SSDI SSD1339

SSD1339
Advance Information
132RGB x 132 with 2 smart Icon lines Dot Matrix
OLED/PLED Segment/Common Driver with Controller
This document contains information on a new product. Specifications and information herein are subject to
change without notice.
http://www.solomon-systech.com
SSD1339
Rev 1.0
P 1/59
Apr 2005
Copyright  2005 Solomon Systech Limited
TABLE OF CONTENTS
1. GERENAL DESCRIPTION...................................................................................................................................5
2. FEATURES..............................................................................................................................................................5
3. ORDERING INFORMATION...............................................................................................................................6
4. BLOCK DIAGRAM................................................................................................................................................7
5. DIE PAD FLOOR PLAN........................................................................................................................................8
6. PIN DESCRIPTION..............................................................................................................................................15
7. FUNCTIONAL BLOCK DISCRIPTIONS .........................................................................................................19
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR...........................................................................................19
RESET CIRCUIT .........................................................................................................................................................19
COMMAND DECODER AND COMMAND INTERFACE ...................................................................................................20
MPU PARALLEL 6800-SERIES INTERFACE................................................................................................................20
MPU PARALLEL 8080-SERIES INTERFACE................................................................................................................20
MPU SERIAL INTERFACE .........................................................................................................................................21
GRAPHIC DISPLAY DATA RAM (GDDRAM) ..........................................................................................................22
GRAY SCALE AND GRAY SCALE TABLE ...................................................................................................................26
CURRENT CONTROL AND VOLTAGE CONTROL .........................................................................................................27
SEGMENT DRIVERS/COMMON DRIVERS ...................................................................................................................27
DC-DC VOLTAGE CONVERTER ................................................................................................................................28
8. COMMAND TABLE ............................................................................................................................................29
9. COMMAND DESCRIPTIONS ............................................................................................................................34
10. MAXIMUM RATINGS.......................................................................................................................................47
11. DC CHARACTERISTICS..................................................................................................................................48
12. AC CHARACTERISTICS..................................................................................................................................49
13. APPLICATION EXAMPLE ..............................................................................................................................53
14. PACKAGE INFORMATION.............................................................................................................................54
SSD1339U3 PIN ASSIGNMENT.................................................................................................................................54
SSD1339U3 COF DETAILS DIMENSIONS ..................................................................................................................56
Solomon Systech
Apr 2005
P 2/59
Rev 1.0
SSD1339
TABLE OF FIGURES
FIGURE 1 – BLOCK DIAGRAM ........................................................................................................................................7
FIGURE 2 – SSD1339Z PIN ASSIGNMENT .......................................................................................................................8
FIGURE 3 – SSD1339Z ALIGNMENT MARK DIMENSIONS ..............................................................................................13
FIGURE 4 – DIE TRAY INFORMATION ............................................................................................................................14
FIGURE 5 – OSCILLATOR CIRCUIT ................................................................................................................................19
FIGURE 6 – DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ.....................................................20
FIGURE 7 – DISPLAY DATA WRITE PROCEDURE IN SPI MODE .......................................................................................21
FIGURE 8 – GRAPHIC DISPLAY DATA RAM STRUCTURE .............................................................................................22
FIGURE 9 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 18-BIT MCU INTERFACE ..............................................22
FIGURE 10 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE IN OPTION 1 ........................23
FIGURE 11 – 262K COLOR DEPTH DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE IN OPTION 2 ........................23
FIGURE 12 – 262K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 9-BIT MCU INTERFACE .................23
FIGURE 13 – 262K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 8-BIT MCU INTERFACE .................23
FIGURE 14 – 65K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 16-BIT MCU INTERFACE .................23
FIGURE 15 – 65K COLOR DEPTH GRAPHIC DISPLAY DATA WRITING SEQUENCE IN 8-BIT MCU INTERFACE ...................24
FIGURE 16 – DISPLAY DATA RAM WRITING POSITION FOR COLOR A, B AND C DATA INPUT IN 65K COLOR MODE ......24
FIGURE 17 – DISPLAY DATA RAM WRITING POSITION FOR COLOR A, B AND C DATA INPUT IN 256 COLOR MODE ......25
FIGURE 18 – RELATION BETWEEN GRAPHIC DATA RAM VALUE AND GRAY SCALE TABLE ENTRY FOR THREE COLORS 26
FIGURE 19 – ILLUSTRATION OF RELATION BETWEEN GRAPHIC DISPLAY RAM VALUE AND GRAY SCALE CONTROL .....27
FIGURE 20 – EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT .............................................................34
FIGURE 21 – ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE .........................................35
FIGURE 22 – ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE ..............................................35
FIGURE 23 – EXAMPLE OF SET DISPLAY START LINE WITH NO REMAP ..........................................................................37
FIGURE 24 – EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAP .................................................................................37
FIGURE 25 – EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING .......................................................39
FIGURE 26 – SEGMENT OUTPUT CURRENT FOR DIFFERENT CONTRAST CONTROL AND MASTER CURRENT SETTING .......41
FIGURE 27 – EXAMPLE OF DRAW LINE COMMAND ........................................................................................................42
FIGURE 28 – EXAMPLE OF DRAW RECTANGLE COMMAND ............................................................................................42
FIGURE 29 – EXAMPLE OF DRAW CIRCLE COMMAND ....................................................................................................43
FIGURE 30 – EXAMPLE OF COPY COMMAND .................................................................................................................44
FIGURE 31 – EXAMPLE OF COPY + CLEAR = MOVE COMMAND ....................................................................................45
FIGURE 32 – 6800-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS ..................................................................50
FIGURE 33 – 8080-SERIES MPU PARALLEL INTERFACE CHARACTERISTICS ..................................................................51
FIGURE 34 – SERIAL INTERFACE CHARACTERISTICS .....................................................................................................52
FIGURE 35 – APPLICATION EXAMPLE FOR 8-BIT 6800-PARALLEL INTERFACE MODE ....................................................53
FIGURE 36 - SSD1339U3 PIN ASSIGNMENT..................................................................................................................54
FIGURE 37 - SSD1339U3 DETAIL DIMENSIONS ............................................................................................................56
SSD1339
Rev 1.0
P 3/59
Apr 2005
Solomon Systech
LIST OF TABLES
TABLE 1 – ORDERING INFORMATION .............................................................................................................................6
TABLE 2 – SSD1339Z DIE PAD COORDINATES ..............................................................................................................9
TABLE 3 – COMMAND TABLE .......................................................................................................................................29
TABLE 4 – GRAPHIC ACCELERATION COMMAND ..........................................................................................................32
TABLE 5 – RESULT OF CHANGE OF BRIGHTNESS BY DIM WINDOW COMMAND ..............................................................44
TABLE 6 – MAXIMUM RATINGS ....................................................................................................................................47
TABLE 7 – DC CHARACTERISTICS ................................................................................................................................48
TABLE 8 – AC CHARACTERISTICS ................................................................................................................................49
TABLE 9 – 6800-SERIES MPU PARALLEL INTERFACE TIMING CHARACTERISTICS ........................................................50
TABLE 10 – 8080-SERIES MPU PARALLEL INTERFACE TIMING CHARACTERISTICS ......................................................51
TABLE 11 – SERIAL INTERFACE TIMING CHARACTERISTICS ..........................................................................................52
TABLE 12 - SSD1339U3 PIN ASSIGNMENT ...................................................................................................................55
Solomon Systech
Apr 2005
P 4/59
Rev 1.0
SSD1339
1. GERENAL DESCRIPTION
The SSD1339 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting
diode dot-matrix graphic display system. It consists of 396 segments (132RGB), 132 commons and 2
smart icon lines. This IC is designed for Common Cathode type OLED panel.
The SSD1339 displays data directly from its internal 132x133x18 bits Graphic Data RAM (GDDRAM).
Data/Commands are sent from general MCU through the hardware selectable 6800/8000 series
compatible Parallel Interface or Serial Peripheral Interface. It has a 256 steps contrast control and 262k
color control
2. FEATURES
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Support max. 132RGB x 132 matrix panel + icon line
Power supply: VDD=2.4-3.5V
VDDIO=1.5V - 3.5V
VCC=7.0V - 18.0V
OLED driving output voltage, 16V maximum
DC-DC voltage booster controller
Segment maximum source current: 200uA
Common maximum sink current: 80mA
Embedded 132x133x18 bit SRAM display buffer
16 step master current control, and 256 step current control for the three color components
Smart Icon mode
Programmable color mode of 256, 65k, 262k
Programmable Frame Rate
Graphic Acceleration Command Set (GAC)
8/9/16/18-bit 6800-series Parallel Interface, 8/9/16/18-bit 8080-series Parallel Interface and Serial
Peripheral Interface.
Wide range of operating temperature: -40 to 90 °C
SSD1339
Rev 1.0
P 5/59
Apr 2005
Solomon Systech
3. ORDERING INFORMATION
Table 1 – Ordering Information
Ordering Part Number
SEG
COM
Package Form
Reference
SSD1339Z
132RGB
132
COG
Page 8
SSD1339U3
128RGB
128
COF
Page 54
Remark
•
•
Min SEG pad pitch: 41.2 µm
Min COM pad pitch: 41.2 µm
Punched COF
Solomon Systech
Apr 2005
P 6/59
Rev 1.0
SSD1339
GDDRAM
Grey Scale Decoder
Segment Drivers
D17 – D0
MCU
Interface
RES#
CS#
D/C#
E (RD#)
R/W#(WR#)
BS2
BS1
BS0
Common Drivers(even)
4. BLOCK DIAGRAM
Common Drivers (odd)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
COM130
COM128
|
COM2
COM0
COMX
SA0
SB0
SC0
SA1
SB1
SC1
|
SA131
SB131
SC131
COM1
COM3
|
COM129
COM131
COMX
VSL
VCL
Driving block
Seg/Com OLED
converter
DC-DC voltage
VDDB
VSSB
GDR
RESE
FB
VBref
VCC
VCOMH
VREF
VPA
VPB
VPC
IREF
CL
CLS
Command
Decoder
Oscillator
Display
Timing
Generator
VDDIO
VDD
VSS
.
