to Figure 32...................................................................... 12
Updated the Ordering Guide ........................................................ 14
4/06—Rev. C to Rev. D
Change to Pin Configuration Caption........................................... 1
Changes to Features.......................................................................... 1
Change to Table 2 ............................................................................. 4
Change to Figure 2 ........................................................................... 4
Changes to Figure 10 and Figure 11............................................... 6
Changes to Figure 12 through Figure 17 ....................................... 7
Changes to Figure 18 through Figure 22 ....................................... 8
Change to Figure 27 ....................................................................... 10
Changes to Figure 30 and Figure 31............................................. 11
Updated Outline Dimensions....................................................... 13
Changes to Ordering Guide .......................................................... 13
1/05—Rev. B to Rev. C
Edits to Features.................................................................................1
Edits to General Description ...........................................................1
Edits to Pin Connections..................................................................1
Edits to Electrical Characteristics .............................................. 2, 3
Global deletion of references to OP177E ............................ 3, 4, 10
Edits to Absolute Maximum Ratings ..............................................5
Edits to Package Type .......................................................................5
Edits to Ordering Guide ...................................................................5
Edit to Outline Dimensions .......................................................... 11
11/95—Rev. 0: Initial Version
Rev. E | Page 2 of 16
OP177
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
@ VS = ±15 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT OFFSET VOLTAGE
LONG-TERM INPUT OFFSET 1
Voltage Stability
INPUT OFFSET CURRENT
INPUT BIAS CURRENT
INPUT NOISE VOLTAGE
INPUT NOISE CURRENT
INPUT RESISTANCE
Differential Mode 3
INPUT RESISTANCE COMMON MODE
INPUT VOLTAGE RANGE 4
COMMON-MODE REJECTION RATIO
POWER SUPPLY REJECTION RATIO
LARGE SIGNAL VOLTAGE GAIN
OUTPUT VOLTAGE SWING
Symbol
VOS
SLEW RATE2
CLOSED-LOOP BANDWIDTH2
OPEN-LOOP OUTPUT RESISTANCE
POWER CONSUMPTION
SR
BW
RO
PD
SUPPLY CURRENT
OFFSET ADJUSTMENT RANGE
ISY
Conditions
Min
OP177F
Typ
10
Max
25
−0.2
0.3
0.3
+1.2
118
3
1.5
+2
150
8
Min
OP177G
Typ
Max
20
60
Unit
μV
T
ΔVOS/time
IOS
IB
en
in
RIN
RINCM
IVR
CMRR
PSRR
AVO
VO
2
fO = 1 Hz to 100 Hz
fO = 1 Hz to 100 Hz2
26
VCM = ±13 V
VS = ±3 V to ±18 V
RL ≥ 2 kΩ, VO = ±10 V 5
RL ≥ 10 kΩ
RL ≥ 2 kΩ
RL ≥ 1 kΩ
RL ≥ 2 kΩ
AVCL = 1
VS = ±15 V, no load
VS = ±3 V, no load
VS = ±15 V, no load
RP = 20 kΩ
1
±13
130
115
5000
±13.5
±12.5
±12.0
0.1
0.4
45
200
±14
140
125
12,000
±14.0
±13.0
±12.5
0.3
0.6
60
50
3.5
1.6
±3
−0.2
18.5
±13
115
110
2000
±13.5
±12.5
±12.0
0.1
0.4
60
4.5
2
0.4
0.3
+1.2
118
3
45
200
±14
140
120
6000
±14.0
±13.0
±12.5
0.3
0.6
60
50
3.5
1.6
±3
2.8
+2.8
150
8
60
4.5
2
μV/mo
nA
nA
nV rms
pA rms
MΩ
GΩ
V
dB
dB
V/mV
V
V
V
V/μs
MHz
Ω
mW
mW
mA
mV
Long-term input offset voltage stability refers to the averaged trend line of VOS vs. time over extended periods after the first 30 days of operation. Excluding the initial
hour of operation, changes in VOS during the first 30 operating days are typically less than 2.0 μV.
2
Sample tested.
3
Guaranteed by design.
4
Guaranteed by CMRR test condition.
5
To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and –10 V ≤ VO ≤ +10 V.
Rev. E | Page 3 of 16
OP177
@ VS = ±15 V, −40°C ≤ TA ≤ +85°C, unless otherwise noted.
Table 2.
