PD - 9.1538B IRL6903 HEXFET® Power MOSFET Logic-Level Gate Drive l Advanced Process Technology l Dynamic dv/dt Rating l 175°C Operating Temperature l Fast Switching l P-Channel l Fully Avalanche Rated Description l D VDSS = -30V RDS(on) = 0.011Ω G ID = -105A S Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. TO-220AB Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Parameter Max. Continuous Drain Current, VGS @ -10V Continuous Drain Current, VGS @ -10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw -105 -74 -360 200 1.3 ± 16 1000 -55 20 -5.0 -55 to + 175 Units A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.75 ––– 62 °C/W 10/7/97 IRL6903 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. -30 ––– ––– ––– -1.0 36 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– LS Internal Source Inductance ––– Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– V(BR)DSS IGSS Typ. Max. Units Conditions ––– ––– V VGS = 0V, ID = -250µA -0.028 ––– V/°C Reference to 25°C, ID = -1mA ––– 0.011 VGS = -10V, ID = -55A Ω ––– 0.02 VGS = -4.5V, ID = -46A ––– ––– V VDS = VGS, ID = -250µA ––– ––– S VDS = -25V, ID = -65A ––– -25 VDS = -30V, VGS = 0V µA ––– -250 VDS = -24V, VGS = 0V, TJ = 150°C ––– 100 VGS = -16V nA ––– -100 VGS = 16V ––– 100 ID = -55A ––– 44 nC VDS = -24V ––– 55 VGS = -4.5V, See Fig. 6 and 13 16 ––– VDD = -15V 130 ––– ID = -55A ns 88 ––– RG = 2.5Ω, VGS = -4.5V 150 ––– RD = 0.26Ω, See Fig. 10 Between lead, 4.5 ––– 6mm (0.25in.) nH G from package 7.5 ––– and center of die contact 4400 ––– VGS = 0V 2000 ––– pF VDS = -25V 590 ––– ƒ = 1.0MHz, See Fig. 5 Source-Drain Ratings and Characteristics IS ISM VSD t rr Q rr t on Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– -105 showing the A G integral reverse ––– ––– -360 p-n junction diode. S ––– ––– -1.3 V TJ = 25°C, IS = -55A, VGS = 0V ––– 82 120 ns TJ = 25°C, IF = -55A ––– 170 260 nC di/dt = -100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 0.66mH RG = 25Ω, IAS = -55A. (See Figure 12) ISD ≤ -55A, di/dt ≤ -130A/µs, VDD ≤ V(BR)DSS , TJ ≤ 175°C Pulse width ≤ 300µs; duty cycle ≤ 2%. Calculated continuous current based on maximum allowable junction temperature; for recommended current-handling of the package refer to Design Tip # 93-4 D S IRL6903 1000 1000 VGS -15V -12V -10V -8.0V -6.0V -4.0V -3.0V BOTTOM -2.5V VGS -15V -12V -10V -8.0V -6.0V -4.0V -3.0V BOTTOM -2.5V 100 TOP -I D, Drain-to-Source Current (A) -I D, Drain-to-Source Current (A) TOP 100 10 1 0.1 0.1 -2.5V 20µs PULSE WIDTH TJ = 25 °C -2.5V 1 10 10 1 0.1 100 -VDS, Drain-to-Source Voltage (V) R DS(on) , Drain-to-Source On Resistance (Normalized) -I D , Drain-to-Source Current (A) 2.0 TJ = 25 °C TJ = 175 ° C 10 1 V DS = -25V 20µs PULSE WIDTH 2 3 4 5 6 7 8 9 -VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 100 Fig 2. Typical Output Characteristics 1000 0.1 10 -VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 1 20µs PULSE WIDTH TJ = 175 °C 10 ID = -91A 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = -10V 0 20 40 60 80 100 120 140 160 180 T J, Junction Temperature ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature IRL6903 VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd C, Capacitance (pF) 6000 Ciss 4000 Coss 2000 Crss 15 -V GS, Gate-to-Source Voltage (V) 8000 ID = -55A VDS = -24V VDS = -15V 12 9 6 3 