.
.
.
.
.
.
.
.
.
.
Figure 1 – Block Diagram
SSD1339
Rev 1.0
P 7/59
Apr 2005
Solomon Systech
5. DIE PAD FLOOR PLAN
Pad #1
+ represents the centre of the
alignment mark
X-pos (µm)
Y-pos (µm)
-8176.0
307.0
8176.0
307.0
-9140.0
-941.0
9140.0
-941.0
All alignment keys have size
75 µm x 75 µm
Die Size: 20989um x 2250um
Die Thickness: 457um +/- 25um
Min I/O pad pitch: 76.2 µm
Min SEG pad pitch: 41.2 µm
Min COM pad pitch: 41.2 µm
Bump Height: Nominal 15 µm
Figure 2 – SSD1339Z pin assignment
Solomon Systech
Apr 2005
P 8/59
Rev 1.0
SSD1339
Table 2 – SSD1339Z Die Pad Coordinates
Pad #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Pad Name
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCOMH
VCOMH
VCOMH
VSL
VSL
VSL
VSL
VSL
VSL
VSL
VSL
VSL
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VDD
VCL
VCL
VCL
VCL
VCL
VCL
VCL
VCL
VCL
VSS
VSS
X-Axis
-10160.275
-10084.075
-10007.875
-9931.675
-9737.3
-9661.1
-9584.9
-9508.7
-9432.5
-9356.3
-9280.1
-9203.9
-9127.7
-9051.5
-8975.3
-8899.1
-8822.9
-8746.7
-8670.5
-8594.3
-8518.1
-8441.9
-8305.8
-8229.6
-8153.4
-8077.2
-8001
-7924.8
-7848.6
-7772.4
-7696.2
-7620
-7543.8
-7467.6
-7391.4
-7315.2
-7239
-7162.8
-7086.6
-7010.4
-6934.2
-6858
-6781.8
-6705.6
-6629.4
-6553.2
-6477
-6400.8
-6324.6
-6248.4
-6172.2
-6096
-6019.8
-5943.6
-5867.4
-5791.2
-5715
-5638.8
-5562.6
-5486.4
-5410.2
-5334
-5257.8
-5181.6
Y-Axis
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
Pad #
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
Pad Name
TR0
VSS
VSSB
VSSB
VSSB
VSSB
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
GDR
VDDB
VDDB
VDDB
VDDB
VDD
VDD
VDD
VDD
FB
VSS
RESE
VBREF
VSS
BGGND
NC
VPA
VPB
VPC
VSS
NC
VSS
GPIO0
GPIO1
VDDIO
ICASC
ICASB
ICASA
VSS
VREF
VCC
VMONA
VMONA
VCC
VCC
VCC
VCC
VCC
VSS
65
VSS
-5105.4
-1043
145
66
VSS
-5029.2
-1043
146
67
VSS
-4953
-1043
68
VSS
-4876.8
69
70
71
72
73
74
75
76
77
78
79
80
VSSB
VSSB
VSSB
VSSB
TR8
TR7
TR6
TR5
TR4
TR3
TR2
TR1
-4800.6
-4724.4
-4648.2
-4572
-4495.8
-4419.6
-4343.4
-4267.2
-4191
-4114.8
-4038.6
-3962.4
SSD1339
Rev 1.0
X-Axis
-3886.2
-3810
-3733.8
-3657.6
-3581.4
-3505.2
-3429
-3352.8
-3276.6
-3200.4
-3124.2
-3048
-2971.8
-2895.6
-2819.4
-2743.2
-2667
-2590.8
-2514.6
-2438.4
-2362.2
-2286
-2209.8
-2133.6
-2057.4
-1981.2
-1905
-1828.8
-1752.6
-1676.4
-1600.2
-1524
-1447.8
-1371.6
-1295.4
-1219.2
-1143
-1066.8
-990.6
-914.4
-838.2
-762
-685.8
-609.6
-533.4
-457.2
-381
-304.8
-228.6
-152.4
-76.2
0
76.2
152.4
228.6
304.8
381
457.2
533.4
609.6
685.8
762
838.2
914.4
Y-Axis
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
IREF
990.6
-1043
225
M
1066.8
-1043
226
147
CL
1143
-1043
227
VCOMH
7239
-1043
-1043
148
DOF#
1219.2
-1043
228
VCOMH
7315.2
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
149
150
151
152
153
154
155
156
157
158
159
160
RES#
VSS
D/C#
VDDIO
CS#
VSS
BS2
VDDIO
BS1
VSS
BS0
VDDIO
1295.4
1371.6
1447.8
1524
1600.2
1676.4
1752.6
1828.8
1905
1981.2
2057.4
2133.6
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
229
230
231
232
233
234
235
236
237
238
239
240
VCOMH
VCOMH
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
NC
NC
7391.4
7467.6
7543.8
7620
7696.2
7772.4
7848.6
7924.8
8001
8077.2
8153.4
8229.6
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
P 9/59
Apr 2005
Pad # Pad Name
161
VSS
162 R/W#(WR#)
163
E(RD#)
164
VDDIO
165
D0
166
D1
167
D2
168
D3
169
D4
170
D5
171
D6
172
D7
173
D8
174
D9
175
D10
176
D11
177
D12
178
D13
179
D14
180
D15
181
VDDIO
182
MS
183
CLS
184
D16
185
D17
186
VSS
187
VSS
188
VSS
189
VSS
190
VSS
191
VSS
192
VCL
193
VCL
194
VCL
195
VCL
196
VCL
197
VCL
198
VCL
199
VCL
200
VCL
201
VCL
202
VCL
203
VCL
204
VDD
205
VDD
206
VDD
207
VDD
208
VDD
209
VDD
210
VDD
211
VDD
212
VSL
213
VSL
214
VSL
215
VSL
216
VSL
217
VSL
218
VSL
219
VSL
220
VSL
221
VSL
222
VSL
223
VSL
224
VDDIO
X-Axis
2209.8
2286
2362.2
2438.4
2514.6
2590.8
2667
2743.2
2819.4
2895.6
2971.8
3048
3124.2
3200.4
3276.6
3352.8
3429
3505.2
3581.4
3657.6
3733.8
3810
3886.2
3962.4
4038.6
4114.8
4191
4267.2
4343.4
4419.6
4495.8
4572
4648.2
4724.4
4800.6
4876.8
4953
5029.2
5105.4
5181.6
5257.8
5334
5410.2
5486.4
5562.6
5638.8
5715
5791.2
5867.4
5943.6
6019.8
6096
6172.2
6248.4
6324.6
6400.8
6477
6553.2
6629.4
6705.6
6781.8
6858
6934.2
7010.4
Y-Axis
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
VDDIO
7086.6
-1043
VCOMH
7162.8
-1043
Solomon Systech
Pad #
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
Pad Name
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM65
COM64
COM63
COM62
COM61
COM60
COM59
COM58
COM57
COM56
COM55
COM54
COM53
COM52
COM51
COM50
COM49
COM48
COM47
COM46
COM45
COM44
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
X-Axis
8305.8
8441.9
8518.1
8594.3
8670.5
8746.7
8822.9
8899.1
8975.3
9051.5
9127.7
9203.9
9280.1
9356.3
9432.5
9508.7
9584.9
9661.1
9737.3
9931.675
10007.875
10084.075
10160.275
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
10359.7
Y-Axis
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1043
-1060
-967
-925.8
-884.6
-843.4
-802.2
-761
-719.8
-678.6
-637.4
-596.2
-555
-513.8
-472.6
-431.4
-390.2
-349
-307.8
-266.6
-225.4
-184.2
-143
-101.8
-60.6
-19.4
21.8
63
104.2
145.4
186.6
227.8
269
310.2
351.4
404.1
562.95
615.65
656.85
698.05
739.25
780.45
305
NC
10359.7
833.15
385
306
NC
10389.7
1030
386
307
NC
10318.5
1030
387
308
COM43
10258.8
1030
309
310
311
312
313
314
315
316
317
318
319
320
COM42
COM41
COM40
COM39
COM38
COM37
COM36
COM35
COM34
COM33
COM32
COM31
10217.6
10176.4
10135.2
10094
10052.8
10011.6
9970.4
9929.2
9888
9846.8
9805.6
9764.4
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Solomon Systech
Pad #
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
Pad Name
COM30
COM29
COM28
COM27
COM26
COM25
COM24
COM23
COM22
COM21
COM20
COM19
COM18
COM17
COM16
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
COMX
NC
NC
NC
SA0
SB0
SC0
SA1
SB1
SC1
SA2
SB2
SC2
SA3
SB3
SC3
SA4
SB4
SC4
SA5
SB5
SC5
SA6
SB6
SC6
SA7
SB7
SC7
SA8
SB8
SC8
SA9
SB9
X-Axis
9723.2
9682
9640.8
9599.6
9558.4
9517.2
9476
9434.8
9393.6
9352.4
9311.2
9270
9228.8
9187.6
9146.4
9105.2
9064
9022.8
8981.6
8940.4
8899.2
8858
8816.8
8775.6
8734.4
8693.2
8652
8610.8
8569.6
8528.4
8487.2
8446
8404.8
8363.6
8240
8198.8
8157.6
8116.4
8075.2
8034
7992.8
7951.6
7910.4
7869.2
7828
7786.8
7745.6
7704.4
7663.2
7622
7580.8
7539.6
7498.4
7457.2
7416
7374.8
7333.6
7292.4
7251.2
7210
7168.8
7127.6
7086.4
7045.2
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Pad #
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
SC9
7004
1030
465
SA10
6962.8
1030
466
SB10
6921.6
1030
467
388
SC10
6880.4
1030
389
390
391
392
393
394
395
396
397
398
399
400
SA11
SB11
SC11
SA12
SB12
SC12
SA13
SB13
SC13
SA14
SB14
SC14
6839.2
6798
6756.8
6715.6
6674.4
6633.2
6592
6550.8
6509.6
6468.4
6427.2
6386
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Pad Name
SA15
SB15
SC15
SA16
SB16
SC16
SA17
SB17
SC17
SA18
SB18
SC18
SA19
SB19
SC19
SA20
SB20
SC20
SA21
SB21
SC21
SA22
SB22
SC22
SA23
SB23
SC23
SA24
SB24
SC24
SA25
SB25
SC25
SA26
SB26
SC26
SA27
SB27
SC27
SA28
SB28
SC28
SA29
SB29
SC29
SA30
SB30
SC30
SA31
SB31
SC31
SA32
SB32
SC32
SA33
SB33
SC33
SA34
SB34
SC34
SA35
SB35
SC35
SA36
X-Axis
6344.8
6303.6
6262.4
6221.2
6180
6138.8
6097.6
6056.4
6015.2
5974
5932.8
5891.6
5850.4
5809.2
5768
5726.8
5685.6
5644.4
5603.2
5562
5520.8
5479.6
5438.4
5397.2
5356
5314.8
5273.6
5232.4
5191.2
5150
5108.8
5067.6
5026.4
4985.2
4944
4902.8
4861.6
4820.4
4779.2
4738
4696.8
4655.6
4614.4
4573.2
4532
4490.8
4449.6
4408.4
4367.2
4326
4284.8
4243.6
4202.4
4161.2
4120
4078.8
4037.6
3996.4
3955.2