Parameter
INPUT
Input Offset Voltage
Average Input Offset Voltage Drift 1
Input Offset Current
Average Input Offset Current Drift 2
Input Bias Current
Average Input Bias Current Drift2
Input Voltage Range 3
COMMON-MODE REJECTION RATIO
POWER SUPPLY REJECTION RATIO
LARGE-SIGNAL VOLTAGE GAIN 4
OUTPUT VOLTAGE SWING
POWER CONSUMPTION
SUPPLY CURRENT
Symbol
Conditions
VOS
TCVOS
IOS
TCIOS
IB
TCIB
IVR
CMRR
PSRR
AVO
VO
PD
ISY
OP177F
Typ
Min
15
0.1
0.5
1.5
+2.4
8
±13.5
140
120
6000
±13
60
20
−0.2
VCM = ±13 V
VS = ±3 V to ±18 V
RL ≥ 2 kΩ, VO = ±10 V
RL ≥ 2 kΩ
VS = ±15 V, no load
VS = ±15 V, no load
±13
120
110
2000
±12
1
Max
Min
40
0.3
2.2
40
+4
40
±13
110
106
1000
±12
75
2.5
OP177G
Typ
20
0.7
0.5
1.5
+2.4
15
±13.5
140
115
4000
±13
60
2
TCVOS is sample tested.
Guaranteed by endpoint limits.
3
Guaranteed by CMRR test condition.
4
To ensure high open-loop gain throughout the ±10 V output range, AVO is tested at −10 V ≤ VO ≤ 0 V, 0 V ≤ VO ≤ +10 V, and −10 V ≤ VO ≤ +10 V.
2
TEST CIRCUITS
200kΩ
50Ω
–
OP177
VOS =
VO
00289-003
+
VO
4000
Figure 3. Typical Offset Voltage Test Circuit
20kΩ
V+
–
–
INPUT
OUTPUT
OP177
VOS TRIM RANGE IS
TYPICALLY ±3.0mV
V–
Figure 4. Optional Offset Nulling Circuit
20kΩ
+20V
–
OP177
+
–20V
Figure 5. Burn-In Circuit
Rev. E | Page 4 of 16
00289-005
PINOUTS SHOWN FOR
P AND Z PACKAGES
00289-004
+
+
Max
Unit
100
1.2
4.5
85
±6
60
μV
μV/°C
nA
pA/°C
nA
pA/°C
V
dB
dB
V/mV
V
mW
mA
75
2.5
OP177
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Supply Voltage
Internal Power Dissipation1
Differential Input Voltage
Input Voltage
Output Short-Circuit Duration
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 60 sec)
DICE Junction Temperature (TJ)
1
Ratings
±22 V
500 mW
±30 V
±22 V
Indefinite
−65°C to +125°C
−40°C to +85°C
300°C
−65°C to +150°C
For supply voltages less than ±22 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θJA is specified for worst-case mounting conditions, that is, θJA
is specified for device in socket for PDIP; θJA is specified for
device soldered to printed circuit board for SOIC package.
Table 4. Thermal Resistance
Package Type
8-Lead PDIP (P-Suffix)
8-Lead SOIC (S-Suffix)
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. E | Page 5 of 16
θJA
103
158
θJC
43
43
Unit
°C/W
°C/W
OP177
TYPICAL PERFORMANCE CHARACTERISTICS
20
TA = 25°C
VS = ±15V
RL = 10kΩ
VS = ±15V
ABSOLUTE CHANGE IN
INPUT OFFSET VOLTAGE (µV)
25
1
0
–1
DEVICE IMMERSED IN
70° OIL BATH (20 UNITS)
30
35
40
–2
–10
–5
0
OUTPUT VOLTAGE (V)
5
00289-009
45
00289-006
INPUT VOLTAGE (µV)
(NULLED TO 0mV @ VOUT = 0V)
2
50
10
0
50
60
70
25
100
VS = ±15V
TA = 25°C
OPEN-LOOP GAIN (V/µV)
20
10
15
10
1
0
10
20
30
TOTAL SUPPLY VOLTAGE, V+ TO V– (V)
0
–55
40
00289-010
5
00289-007
POWER CONSUMPTION (mW)
20
30
40
TIME (Seconds)
Figure 9. Offset Voltage Change Due to Thermal Shock
Figure 6. Gain Linearity (Input Voltage vs. Output Voltage)
–35
–15
5
25
45
65
TEMPERATURE (°C)
85
105
125
Figure 10. Open-Loop Gain vs. Temperature
Figure 7. Power Consumption vs. Power Supply
16
5
TA = 25°C
RL = 2kΩ
4
3
1
OPEN-LOOP GAIN (V/µV)
LOT A
LOT B
LOT C
LOT D
2
0
–1
–2
12
8
4
–4
–5
0
20
40
60
80