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 10 0 100 50 100 150 200 250 300 Q G , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 1000 TJ = 175 ° C 100 -II D , Drain Current (A) -ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 10 100us 100 TJ = 25 ° C 1 0.1 0.2 V GS = 0 V 0.8 1.4 2.0 -VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 2.6 1ms TC = 25 ° C TJ = 175° C Single Pulse 10 1 10ms 10 -V DS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 100 IRL6903 120 105 VGS 90 I D , Drain Current (A) RD VDS LIMITED BY PACKAGE D.U.T. RG + VDD 75 -4.5V 60 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 45 Fig 10a. Switching Time Test Circuit 30 td(on) 15 tr t d(off) tf VGS 10% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( ° C) Fig 9. Maximum Drain Current Vs. Case Temperature 90% VDS Fig 10b. Switching Time Waveforms (Z thJC ) 1 D = 0.50 Thermal Response 0.20 0.1 0.10 PDM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1 IRL6903 IA S -10 20V tp VD D A D R IV E R ID -22A -39A -55A TOP 2500 D .U .T RG EAS , Single Pulse Avalanche Energy (mJ) 3000 L VDS BOTTOM 2000 0 .0 1 Ω 1500 15V Fig 12a. Unclamped Inductive Test Circuit I AS 1000 500 0 25 50 75 100 125 150 Starting T J, Junction Temperature Fig 12c. Maximum Avalanche Energy Vs. Drain Current tp V(BR)DSS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50KΩ QG 12V .2µF .3µF -4.5V QGS 175 ( °C) QGD D.U.T. +VDS VGS VG -3mA Charge Fig 13a. Basic Gate Charge Waveform IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit IRL6903 Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • dv/dt controlled by RG • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [ VDD] Forward Drop Inductor Curent Ripple ≤ 5% *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For P-Channel HEXFETS [ ISD] IRL6903 Package Outline TO-220AB Outline Dimensions are shown in millimeters (inches) 2 . 8 7 ( .1 1 3 ) 2 . 6 2 ( .1 0 3 ) 1 0 . 5 4 (. 4 1 5 ) 1 0 . 2 9 (. 4 0 5 ) -B - 3 . 7 8 (. 1 4 9 ) 3 . 5 4 (. 1 3 9 ) 4 . 6 9 ( .1 8 5 ) 4 . 2 0 ( .1 6 5 ) -A - 1 .3 2 (. 0 5 2 ) 1 .2 2 (. 0 4 8 ) 6 . 4 7 (. 2 5 5 ) 6 . 1 0 (. 2 4 0 ) 4 1 5 . 2 4 ( .6 0 0 ) 1 4 . 8 4 ( .5 8 4 ) 1 . 1 5 ( .0 4 5 ) M IN 1 2 1 4 . 0 9 (.5 5 5 ) 1 3 . 4 7 (.5 3 0 ) 3X 1 .4 0 (. 0 5 5 ) 1 .1 5 (. 0 4 5 ) L E A D A S S IG N M E N T S 1 - G A TE 2 - D R AIN 3 - SO URCE 4 - D R AIN 3 4 . 0 6 (. 1 6 0 ) 3 . 5 5 (. 1 4 0 ) 0 . 9 3 ( .0 3 7 ) 3 X 0 . 6 9 ( .0 2 7 ) 0 .3 6 (. 0 1 4 ) 3X M B A 2 . 5 4 ( .1 0 0 ) 2X NO TE S : 1 D I M E N S IO N I N G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 2 C O N T R O L L I N G D IM E N S IO N : I N C H M 0 . 5 5 (. 0 2 2 ) 0 . 4 6 (. 0 1 8 ) 2 .9 2 (. 1 1 5 ) 2 .6 4 (. 1 0 4 ) 3 O U T L IN E C O N F O R M S T O J E D E C O U T L I N E T O -2 2 0 A B . 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S . Part Marking Information TO-220AB E XPLE AM PLE N 1010 IRF 1010 E X AM : T:HI TSHIISS AISN AIRF S ELY MB LY W ITWH ITAHS SAESMB T DE CO DE 9B 1M LO TLOCO 9B 1M A INRTE T ION IN TE NARTNA ION AL AL T IF IER R ECRTEC IF IER F 1010 IR F IR 1010 LO GO LO GO 9246 9246 9B 9B1M 1M S SBEM A S SAEM LYB LY CO DE LO TLO TCO DE A P A RT NU P A RT NU M BEMRBE R D A TE D A TE C ODCEOD E (Y YW (Y YW W) W) = AYE Y Y Y=Y YE R AR W W = W W = W EW EKE EK WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 10/97