3914
3872.8
3831.6
3790.4
3749.2
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
SB36
3708
1030
SC36
3666.8
1030
SA37
3625.6
1030
468
SB37
3584.4
1030
469
470
471
472
473
474
475
476
477
478
479
480
SC37
SA38
SB38
SC38
SA39
SB39
SC39
SA40
SB40
SC40
SA41
SB41
3543.2
3502
3460.8
3419.6
3378.4
3337.2
3296
3254.8
3213.6
3172.4
3131.2
3090
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Apr 2005
P 10/59
Rev 1.0
SSD1339
Pad #
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
Pad Name
SC41
SA42
SB42
SC42
SA43
SB43
SC43
SA44
SB44
SC44
SA45
SB45
SC45
SA46
SB46
SC46
SA47
SB47
SC47
SA48
SB48
SC48
SA49
SB49
SC49
SA50
SB50
SC50
SA51
SB51
SC51
SA52
SB52
SC52
SA53
SB53
SC53
SA54
SB54
SC54
SA55
SB55
SC55
SA56
SB56
SC56
SA57
SB57
SC57
SA58
SB58
SC58
SA59
SB59
SC59
SA60
SB60
SC60
SA61
SB61
SC61
SA62
SB62
SC62
X-Axis
3048.8
3007.6
2966.4
2925.2
2884
2842.8
2801.6
2760.4
2719.2
2678
2636.8
2595.6
2554.4
2513.2
2472
2430.8
2389.6
2348.4
2307.2
2266
2224.8
2183.6
2142.4
2101.2
2060
2018.8
1977.6
1936.4
1895.2
1854
1812.8
1771.6
1730.4
1689.2
1648
1606.8
1565.6
1524.4
1483.2
1442
1400.8
1359.6
1318.4
1277.2
1236
1194.8
1153.6
1112.4
1071.2
1030
988.8
947.6
906.4
865.2
824
782.8
741.6
700.4
659.2
618
576.8
535.6
494.4
453.2
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Pad #
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
Pad Name
SB68
SC68
SA69
SB69
SC69
SA70
SB70
SC70
SA71
SB71
SC71
SA72
SB72
SC72
SA73
SB73
SC73
SA74
SB74
SC74
SA75
SB75
SC75
SA76
SB76
SC76
SA77
SB77
SC77
SA78
SB78
SC78
SA79
SB79
SC79
SA80
SB80
SC80
SA81
SB81
SC81
SA82
SB82
SC82
SA83
SB83
SC83
SA84
SB84
SC84
SA85
SB85
SC85
SA86
SB86
SC86
SA87
SB87
SC87
SA88
SB88
SC88
SA89
SB89
545
546
SA63
412
1030
625
SC89
-3007.6
1030
705
SB116
-6303.6
1030
SB63
370.8
1030
626
SA90
-3048.8
1030
706
SC116
-6344.8
1030
547
SC63
329.6
1030
627
SB90
-3090
1030
707
SA117
-6386
1030
548
SA64
288.4
1030
628
SC90
-3131.2
1030
708
SB117
-6427.2
1030
549
550
551
552
553
554
555
556
557
558
559
560
SB64
SC64
SA65
SB65
SC65
SA66
SB66
SC66
SA67
SB67
SC67
SA68
247.2
206
164.8
123.6
82.4
41.2
0
-41.2
-82.4
-123.6
-164.8
-206
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
629
630
631
632
633
634
635
636
637
638
639
640
SA91
SB91
SC91
SA92
SB92
SC92
SA93
SB93
SC93
SA94
SB94
SC94
-3172.4
-3213.6
-3254.8
-3296
-3337.2
-3378.4
-3419.6
-3460.8
-3502
-3543.2
-3584.4
-3625.6
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
709
710
711
712
713
714
715
716
717
718
719
720
SC117
SA118
SB118
SC118
SA119
SB119
SC119
SA120
SB120
SC120
SA121
SB121
-6468.4
-6509.6
-6550.8
-6592
-6633.2
-6674.4
-6715.6
-6756.8
-6798
-6839.2
-6880.4
-6921.6
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
SSD1339
Rev 1.0
P 11/59
Apr 2005
X-Axis
-247.2
-288.4
-329.6
-370.8
-412
-453.2
-494.4
-535.6
-576.8
-618
-659.2
-824
-865.2
-906.4
-947.6
-988.8
-1030
-1071.2
-1112.4
-1153.6
-1194.8
-1236
-1277.2
-1318.4
-1359.6
-1400.8
-1442
-1483.2
-1524.4
-1565.6
-1606.8
-1648
-1689.2
-1730.4
-1771.6
-1812.8
-1854
-1895.2
-1936.4
-1977.6
-2018.8
-2060
-2101.2
-2142.4
-2183.6
-2224.8
-2266
-2307.2
-2348.4
-2389.6
-2430.8
-2472
-2513.2
-2554.4
-2595.6
-2636.8
-2678
-2719.2
-2760.4
-2801.6
-2842.8
-2884
-2925.2
-2966.4
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Pad #
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
Pad Name
SA95
SB95
SC95
SA96
SB96
SC96
SA97
SB97
SC97
SA98
SB98
SC98
SA99
SB99
SC99
SA100
SB100
SC100
SA101
SB101
SC101
SA102
SB102
SC102
SA103
SB103
SC103
SA104
SB104
SC104
SA105
SB105
SC105
SA106
SB106
SC106
SA107
SB107
SC107
SA108
SB108
SC108
SA109
SB109
SC109
SA110
SB110
SC110
SA111
SB111
SC111
SA112
SB112
SC112
SA113
SB113
SC113
SA114
SB114
SC114
SA115
SB115
SC115
SA116
X-Axis
-3666.8
-3708
-3749.2
-3790.4
-3831.6
-3872.8
-3914
-3955.2
-3996.4
-4037.6
-4078.8
-4120
-4161.2
-4202.4
-4243.6
-4284.8
-4326
-4367.2
-4408.4
-4449.6
-4490.8
-4532
-4573.2
-4614.4
-4655.6
-4696.8
-4738
-4779.2
-4820.4
-4861.6
-4902.8
-4944
-4985.2
-5026.4
-5067.6
-5108.8
-5150
-5191.2
-5232.4
-5273.6
-5314.8
-5356
-5397.2
-5438.4
-5479.6
-5520.8
-5562
-5603.2
-5644.4
-5685.6
-5726.8
-5768
-5809.2
-5850.4
-5891.6
-5932.8
-5974
-6015.2
-6056.4
-6097.6
-6138.8
-6180
-6221.2
-6262.4
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Solomon Systech
Pad #
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
Pad Name
SC121
SA122
SB122
SC122
SA123
SB123
SC123
SA124
SB124
SC124
SA125
SB125
SC125
SA126
SB126
SC126
SA127
SB127
SC127
SA128
SB128
SC128
SA129
SB129
SC129
SA130
SB130
SC130
SA131
SB131
SC131
NC
NC
NC
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
COM82
COM83
COM84
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
X-Axis
-6962.8
-7004
-7045.2
-7086.4
-7127.6
-7168.8
-7210
-7251.2
-7292.4
-7333.6
-7374.8
-7416
-7457.2
-7498.4
-7539.6
-7580.8
-7622
-7663.2
-7704.4
-7745.6
-7786.8
-7828
-7869.2
-7910.4
-7951.6
-7992.8
-8034
-8075.2
-8116.4
-8157.6
-8198.8
-8240
-8363.6
-8404.8
-8446
-8487.2
-8528.4
-8569.6
-8610.8
-8652
-8693.2
-8734.4
-8775.6
-8816.8
-8858
-8899.2
-8940.4
-8981.6
-9022.8
-9064
-9105.2
-9146.4
-9187.6
-9228.8
-9270
-9311.2
-9352.4
-9393.6
-9434.8
-9476
-9517.2
-9558.4
-9599.6
-9640.8
Y-Axis
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
785
COM96
-9682
1030
786
COM97
-9723.2
1030
787
COM98
-9764.4
1030
788
789
790
791
792
793
794
795
796
797
798
799
800
COM99
COM100
COM101
COM102
COM103
COM104
COM105
COM106
COM107
COM108
COM109
COM110
NC
-9805.6
-9846.8
-9888
-9929.2
-9970.4
-10011.6
-10052.8
-10094
-10135.2
-10176.4
-10217.6
-10258.8
-10318.5
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
1030
Solomon Systech
Pad #
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
Pad Name
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM111
COM112
COM113
COM114
COM115
COM116
COM117
COM118
COM119
COM120
COM121
COM122
COM123
COM124
COM125
COM126
COM127
COM128
COM129
COM130
COM131
COMX
NC
Die Size:
X-Axis
-10389.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
-10359.7
Y-Axis
1030
833.15
780.45
739.25
698.05
656.85
615.65
562.95
404.1
351.4
310.2
269
227.8
186.6
145.4
104.2
63
21.8
-19.4
-60.6
-101.8
-143
-184.2
-225.4
-266.6
-307.8
-349
-390.2
-431.4
-472.6
-513.8
-555
-596.2
-637.4
-678.6
-719.8
-761
-802.2
-843.4
-884.6
-925.8
-967
-1060
20989um x 2250um
Gold Bump Face Up
Pad 1, 2 ,3, … -->
Pad #
1 - 263
264, 298-299, 305, 802, 808-809, 843
265-297, 300-304, 803-807, 810-842
306-307, 800-801
308-799
Marks
X-Axis
KEY_O 9140.000
KEY_O -9140.000
KEY_T -8176.000
KEY_X 8176.000
X-Dimension
54um
110um
110um
50um
27um
Y-Dimension
84um
50um
27um
110um
110um
Apr 2005
P 12/59
Y-Axis
-941.000
-941.000
307.000
307.000
Rev 1.0
SSD1339
T shape
+ shape
Circle
*All units are in um
Figure 3 – SSD1339Z alignment mark dimensions
SSD1339
Rev 1.0
P 13/59
Apr 2005
Solomon Systech
W1
W2
W3
X1
Y1
Px
Py
X
Y
Z
N
Spec
mm
76.00 +/-0.1
68.00 +/-0.1
68.30 +/-0.1
4.00 +/-0.1
1.55 +/-0.1
22.30 +/-0.05
4.20 +/-0.1
21.14 +/-0.05
2.40 +/-0.05
0.61 +/-0.05
45
(mil)
(2992)
(2677)
(2689)
(157)
(61)
(878)
(165)
(832)
(94)
(24)
Remark
1. Depth of text is 0.1mm
2. Tray material: ABS
3. Tray color code: Black
9
11
4. Surface resistance 10 ~ 10 Ω - cm
5. Tray warpage: Max 0.15mm
6. Unspecifier dim's tolerance: +/- 0.15mm
7. Pocket size: 21.14 x 2.40 x 0.61mm
Figure 4 – Die tray information
Solomon Systech
Apr 2005
P 14/59
Rev 1.0
SSD1339
6. PIN DESCRIPTION
RES#
This pin is reset signal input. When the pin is low, initialization of the chip is executed.
CS#
This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled
low.
D/C#