100
120
TIME (Seconds)
140
160
0
180
00289-011
–3
00289-008
VOS (µV)
10
0
±5
±10
±15
POWER SUPPLY VOLTAGE (V)
Figure 11. Open-Loop Gain vs. Power Supply Voltage
Figure 8. Warm-Up VOS Drift (Normalized) Z Package
Rev. E | Page 6 of 16
±20
OP177
4
160
VS = ±15V
TA = 25°C
VS = ±15V
OPEN-LOOP GAIN (dB)
3
2
1
–50
0
50
TEMPERATURE (°C)
100
80
60
40
0
0.01
100
00289-015
0
120
20
00289-012
INPUT BIAS CURRENT (nA)
140
0.1
1
10
100
1k
FREQUENCY (Hz)
10k
100k
1M
Figure 15. Open-Loop Frequency Response
Figure 12. Input Bias Current vs. Temperature
2.0
150
VS = ±15V
TA = 25°C
1.5
CMRR (dB)
130
1.0
110
90
–50
0
50
TEMPERATURE (°C)
80
100
00289-016
0
120
100
0.5
00289-013
1
100
1k
FREQUENCY (Hz)
10k
100k
Figure 16. CMRR vs. Frequency
Figure 13. Input Offset Current vs. Temperature
130
100
TA = 25°C
VS = ±15V
TA = 25°C
120
80
110
60
PSRR (dB)
CLOSED-LOOP GAIN (dB)
10
40
20
90
80
0
70
00289-014
–20
100
10
100
1k
10k
100k
FREQUENCY (Hz)
1M
60
0.1
10M
Figure 14. Closed-Loop Response for Various Gain Configurations
00289-017
INPUT OFFSET CURRENT (nA)
140
1
10
100
FREQUENCY (Hz)
Figure 17. PSRR vs. Frequency
Rev. E | Page 7 of 16
1k
10k
OP177
20
TA = 25°C
VS = +15V
VIN = ±10mV
100
EXCLUDED
RS = 0
10
1
1
00289-018
TA = 25°C
VS = ±15V
10
100
POSITIVE SWING
15
NEGATIVE SWING
10
5
0
100
1k
FREQUENCY (Hz)
Figure 18. Total Input Noise Voltage vs. Frequency
1k
10k
TA = 25°C
VS = ±15V
24
20
16
12
8
00289-020
10k
100k
FREQUENCY (Hz)
+ISC
30
25
–ISC
20
0
1
2
3
TIME FROM OUTPUT BEING SHORTED (Minutes)
Figure 22. Output Short-Circuit Current vs. Time
32
4
35
15
100k
Figure 19. Input Wideband Noise vs. Bandwidth
(0.1 Hz to Frequency Indicated)
28
TA = 25°C
VS = ±15V
00289-022
OUTPUT SHORT-CIRCUIT CURRENT (mA)
00289-019
RMS NOISE (µV)
1
BANDWIDTH (Hz)
PEAK-TO-PEAK AMPLITUDE (V)
10k
40
TA = 25°C
VS = ±15V
0
1k
1k
LOAD RESISTANCE TO GROUND (Ω)
Figure 21. Maximum Output Voltage vs. Load Resistance
10
0.1
100
00289-021
RS1 = RS2 = 200kΩ
THERMAL NOISE OF SOURCE
RESISTORS INCLUDED
MAXIMUM OUTPUT (V)
INPUT NOISE VOLTAGE (nV√Hz)
1000
1M
Figure 20. Maximum Output Swing vs. Frequency
Rev. E | Page 8 of 16
4
OP177
APPLICATION INFORMATION
GAIN LINEARITY
The actual open-loop gain of most monolithic op amps varies at
different output voltages. This nonlinearity causes errors in high
closed-loop gain circuits.
It is important to know that the manufacturer’s AVO specification is only a part of the solution because all automated testers
use endpoint testing and, therefore, show only the average gain.
For example, Figure 23 shows a typical precision op amp with a
respectable open-loop gain of 650 V/mV. However, the gain is
not constant through the output voltage range, causing nonlinear errors. An ideal op amp shows a horizontal scope trace.
Figure 24 shows the OP177 output gain linearity trace with its
truly impressive average AVO of 12,000 V/mV. The output trace
is virtually horizontal at all points, assuring extremely high gain
accuracy. Analog Devices also performs additional testing to
ensure consistent high open-loop gain at various output
voltages. Figure 25 is a simple open-loop gain test circuit.