This pin is Data/Command control pin. When the pin is pulled high, the data at D7-D0 is treated as display
data. When the pin is pulled low, the data at D7-D0 will be transferred to the command register. For detail
relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams.
E (RD#)
This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as
the Enable (E) signal. Read/write operation is initiated when this pin is pulled high and the chip is
selected.
When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data read
operation is initiated when this pin is pulled low and the chip is selected.
R/W# (WR#)
This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as
Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled high and write
mode when low. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write
operation is initiated when this pin is pulled low and the chip is selected.
BS0, BS1, BS2
These pins are MCU interface selection input. See the following table:
BS0
6800-parallel
interface
(8 bit)
0
8080-parallel
interface
(8 bit)
0
BS1
0
1
0
1
0
BS2
1
1
1
1
0
BS3
0
0
0
0
0
BS0
6800-parallel
interface
(9 bit)
0
BS1
0
1
0
1
BS2
1
1
1
1
BS3
1
1
1
1
8080-parallel
interface
(9 bit)
0
6800-parallel
interface
(16 bit)
1
6800-parallel
interface
(18 bit)
1
8080-parallel
interface
(16 bit)
1
Serial
interface
0
8080-parallel
interface
(18 bit)
1
Note: Unlike BS0, BS1 and BS2 are controlled by hardware connection, BS3 is controlled by software
command, A0.
SSD1339
Rev 1.0
P 15/59
Apr 2005
Solomon Systech
D17-D0
These pins are 18-bit bi-directional data bus to be connected to the microprocessor’s data bus.
VDDIO
This pin is a power supply pin of I/O buffer. It should be connected to VDD or external source. All I/O signal
should have VIH reference to VDDIO. When I/O signal pins (BS012, M/S, CLS, D0-D17, control
signals…) pull high, they should be connected to VDDIO.
VDD
Power Supply pin. It must be connected to external source.
VSS
Ground. It also acts as a reference for the logic pins. It must be connected to external ground.
CL
This pin is the system clock input. When internal clock is enabled, this pin should be left open. Nothing
should be connected to this pin. When internal oscillator is disabled, this pin receives display clock signal
from external clock source.
CLS
This pin is internal clock enable. When this pin is pulled high, internal oscillator is selected.
The internal clock will be disabled when it is pulled low, an external clock source must be connected to
CL pin for normal operation.
VDDB
This is the power supply pin for the internal buffer of the DC-DC voltage converter. It must be connected
to VDD when the converter is used.
VSSB
This is the GND pin for the internal buffer of the DC-DC voltage converter. It must be connected to VSS
when the converter is used.
GDR
This output pin drives the gate of the external NMOS of the booster circuit.
RESE
This pin connects to the source current pin of the external NMOS of the booster circuit.
FB
This pin is the feedback resistor input of the booster circuit. It is used to adjust the booster output voltage
level (Vcc).
Solomon Systech
Apr 2005
P 16/59
Rev 1.0
SSD1339
VBREF
This pin is the internal voltage reference of booster circuit. A stabilization capacitor, typ. 1uF, should be
connected to Vss.
VCC
This is the most positive voltage supply pin of the chip. It is supplied either by external high voltage
source or internal booster
VCOMH
This pin is the input pin for the voltage output high level for COM signals. It can be supplied externally or
internally. When VCOMH is generated internally, a capacitor should be connected between this pin and
VSS.
VREF
This pin is the reference for OLED driving voltages like VPA, VPB, VPC and VCOMH. It can be either supplied
externally or connected to VCC.
VPA, VPB, VPC
These pins are the driving voltages for OLED driving segment pins SA0-SA131, SB0-SB131 and SC0SC131 respectively. They can be supplied externally or internally generated by VP circuit. When internal
VP is used, VPA, VPB, VPC pins should be left open.
IREF
This pin is the segment output current reference pin. ISEG of each color is derived from IREF
ISEG = (Contrast / 256) * IREF * scale factor
Contrast is set by command C1h
Scale factor = master current control register setting (C7h) + 1, i.e., with value from 1~16.
A resistor should be connected between this pin and VSS to maintain the current around 10uA.
VSL
This is segment voltage reference pin.
VCL
This is common voltage reference pin. This pin should be connected to VSS externally.
COM0-COM131
These pins provide the Common switch signals to the OLED panel. These pins are in high impedance
state when display is off.
SA0-SA131, SB0-SB131, SC0-SC131
These pins provide the OLED segment driving signals. These pins are in high impedance state when
display is off.
The 396 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color
settings for color A, B and C.
SSD1339
Rev 1.0
P 17/59
Apr 2005
Solomon Systech
COMX
These two pins provide the Common switch signals for soft icon line to the OLED panel. These pins are in
high impedance state when display is off.
TR0 – TR8, VMONA, ICASA, ICASB, ICASC, GPIO0, GPIO1, M, DOF#
These are reserved pins. No connection is necessary and should be left open individually.
NC
No connection pins. They should be left open individually.
Solomon Systech
Apr 2005
P 18/59
Rev 1.0
SSD1339
7. FUNCTIONAL BLOCK DISCRIPTIONS
Oscillator Circuit and Display Time Generator
Internal
Oscillator
Fosc
M
U
X
CL
CLK
Divider
DCLK
Display
Clock
CLS
Figure 5 – Oscillator Circuit
This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be generated
either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is
pulled high, internal oscillator is chosen. Pulling CLS pin low disables internal oscillator and external
clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its
output frequency Fosc can be changed by command B3h.
In some COF packages of SSD1339, CLS pin is tied to high internally and the internal oscillator is
selected in these packages.
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor can
be programmed from 1 to 16 by command B3h.
Reset Circuit
When RES# input is low, the chip is initialized with the following status:
1. Display is OFF
2. 132x132 Display Mode
3. Normal segment and display data column address and row address mapping (SEG0 mapped to
address 00H and COM0 mapped to address 00H)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Contrast control register is set at 80H
SSD1339
Rev 1.0
P 19/59
Apr 2005
Solomon Systech
Command Decoder and Command Interface
This module determines whether the input data is interpreted as data or command. Data is interpreted
based upon the input of the D/C# pin.
If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the input at D7-D0
is interpreted as a Command and it will be decoded and be written to the corresponding command
register.
MPU Parallel 6800-series Interface
The parallel interface consists of 18 bi-directional data pins (D17-D0) or 8 bi-directional data pins (D7-D0),
R/W#(WR#), D/C#, E (RD#) and CS#. R/W#(WR#) input High indicates a read operation from the Graphic
Display Data RAM (GDDRAM) or the status register. RW#/(WR#) input Low indicates a write operation to
Display Data RAM or Internal Command Registers depending on the status of D/C# input. The E(RD#)
input serves as data latch signal (clock) when high provided that CS# is low and high respectively. Refer
to .
Figure 32 of parallel timing characteristics for Parallel Interface Timing Diagram of 6800-series
microprocessors.
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual
display data read. This is shown in Figure 6 below.
R/ W#(WR#)
E(RD#)
Data bus
N
Write column address
n
Dummy read
Data read1
n+1
n+2
Data read2
Data read3
Figure 6 – Display data read back procedure - insertion of dummy read
MPU Parallel 8080-series Interface
The parallel interface consists of 18 bi-directional data pins (D17-D0) or 8 bi-directional data pins (D7-D0), E
(RD#), R/W#(WR#), D/C# and CS#. The E(RD#) input serves as data read latch signal (clock) when low,
provided that CS# is low and high respectively. Display data or status register read is controlled by D/C#.
R/W#(WR#) input serves as data write latch signal (clock) when high provided that CS# is low and high
respectively. Display data or command register write is controlled by D/C#. Refer to * when 8 bit used: D0
~ D7 instead; when 9 bit used: D0 ~ D8 instead; when 16 bit used: D0 ~ D15 instead; when 18 bit used: D0
~ D17 instead.
Figure 33 of parallel timing characteristics for Parallel Interface Timing Diagram of 8080-series
microprocessor. Similar to 6800-series interface, a dummy read is also required before the first actual
display data read.
Solomon Systech
Apr 2005
P 20/59
Rev 1.0
SSD1339
MPU Serial Interface
The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In this mode, D0 acts as
SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. D3 to D7, E and R/W pins
can be connected to external ground.
SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C is
sampled on every eighth clock and the data byte in the shift register is written to the Display Data RAM or
command register in the same clock.
During data writing, an additional NOP command should be inserted before the CS# goes high (Refer to
Figure 7.
Figure 7 – Display data write procedure in SPI mode
CS#
D/C
SDIN/
SCLK
DB1
DB2
DBn
NOP COMMAND
SCLK(D0)
SDIN(D1)
SSD1339
D7
Rev 1.0
D6
P 21/59
D5
Apr 2005
D4
D3
D2
D1
D0
Solomon Systech
Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is
132 x 133 x 18bits.
For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by
software.
For vertical scrolling of the display, an internal register storing display start line can be set to control the
portion of the RAM data to be mapped to the display.
Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data
pixel in graphic display data RAM is shown below.
Column
Address
Normal
0
1
Remap
131
B5
B4
B3
B2
B1
B0
130
B5
B4
B3
B2
B1
B0
A5
A4
A3
A2
A1
A0
Data
Format
Row
Address
Normal
Remap
0
132
1
2
131
130
:
:
130
2
131
132
1
0
SEG OUTPUT
C5
C4
C3
C2
C1
C0
A5
A4
A3
A2
A1
A0
2
C5
C4
C3
C2
C1
C0
129
A5 B5
A4
B4
A3
B3
A2
B2
A1
B1
B0
A0
C5
C4
C3
C2
C1
C0
:
129
130
:
2
B5
B4
B3
B2
B1
B0
1
B5
B4
B3
B2
B1
B0
:
A5
A4
A3
A2
A1
A0
C5
C4
C3
C2
C1
C0
A5
A4
A3
A2
A1
A0
131
C5
C4
C3
C2
C1
C0
A5
A4
A3
A2
A1
A0
0
B5
B4
B3
B2
B1
B0
C5
C4
C3
C2
C1
C0
COM
OUTPUT
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
:
COM0
COM1
COM2
no. of bits of data in this cell
:
COM130
COM131
:
COM132
SA0 SB0 SC0 SA1 SB1 SC1 SA2 SB2 SC2
:
SA129 SB129 SC129 SA130 SB130 SC130 SA131 SB131 SC131
Figure 8 – Graphic Display Data RAM Structure
Data access in 262k colors mode
In 262k colors depth mode, there are different MCU interface communication modes to access graphic
display data RAM in OLED driver.
For 18 bits mode, the communication is made up of one session of 18 data bits. MCU transmits all bits to
write one 18-bit pixel data into OLED driver. This 18-bit mode can be selected by setting the A[3] bit in
command A0 to 1.
Bit
Data bits
17
C5
16
C4
15
C3
14
C2
13
C1
12
C0
11
B5
10
B4
9
B3
8
B2
7
B1
6
B0
5
A5
4
A4
3
A3
2
A2
1
A1
Figure 9 – 262k color depth data writing sequence in 18-bit MCU interface
st
For the 1 option of the two 16-bit modes, the communication is divided into two sessions of 16 data bits.
MCU transmits two 16-bit words to write one 18-bit pixel data into OLED driver. Mode 1 is selected by
setting A0h register A[7:6] bits to 10b. In below, A1, B1, C1 are pixel bits for color A, B and C, and “X”
stands for don’t care value.
Solomon Systech
Apr 2005
P 22/59
Rev 1.0
SSD1339
0
A0
Bit
st
1 word
nd
2 word
15
X
X
14
X
X
13
X
B15
12
X
B14
11
X
B13
10
X
B12
9
X
B11
8
X
B10
7
X
X
6
X
X
5
C15
A15
4
C14
A14
3
C13
A13
2
C12
A12
1
C11
A11
0
C10
A10
Figure 10 – 262k color depth data writing sequence in 16-bit MCU interface in Option 1
nd
For the 2 option of the 16-bit modes, the communication is divided into three sessions of 16 data bits.
MCU transmits three 16-bit words to write two 18-bit pixels data into OLED driver. Option 2 is selected
by setting A0h register A[7:6] bits to 11b. In below, A1, B1, C1 are first data pixel bits, and A2, B2, C2 are
second data pixel bits.
Bit
st
1 word
nd
2 word
th
3 word
15
X
X
X
14
X
X
X
13
C15
A15
B25
12
C14
A14
B24
11
C13
A13
B23
10
C12
A12
B22
9
C11
A11
B21
8
C10
A10
B20
7
X
X
X
6
X
X
X
5
B15
C25
A25
4
B14
C24
A24
3
B13
C23
A23
2
B12
C22
A22
1
B11
C21
A21
0
B10
C20
A20
Figure 11 – 262k color depth data writing sequence in 16-bit MCU interface in Option 2
For 9-bit modes, the communication is divided into two sessions of 9 data bits. MCU transmits two 9 data
bits to write one 18-bit pixel data into OLED driver. This 9-bit mode can be selected by setting the A[3] bit
in command A0 to 1.
Bit
st
1 9 Data bits
nd
2 9 Data bits
8
C5
B2
7
C4
B1
6
C3
B0
5
C2
A5
4
C1
A4
3
C0
A3
2
B5
A2
1
B4
A1
0
B3
A0
Figure 12 – 262k color depth graphic display data writing sequence in 9-bit MCU interface
In 8-bit MCU interface, the communication session is divided into three times. MCU transmit three 8-bit
bytes to write one 18-bit pixel data into OLED driver.
Bit
st
1 byte
nd
2 byte
rd
3 byte
7
X
X
X
6
X
X
X
5
C15
B15
A15
4
C14
B14
A14
3
C13
B13
A13
2
C12
B12
A12
1
C11
B11
A11
0
C10
B10
A10
Figure 13 – 262k color depth graphic display data writing sequence in 8-bit MCU interface
Data access in 65k colors mode
Writing a 65K pixel in 16-bit MCU interface involves one session as follows.
Bit
st
1 word
15
C14
14
C13
13
C12
12
C11
11
C10
10
B15
9
B14
8
B13
7
B12
6
B11
5
B10
4
A14
3
A13
2
A12
1
A11
0
A10
Figure 14 – 65k color depth graphic display data writing sequence in 16-bit MCU interface
SSD1339
Rev 1.0
P 23/59
Apr 2005
Solomon Systech
The sequence of sending 65K color depth pixel in 8-bit MCU interface is divided into two 8-bit sessions as
shown below.
Bit
st
1 byte
nd
2 byte
7
C14
B12
6
C13
B11
5
C12
B10
4
C11
A14
3
C10
A13
2
B15
A12
1
B14
A11
0
B13
A10
Figure 15 – 65k color depth graphic display data writing sequence in 8-bit MCU interface
With reference to Figure 8 conventions, in writing the data into graphic display data RAM, the bit positions
filled by the input data for each color is shown below.
Color A
Bit Position
Input Data
A5
A14
A4
A13
A3
A12
A2
A11
A1
A10
A0
A14
Color B
Bit Position
Input Data
B5
B15
B4
B14
B3
B13
B2
B12
B1
B11
B0
B10
Color C
Bit Position
Input Data
C5
C14
C4
C13
C3
C12
C2
C11
C1
C10
C0
C14
Figure 16 – Display data RAM writing position for color A, B and C data input in 65k color mode
In data RAM, each data occupies 6-bit. However, color A and C have 5-bit length only in 65k color mode.
Therefore, RAM positions A0 and C0 are empty originally. These emptied positions are filled as shown
above to increase color A and C to 6-bit length in display data RAM.
Data access in 256 colors mode
In 256-color mode, each pixel is composed of 8-bit. Only 8-bit MCU interface is available to access
display data RAM. The communication session is done in 1 time by writing 8-bit data into RAM.
Bit
st
1 byte
7
C12
6
C11
5
C10
4
B12
3
B11
2
B10
1
A11
0
A10
Figure 11 – 256 Color Depth Graphic Display Data Writing Sequence in 8-bit MCU Interface
With reference to Figure 8 conventions, in writing the data into graphic display data RAM, the bit positions
filled by the input data for each color is shown below.