VX
0V
An example of a precision circuit is a thermocouple amplifier
that must accurately amplify very low level signals without
introducing linearity and offset errors to the circuit. In this
circuit, an S-type thermocouple with a Seebeck coefficient of
10.3 μV/°C produces 10.3 mV of output voltage at a temperature
of 1000°C. The amplifier gain is set at 973.16, thus, it produces
an output voltage of 10.024 V. Extended temperature ranges
beyond 1500°C are accomplished by reducing the amplifier
gain. The circuit uses a low cost diode to sense the temperature
at the terminating junctions and, in turn, compensates for any
ambient temperature change. The OP177, with its high openloop gain plus low offset voltage and drift, combines to yield a
precise temperature sensing circuit. Circuit values for other
thermocouple types are listed in Table 5.
Table 5.
Thermocouple
Type
K
J
S
Seebeck
Coefficient
39.2 μV/°C
50.2 μV/°C
10.3 μV/°C
R1
110 Ω
100 Ω
100 Ω
R2
5.76 kΩ
4.02 kΩ
20.5 kΩ
2
REF01
2.2µF
00289-023
AVO ≥ 650V/mV
RL = 2kΩ
10.000V
6
4
+
R9
1.07MΩ
0.05%
R7
392kΩ
1%
R3
47kΩ
1%
Figure 23. Typical Precision Op Amp
+15V
10µF
0.1µF
+
VY
–
+
VX
0V
R5
100Ω
(ZERO
ADJUSTMENT)
COPPER
00289-024
R1
100Ω
1%
R4
50Ω
1%
10µF
–
OP177
+
10µF
10µF
0.1µF
VOUT
–15V ANALOG
GROUND
ANALOG
GROUND
Figure 26. Thermocouple Amplifier with Cold Junction Compensation
VY
10kΩ
1MΩ
VX
–
10Ω
COPPER
COLD-JUNCTION
COMPENSATION
Figure 24. Output Gain Linearity Trace
VIN = ±10V
R8
1.0kΩ
0.05%
ISOTHERMAL
BLOCK
+10V
AVO ≥ 12000V/mV
RL = 2kΩ
R2
20.5kΩ
1%
ISOTHERMAL
COLDJUNCTIONS
TYPES
10kΩ
R9
269 kΩ
200 kΩ
1.07 MΩ
+10V
+15V
–10V
R7
102 kΩ
80.6 kΩ
392 kΩ
OP177
RL
00289-025
+
Figure 25. Open-Loop Gain Linearity Test Circuit
Rev. E | Page 9 of 16
00289-026
–10V
THERMOCOUPLE AMPLIFIER WITH COLDJUNCTION COMPENSATION
OP177
PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER
ISOLATING LARGE CAPACITIVE LOADS
The high gain, gain linearity, CMRR, and low TCVOS of the
OP177 make it possible to obtain performance not previously
available in single stage, very high gain amplifier applications.
See Figure 27.
The circuit shown in Figure 28 reduces maximum slew rate but
allows driving capacitive loads of any size without instability.
Because the 100 Ω resistor is inside the feedback loop, its effect
on output impedance is reduced to insignificance by the high
open loop gain of the OP177.
R1
R3
must equal
R2
R4
RF
10pF
In this example, with a 10 mV differential signal, the maximum
errors are listed in Table 6.
+15V
0.1µF
R2
1MΩ
INPUT
RS
2
+15V
3
0.1µF
2
R3
1kΩ
3
R4
1MΩ
OP177
+
6
100Ω
4 0.1µF
OUTPUT
CLOAD
7
–
OP177
+
4
–15V
6
Figure 28. Isolating Capacitive Loads
0.1µF
–15V
BILATERAL CURRENT SOURCE
00289-027
R1
1kΩ
7
–
00289-028
For best CMR,
Figure 27. Precision High Gain Differential Amplifier
The current sources shown in Figure 29 supply both positive
and negative currents into a grounded load.
Note that
Table 6. High Gain Differential Amp Performance
Type
Common-Mode Voltage
Gain Linearity, Worst Case
TCVOS
TCIOS
Amount
0.1%/V
0.02%
0.0003%/°C
0.008%/°C
⎛ R4 ⎞
+ 1⎟
R5⎜
⎝ R2 ⎠
ZO =
R5 + R 4 R3
−
R2
R1
and that for ZO to be infinite
R5 + R 4
R2
must =
R3
R1
PRECISION ABSOLUTE VALUE AMPLIFIER
The high gain and low TCVOS assure accurate operation with
inputs from microvolts to volts. In this circuit, the signal always
appears as a common-mode signal to the op amps (for details,
see Figure 30).