Color A
Bit Position
Input Data
Solomon Systech
A5
A11
A4
A10
A3
A11
A2
A11
A1
A11
Apr 2005
A0
A11
P 24/59
Rev 1.0
SSD1339
Color B
Bit Position
Input Data
B5
B12
B4
B11
B3
B10
B2
B12
B1
B12
B0
B12
Color C
Bit Position
Input Data
C5
C12
C4
C11
C3
C10
C2
C12
C1
C12
C0
C12
Figure 17 – Display data RAM writing position for color A, B and C data input in 256 color mode
In data RAM, each data occupies 6-bit. However, color B and C have 3-bit length and color A has 2-bit
only in 256 color mode. Therefore, RAM positions B2~B0, C2~C0 and A3~A0 are empty originally.
These emptied positions are filled as shown above to increase color A, B and C to 6-bit length in display
data RAM.
SSD1339
Rev 1.0
P 25/59
Apr 2005
Solomon Systech
Gray Scale and Gray Scale Table
Controlling the current pulse widths from the segment driver in the current drive phase produces the gray
scale display. The gray scale table stores the corresponding pulse widths (PW0 ~ PW63) of the 64 gray
scale levels (GS0~GS63). The wider the pulse width, the brighter the pixel will be. Therefore, the
brightness of each pixel is defined in the graphic display data RAM in term of pulse width in gray scale
table.
This single gray scale table supports all the three colors A, B and C. The pulse widths are entered by
software commands.
In graphic display data RAM, each color occupies 6-bit length. So color A, B and C each has 64 gray
scale levels.
Color A, B, C
RAM data (6 bits)
0
1
2
3
4
:
:
:
60
61
62
63
Gray Scale
GS 0
GS 1
GS 2
GS 3
GS 4
:
:
:
GS 60
GS 61
GS 62
GS 63
Figure 18 – Relation between graphic data RAM value and gray scale table entry for three colors
In 65k and 256 color modes, the length color data are less than 6 bits. They are expanded to 6-bit length
as shown in Figure 16 and Figure 17 respectively.
Solomon Systech
Apr 2005
P 26/59
Rev 1.0
SSD1339
The meaning of values inside data RAM with respect to the gray scale level is best to be illustrated in an
example below.
Gray Scale
(Pulse Width)
PW0
PW1
PW2
:
PW62
PW63
Segment
Voltage
Value/DCLKs
0
2
5
:
120
125
Gray Scale
Table
Color B RAM data = 000001b
PW1
pulse width = 2 DCLKs
Color B RAM data = 111110b
PW62
pulse width = 120 DCLKs
VSS
Time
Figure 19 – Illustration of relation between graphic display RAM value and gray scale control
Current Control and Voltage Control
This block is used to derive the incoming power sources into the different levels of internal use voltage
and current. VCC and VDD are external power supplies. VREF is reference voltage, which is used to derive
driving voltage for segments and commons. IREF is a reference current source for segment current drivers.
Segment Drivers/Common Drivers
Segment drivers deliver 396 current sources to drive OLED panel. The driving current can be adjusted
from 0 to 200uA with 256 steps. Common drivers generate voltage scanning pulse.
SSD1339
Rev 1.0
P 27/59
Apr 2005
Solomon Systech
DC-DC Voltage Converter
It is a switching voltage generator circuit, designed for handheld applications. In SSD1339, internal DCDC voltage converter accompanying with an external application circuit (shown in below figure) can
generate a high voltage supply VCC from a low voltage supply input VDD. VCC is the voltage supply to the
OLED driver block. Below application circuit is an example for the input voltage of 3V VDD to generate
VCC of 12V @20mA ~ 30mA application.
L1
VDD
D1
VCC
+
C5
Q1
AGND
VDDB
GDR
R1
+
C6
VBREF
+
C7
RESE
+
+
+
C2
C3
R3
C1
VSSB
AGND
FB
+
C4
AGND
R2
DGND
*ALL PATHS TO AGND SHOULD BE CONNECTED AS SHORT AS POSSIBLE
Passive components selection:
Components Typical Value
L1
Inductor, 22µH
D1
Schottky diode
Q1
MOSFET
R1, R2
R3
C1
C2
C3
C4
C5
C6
C7
Resistor
Resistor, 1.5Ω
Capacitor, 1µF
Capacitor, 22µF
Capacitor, 1µF
Capacitor, 10nF
Capacitor, 1 ~ 10 µF
Capacitor, 0.1 ~ 1µF
Capacitor, 15nF
Remark
2A
2A, 25V e.g. 1N5822
N-FET with low RDS(on) and low Vth voltage.
e.g. MGSF1N02LT1 [ON SEMICONDUCTOR]
1%,1/10W
1%, 1/2W
16V
Low ESR, 25V
16V
16V
16V
16V
16V
The VCC output voltage level can be adjusted by changing the R1 and R2 resistor values, the reference
formula is:
VCC = 1.2 x (R1+R2) / R2
Solomon Systech
Apr 2005
P 28/59
Rev 1.0
SSD1339
8. COMMAND TABLE
Table 3 – Command table
( D/C = 0, R/ W ( WR ) = 0, E( RD ) = 1) unless specific setting is stated
Single byte command ( D/C = 0), Multiple byte command ( D/C = 0 for first byte, D/C = 1 for other bytes)
D/C
Hex
0
15
D7 D6 D5 D4 D3 D2 D2 D0
0
0
0
1
0
1
0
Command
1
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
Description
A[7:0]: Start Address, reset=0d
Set Column
Address
B[7:0]: End Address, reset=131d
Range from 0d to 131d
0
75
0
1
1
1
0
1
0
1
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
A[7:0]: Start Address, reset=0d
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
0
5C
0
1
0
1
1
1
0
0
Write RAM
Command
0
5D
0
1
0
1
1
1
0
1
Read RAM
Command
0
A0
1
0
1
0
0
0
0
0
A[0]=0, Horizontal address increment (POR)
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
A[0]=1, Vertical address increment
Set Row Address B[7:0]: End Address, reset=131d
Range from 0d to 131d
Enable MCU to write Data into RAM
Enable MCU to read Data from RAM
A[1]=0, Column address 0 is mapped to SEG0 (POR)
A[1]=1, Column address 131 is mapped to SEG0
A[2]=0, Color sequence: A # B # C (POR)
A[2]=1, Color sequence is swapped: C # B # A
A[3]=0, Disable 9/18-bit bus interface (POR)
Set Re-map / Color
Depth(Display
RAM to Panel)
A[3]=1, Enable 9/18-bit bus interface
A[4]=0, Scan from COM 0 to COM [N –1] (POR)
A[4]=1, Scan from COM [N-1] to COM0. Where N is the
Multiplex ratio.
A[5]=0, Disable COM Split Odd Even (POR)
A[5]=1, Enable COM Split Odd Even
A[7:6] Set Color Depth,
00 256 color
01 65K color, (POR)
10 262k color, 8/9/18-bit,16 bit (1st option) MCU interface
11 262k color, 16 - bit MCU interface (2nd option)
0
A1
1
0
1
0
0
0
0
1
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
SSD1339
Rev 1.0
P 29/59
Apr 2005
Set Display Start Set vertical scroll by RAM from 0~131
Line
[reset=00d]
Solomon Systech
D/C
Hex
D7 D6 D5 D4 D3 D2 D2 D0
0
A2
1
0
1
0
0
0
1
0
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
0
A4~A7
1
0
1
0
0
1
X1
X0
Command
Description
Set vertical scroll by Row from 0-131. [reset=00b]
Set Display Offset
A4: All Off
A5: All On (All pixels have GS15)
Set Display Mode A6 : Reset to normal display (POR)
A7: Inverse Display (GS0 -> GS63, GS1 -> GS62, ....)
0
AD
1
0
1
0
1
1
0
1
A[7:0] should be set as 100011A[1]A[0]b
1
A[7:0]
1
0
0
0
1
A2
A1
A0
A[0]= 0 Select external VCC supply at master ON
A[0] = 1 Select internal booster at master ON [reset]
Master
Configuration
A[1]= 0 Select external VCOMH voltage supply at master
ON
A[1] = 1 Select internal VCOMH regulator at master ON
[reset]
A[2] = 0 Select external pre-charge voltage source
A[2] = 1 Select internal pre-charge voltage source [reset]
0
AE~AF
1
0
1
0
1
1
1
X0
0
B0
1
0
1
1
0
0
0
0
0
0
0
A4
A3
A2
A1
A0
Set Sleep mode AE = Sleep mode On (Display off)
On/Off
AF = Sleep mode Off (Display on)
A[4:0]:
Power Saving
Mode
00000b = Normal
10010b = Power Saving
00101b = Reserved
0
B1
1
0
1
1
0
0
0
1
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
0
B3
1
0
1
1
0
0
1
1
A[3:0] [reset=0], divide by DIVSET+1 (i.e. 1 to 16)
A0
Front Clock Divider A[7:4] Osc frequency, frequency increase as level
(DivSet)/ Oscillator
increase [reset=1001b]
Frequency
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
Set Reset (Phase A[3:0] Phase 1 period of 1~16 dclk clocks [reset=4h]
1) /Pre-charge A[7:4] Phase 2 period of 1~16 dclk clocks [reset=7h]
(Phase 2) period
The next 32 bytes of command set the current drive
pulse width of gray scale level GS1, GS3, GS5 …GS63
as below in unit of DCLK.
Look Up Table for A[7:0] : PW1, POR =1 DCLK
Gray Scale Pulse
B[7:0] : PW3, POR = 5 DCLK
width
C[7:0] : PW5, POR = 9 DCLK
0
B8
1
0
1
1
1
0
0
0
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
1
.
.
.
.
.
.
.
.
.
.
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
.AE[7:0] AE7 AE6 AE5 AE4 AE3 AE2 AE1 AE0
1
AF[7:0] AF7 AF6 AF5 AF4 AF3 AF2 AF1 AF0
AE[7:0] : PW61, POR = 121 DCLK
AF[7:0] : PW63, POR = 123 DCLK
where
PW1 must > 0
PW3 must > PW1+1
Solomon Systech
Apr 2005
P 30/59
Rev 1.0
SSD1339
D/C
Hex
D7 D6 D5 D4 D3 D2 D2 D0
Command
Description
PW5 must > PW3+1
Note: GS0 has no pre-charge and current drive stages.
For GS2 GS4…GS62, they are derived by driver itself with:
PWn = (PWn-1+PWn+1)/2
Max pulse width is 125
0
B9
1
0
1
1
1
0
0
1
Reset to default Look Up Table:
PW1 = 1
PW2 = 3
Use Built-in Linear
LUT (reset= linear)
PW3 = 5
PW4 = 7
...
PW62 = 123
PW63 = 125
0
BB
1
0
1
1
1
0
1
1
A[7:0] Pre-charge Color A [reset = 00011100]
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] Pre-charge Color B [reset = 00011100]
1
B[7:0]
1
C[7:0]
C[7:0] Pre-charge Color C [reset = 00011100]
Set Pre-charge
voltage of Color A
BC
00000000 0.51*Vref
.....
00011111 0.84*Vref
01011111 1.0*Vref
1xxxxxxx connects to VCOMH
0
BE
1
0
1
1
1
1
1
0
1
A[6:0]
*
A6
A5
A4
A3
A2
A1
A0
A[6:0] 0000000 0.51*Vref
.....
Set VCOMH
0011111 0.84*Vref [VCOMHSET, reset]
1011111 1.0*Vref
0
C1
1
1
0
0
0
0
0
1
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
0
C7
1
1
0
0
0
1
1
1
1
A[3:0]
*
*
*
*
A3
A2
A1
A0
A[7:0] Contrast Value Color A
[reset=1000000b]
Contrast Current
B[7:0] Contrast Value Color B
for Color A,B,C
[reset=1000000b]
C[7:0] Contrast Value Color C
[reset=1000000b]
A[3:0] : 0000 reduce output currents for all colors to 1/16
0001 reduce output currents for all colors to 2/16
Master Contrast
Current Control
....
1110 reduce output currents for all colors to 15/16
1111 no change [reset = 1111b]
SSD1339
Rev 1.0
P 31/59
Apr 2005
Solomon Systech
D/C
Hex
D7 D6 D5 D4 D3 D2 D2 D0
0
CA
1
1
0
0
1
0
1
0
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
0
E3
1
1
1
0
0
0
1
1
Command
Description
Set Mux Ratio
A[7:0] mux ratio 16MUX ~ 132MUX, [reset=131d], (Range
from 15d to 131d)
NOP
Command for No Operation
Table 4 – Graphic acceleration command
Set (GAC) ( D/C = 0, R/ W ( WR ) = 0, E( RD ) = 1) unless specific setting is stated
Single byte command ( D/C = 0), Multiple byte command ( D/C = 0 for first byte, D/C = 1 for other bytes)
D/C
Hex
0
83
D7 D6 D5 D4 D3 D2 D2 D0
1
0
0
0
0
0
1
1
Command
A[7:0] : Column Address of Start
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] : Row Address of Start
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
C[7:0] : Column Address of End
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
1
E[7:0]
E7
E6
E5
E4
E3
E2
E1
E0
1
F[7:0]
F7
F6
F5
F4
F3
F2
F1
F0
Draw Line
Description
D[7:0] : Row Address of End
E[7:0] : Line Color - CCCCCBBB
F[7:0] : Line Color - BBBAAAAA
* A < C < 132
* B < D < 132
0
84
1
0
0
0
0
1
0
0
A[7:0] : Column Address of Start
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] : Row Address of Start
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
C[7:0] : Column Address of End
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
D[7:0] : Row Address of End
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
E[7:0] : Line Color - CCCCCBBB
Draw Rectangle
1
E[7:0]
E7
E6
E5
E4
E3
E2
E1
E0
1
F[7:0]
F7
F6
F5
F4
F3
F2
F1
F0
F[7:0] : Line Color - BBBAAAAA
G[7:0] : Fill Color - CCCCCBBB
1
G[7:0]
G7
G6
G5
G4
G3
G2
G1
G0
H[7:0] : Fill Color - BBBAAAAA
1
H[7:0]
H7
H6
H5
H4
H3
H2
H1
H0
* A < C < 132
* B < D < 132
0
86
1
0
0
0
0
1
1
0
A[7:0] : Column Address of Centre
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] : Row Address of Centre
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
C[7:0] : Radius
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
1
E[7:0]
E7
E6
E5
E4
E3
E2
E1
E0
F[7:0] : Fill Color - CCCCCBBB
1
F[7:0]
F7
F6
F5
F4
F3
F2
F1
F0
G[7:0] : Fill Color – BBBAAAAA
1
G[7:0]
G7
G6
G5
G4
G3
G2
G1
G0
Draw Circle
Copy
D[7:0] : Line Color - CCCCCBBB
E[7:0] : Line Color - BBBAAAAA
0
8A
1
0
0
0
1
0
1
0
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
A[7:0] : Column Address of Start
B[7:0] : Row Address of Start
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
C[7:0] : Column Address of End
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
D[7:0] : Row Address of End
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
E[7:0] : Column Address of New Start
Solomon Systech
Apr 2005
P 32/59
Rev 1.0
SSD1339
D/C
Hex
D7 D6 D5 D4 D3 D2 D2 D0
Command
Description
1
E[7:0]
E7
E6
E5
E4
E3
E2
E1
E0
1
F[7:0]
F7
F6
F5
F4
F3
F2
F1
F0
0
8C
1
0
0
0
1
1
0
0
A[7:0] : Column Address of Start
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] : Row Address of Start
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
F[7:0] : Row Address of New Start
* A < C < 132
* B < D < 132
C[7:0] : Column Address of End
Dim Window
D[7:0] : Row Address of End
* A < C < 132
* B < D < 132
0
8E
1
0
0
0
1
1
1
0
A[7:0] : Column Address of Start
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
B[7:0] : Row Address of Start
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
Clear Window
C[7:0] : Column Address of End
D[7:0] : Row Address of End
* A < C < 132
* B < D < 132
0
92
1
0
0
1
0
0
1
0
1
A[5:0]
*
*
A5
A4
A3
A2
A1
A0
A0
0 : Disable Fill for Draw Rectangle/Circle
Command [reset]
1 : Enable Fill for Draw Rectangle/Circle
Command
Fill Enable /
Disable
A4
0 : Disable reverse copy, reset]
A5
0 : Disable x-wrap, [reset]
1 : Enable reverse during copying.
1 : Enable wrap around in x-direction during
copying
0
96
1
0
0
1
0
1
1
0
1
A[7:0]
A7
A6
A5
A4
A3
A2
A1
A0
A[7:0] : 1~124 horizontal offset in number of Column
Invalid entry for value larger than 124
0
no horizontal scroll
1
B[7:0]
B7
B6
B5
B4
B3
B2
B1
B0
B[7:0] : start row address
1
C[7:0]
C7
C6
C5
C4
C3
C2
C1
C0
C[7:0] : number of rows to be H-scrolled
1
D[7:0]
D7
D6
D5
D4
D3
D2
D1
D0
1
E[1:0]
*
*
*
*
*
*
E1
E0
B+C <= 132
Horizontal Scroll
D[7:0] : Reserved
E[1:0] : scrolling time interval
0
test mode
1
normal
2
slow
3
slowest
Note : operates during display on.
0
9E
1
0
0
1
1
1
1
0
Stop Moving
0
9F
1
0
0
1
1
1
1
1
Start Moving
SSD1339
Rev 1.0
P 33/59
Apr 2005
Solomon Systech
9. COMMAND DESCRIPTIONS
Set Column Address (15h)
This command specifies column start address and end address of the display data RAM. This command
also sets the column address pointer to column start address. This pointer is used to define the current
read/write column address in graphic display data RAM. If horizontal address increment mode is enabled
by command A0h, after finishing read/write one column data, it is incremented automatically to the next
column address. Whenever the column address pointer finishes accessing the end column address, it is
reset back to start column address.
Set Row Address (75h)
This command specifies row start address and end address of the display data RAM. This command also
sets the row address pointer to row start address. This pointer is used to define the current read/write
row address in graphic display data RAM. If vertical address increment mode is enabled by command
A0h, after finishing read/write one row data, it is incremented automatically to the next row address.
Whenever the row address pointer finishes accessing the end row address, it is reset back to start row
address.
For example, column start address is set to 2 and column end address is set to 129, row start address is
set to 1 and row end address is set to 130. Horizontal address increment mode is enabled by command
A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 129
and from row 1 to row 130 only. In addition, the column address pointer is set to 2 and row address
pointer is set to 1. After finishing read/write one pixel of data, the column address is increased
automatically by 1 to access the next RAM location for next read/write operation. Whenever the column
address pointer finishes accessing the end column 129, it is reset back to column 2 and row address is
automatically increased by 1. While the end row 130 and end column 129 RAM location is accessed, the
row address is reset back to 1. The diagram below shows the way of column and row address pointer
movement for this example.
Col 0
Col 1
Col 2
…..
…….
Col129
Col130
Col131
Row 0
Row 1
Row 2
:
:
:
:
:
:
Row 129
Row 130
Row 131
Figure 20 – Example of column and row address pointer movement
Solomon Systech
Apr 2005
P 34/59
Rev 1.0
SSD1339
Write RAM Command (5Ch)
After this single byte command, data entries will be written into the display RAM until another command is
written. Address pointer is increased accordingly. This command must be sent before write data into
RAM.