Rev. E | Page 10 of 16
OP177
BASIC CURRENT SOURCE
100mA CURRENT SOURCE
R3
1kΩ
R3
+15V
3
–
OP177
R1
VIN
6
2
R2
+
–
3
+
R5
10Ω
R4
990Ω
6 50Ω
OP177
2N2222
2N2907
R4
IOUT ≤ 15mA
R5
–15V
IOUT ≤ 100mA
IOUT = VIN
R3
R1 × R5
GIVEN R3 = R4 + R5, R1 = R2
Figure 29. Bilateral Current Source
1kΩ
1kΩ
+15V
+15V
0.1µF
0.1µF
2
VIN
3
–
C1
30pF
D1
1N4148
2
7
3
6
OP177
2N4393
+
–
7
+
4
R3
2kΩ
4 0.1µF
6
OP177
VOUT
0 < VOUT < 10V
0.1µF
–15V
–15V
Figure 30. Precision Absolute Value Amplifier
1kΩ
+15V
+15V
0.1µF
2
VIN
1kΩ
3
–
NC
7
OP177
+
4
0.1µF
1N4148
2
6
2N930
1kΩ
0.1µF
CH
–15V
7
–
AD820
3
+
4
6
VOUT
0.1µF
–15V
RESET
1kΩ
Figure 31. Precision Positive Peak Detector
Rev. E | Page 11 of 16
00289-029
2
00289-030
R2
100kΩ
00289-031
VIN
R1
100kΩ
OP177
CC
PRECISION POSITIVE PEAK DETECTOR
RF
100kΩ
In Figure 31, CH must be polystyrene, Teflon®, or polyethylene
to minimize dielectric absorption and leakage. The droop rate is
determined by the size of CH and the bias current of the AD820.
VTH
In Figure 32, when VIN < VTH, amplifier output swings negative,
reverse biasing diode D1. VOUT = VTH if RL = ∞. When VIN ≥
VTH, the loop closes.
⎛
R ⎞
VOUT = VTH + (VIN − VTH ) ⎜⎜1 + F ⎟⎟
RS ⎠
⎝
VIN
RS
1kΩ
R1
2kΩ
0.1µF
2
3
–
7
OP177
+
6
D1
1N4148
VOUT
4 0.1µF
–15V
Figure 32. Precision Threshold Detector/Amplifier
CC is selected to smooth the response of the loop.
Rev. E | Page 12 of 16
00289-032
PRECISION THRESHOLD DETECTOR/AMPLIFIER
+15V
OP177
OUTLINE DIMENSIONS
0.400 (10.16)
0.365 (9.27)
0.355 (9.02)
8
5
1
4
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
PIN 1
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210
(5.33)
MAX
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015
(0.38)
MIN
0.015 (0.38)
GAUGE
PLANE
SEATING
PLANE
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.430 (10.92)
MAX
0.005 (0.13)
MIN
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
COMPLIANT TO JEDEC STANDARDS MS-001-BA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 33. 8-Lead Plastic Dual In-Line Package (PDIP)
P-Suffix
(N-8)
Dimensions show in inches and (millimeters)
5.00 (0.1968)
4.80 (0.1890)
8
4.00 (0.1574)
3.80 (0.1497) 1
5
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2440)
4 5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
COPLANARITY
SEATING 0.31 (0.0122)
0.10
PLANE
0.50 (0.0196)
× 45°
0.25 (0.0099)
8°
0.25 (0.0098) 0° 1.27 (0.0500)
0.40 (0.0157)
0.17 (0.0067)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 34. 8-Lead Standard Small Outline Package (SOIC_N)
S-Suffix
(R-8)
Dimensions shown in millimeters and( inches)
Rev. E | Page 13 of 16
OP177
ORDERING GUIDE
Model
OP177FP
OP177FPZ 1
OP177GP
OP177GPZ1
OP177FS
OP177FS-REEL
OP177FS-REEL7
OP177FSZ1
OP177FSZ-REEL1
OP177FSZ-REEL71
OP177GS
OP177GS-REEL
OP177GS-REEL7
OP177GSZ1
OP177GSZ-REEL1
OP177GSZ-REEL71
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead PDIP
8-Lead PDIP
8-Lead PDIP
8-Lead PDIP
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
Z = Pb-free part.
Rev. E | Page 14 of 16
Package Option
P-Suffix (N-8)
P-Suffix (N-8)
P-Suffix (N-8)
P-Suffix (N-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
S-Suffix (R-8)
OP177
NOTES
Rev. E | Page 15 of 16
OP177
NOTES
©2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
C00289-0-5/06 (E)
Rev. E | Page 16 of 16