Read RAM Command (5Dh)
After this single byte command, data is read from display RAM until another command is written. Address
pointer is increased accordingly. This command must be sent before read data from RAM.
Set Re-map & Color Depth (A0h)
This command has multiple configurations and each bit setting is described as follows.
•
Address increment mode (A[0])
When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM
is read/written, the column address pointer is increased automatically by 1. If the column address
pointer reaches column end address, the column address pointer is reset to column start address
and row address pointer is increased by 1. The sequence of movement of the row and column
address point for horizontal address increment mode is shown in Figure 21.
Row 0
Row 1
:
Row 130
Row 131
Col 0
Col 1
…..
Col 130
Col 131
:
:
:
:
:
Figure 21 – Address pointer movement of horizontal address increment mode
When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM
is read/written, the row address pointer is increased automatically by 1. if the row address pointer
reaches the row end address, the row address pointer is reset to row start address and column
address pointer is increased by 1. The sequence of movement of the row and column address
point for vertical address increment mode is shown in Figure 22.
Col 0
Row 0
Row 1
:
Row 130
Row 131
Col 1
…..
…..
…..
:
…..
…..
Col 130
Col 131
Figure 22 – Address pointer movement of vertical address increment mode
•
Column Address Mapping (A[1])
This command bit is made for flexible layout of segment signals in OLED module with segment
arranged from left to right or vice versa.
•
Color Remap (A[2])
This command bit is made for flexible layout of color sequence A # B # C or C # B # and A.
SSD1339
Rev 1.0
P 35/59
Apr 2005
Solomon Systech
•
MCU interface selection (A[3])
This command bit is made for setting the 6800 or 8080 parallel bus interface for to either 8/16-bit
or 9/18-bit.
•
COM Remap (A[4])
This bit determines the scanning direction of the common for flexible layout of common signals in
OLED module either from up to down or vice versa.
•
Odd even split of COM pins (A[5])
This bit can set the odd even arrangement of COM pins.
A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as
COM131 COM129 .... COM 33 COM32..SC131..SA0..COM0 COM1.... COM30 COM31
A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as
COM131 COM129.... COM3 COM1..SC131..SA0..COM0 COM2.... COM60 COM62
•
Display color mode (A[7:6])
Select either 262k, 65k or 256 color mode.
In 262k colors mode, if 16-bit MCU interface is selected, there are two communication modes. In
mode 1, one pixel data in transmitted in two 16-bit words. In mode 2, one communication session
is consisted of three 16-bit words to transmit two pixel data. Please refer to section “Data access
in 262k colors mode” for details. In all other 8/9/18-bit parallel or SPI MCU interfaces, there is no
difference between mode 1 and mode 2 selections.
The display RAM data format in different mode is described in section “Graphic Display Data
RAM (GDDRAM)”.
Solomon Systech
Apr 2005
P 36/59
Rev 1.0
SSD1339
Set Display Start Line (A1h)
This command is to set Display Start Line register to determine starting address of display RAM to be
displayed by selecting a value from 0 to 131. The figure below shows an example of this command. In
there, “Row” means the graphic display data RAM row.
COM Pin
COM0
COM1
COM2
COM3
:
:
COM125
COM126
COM127
COM128
COM129
COM130
COM131
132
0
Row0
Row1
Row2
Row3
:
:
Row125
Row126
Row127
Row128
Row129
Row130
Row131
132
4
Row4
Row5
Row6
Row7
:
:
Row129
Row130
Row131
Row0
Row1
Row2
Row3
130
0
Row0
Row1
Row2
Row3
:
:
Row125
Row126
Row127
Row128
Row129
-
130
4
Row4
Row5
Row6
Row7
:
:
Row129
Row130
Row131
Row0
Row1
-
Mux ratio
Display start line
Figure 23 – Example of set display start line with no remap
Set Display Offset (A2h)
This command specifies the mapping of display start line (it is assumed that COM0 is the display start
line, display start line register equals to 0) to one of COM0-131. The figure below shows an example of
this command. In there, “Row” means the graphic display data RAM row.
COM Pin
COM0
COM1
COM2
COM3
:
:
COM125
COM126
COM127
COM128
COM129
COM130
COM131
132
0
Row0
Row1
Row2
Row3
:
:
Row125
Row126
Row127
Row128
Row129
Row130
Row131
132
4
Row4
Row5
Row6
Row7
:
:
Row129
Row130
Row131
Row0
Row1
Row2
Row3
130
0
Row0
Row1
Row2
Row3
:
:
Row125
Row126
Row127
Row128
Row129
-
130
4
Row4
Row5
Row6
Row7
:
:
Row129
Row0
Row1
Row2
Row3
Mux ratio
Display offset
Figure 24 – Example of set display offset with no remap
SSD1339
Rev 1.0
P 37/59
Apr 2005
Solomon Systech
Set Display Mode (A4h ~ A7h)
These are single byte command and they are used to set Normal Display, Entire Display On, Entire
Display Off and Inverse Display.
• Set Entire Display On (A5h)
Forces the entire display to be at “GS63” regardless of the contents of the display data RAM.
• Set Entire Display Off (A4h)
Forces the entire display to be at gray level “GS0” regardless of the contents of the display data
RAM.
• Inverse Display (A7h)
The gray level of display data are swapped such that “GS0” <-> “GS63”, “GS1” <-> “GS62”, ….
• Normal Display (A6h)
Reset the above effect and turn the data to ON at the corresponding gray level.
Master Configuration (ADh)
This command contains multiple bits to control several functionalities of the driver.
• Select DC-DC converter (A[0])
0 = Disable selection of DC-DC converter and VCC is supplied externally.
1 (POR) = Enable selection of DC-DC converter to supply high voltage to VCC. The output
voltage of the converter is set by values of external resistors. Please refer to section “DC-DC
Voltage Converter” for details.
• Select VCOMH supply (A[1])
0 = Select external VCOMH voltage from VCOMH pin for the common waveform high voltage level
supply. It is recommended to set the voltage of VCOMH such that the OLED pixel diode is not
turned on (prefer in reverse bias state) when the segment pin is either driven to VPA, VPB or VPC
level.
1 = Select internal VCOMH voltage generated by regulator from VREF. The level of VCOMH can be
programmed by command BEh.
• Select pre-charge voltage supply (A[2])
0 = Select pre-charge voltage sources from external pins VPA, VPB, VPC for color A, B and C
respectively.
1 = Select pre-charge voltage supply internally. The level of VPA, VPB, VPC can be set by
command BBh for color A, B and C respectively.
Set Sleep mode On/Off (AEh/AFh)
These single byte commands are used to turn the OLED panel display on or off. When the display is on,
the selected circuits by Set Master Configuration command will be turned on. When the display is off,
those circuits will be turned off and the segment and common output are in high impedance state.
Power Saving Mode (B0h)
This command sets the driver IC either in normal power mode and power saving mode.
Set Reset (Phase 1)/ Pre-charge (Phase 2) period (B1h)
This command sets the length of phase 1 and 2 of segment waveform of the driver.
• Phase 1 (A[3:0]): Set the period from 1 to 16 in the unit of DCLKs. A larger capacitance of the
OLED pixel may require longer period to discharge the previous data charge completely.
• Phase 2 (A[7:4]): Set the period from 1 to 16 in the unit of DCLKs. A longer period is needed to
charge up a larger capacitance of the OLED pixel to the target voltage VPA, VPB, VPC for color A, B
and C respectively.
Solomon Systech
Apr 2005
P 38/59
Rev 1.0
SSD1339
Front Clock Divider (DivSet)/ Oscillator Frequency (B3h)
This command consists of two functions:
• Display Clock Divide Ratio (A[3:0])
Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16,
with power on reset value = 1. Please refer to section “Oscillator Circuit and Display Time
Generator” for the details of DCLK and CLK.
• Oscillator Frequency (A[7:4])
Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled high. The
4-bit value results in 16 different frequency setting available as shown below. The default value is
1101b.
Look Up Table for Gray Scale Pulse width (B8h)
This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero
as it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of
current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is
the OLED pixel when it’s turned on. Please refer to section “Graphic Display Data RAM (GDDRAM)” for
more detailed explanation of relation of display data RAM, gray scale table and the pixel brightness.
Following the command B8h, the user has to set the pulse width from PW1, PW3, PW5, …, PW59,
PW61, PW63 one by one in sequence and complies the following conditions.
PW1 > 0; PW3 > PW1 + 1; PW5 > PW3 + 1; ……
Afterwards, the driver automatically derives the pulse width of even entry of gray scale table PW2, PW4,
…, PW62 with the formula like below.
PWn = (PWn-1 + PWn+1) / 2
For example, if PW1 = 3 DCLKs and PW3 = 7 DCLKs, PW2 = (3+7)/2 = 5 DCLKs
The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it
is desired that the brightness response of the panel is linearly proportional to the image data value in
display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate
gray scale table setting like example below can compensate this effect.
Brightness
Pulse
Width
Gray scale
table setting
Brightness
Panel
response
Gray Scale
Pulse width
Result in linear
response
Gray Scale
Figure 25 – Example of gamma correction by gray scale table setting
Use Built-in Linear LUT (B9h)
This command reloads the preset linear gray scale table as PW1 = 1, PW2 = 3, PW3 = 5, …., PW62 =
123, PW63 = 125 DCLKs.
SSD1339
Rev 1.0
P 39/59
Apr 2005
Solomon Systech
Set Pre-charge voltage of Color A, B and C (BBh)
This command is used to set VPA, VPB and VPC phase 2 voltage level for color A, B and C respectively.
The command is valid in condition that these voltages are selected to generate internally by command
ADh. It can be programmed to set the pre-charge voltage reference to VREF or VCOMH.
Set VCOMH (BEh)
This command sets the high voltage level of common pins, VCOMH, when it is selected to generate
internally by command ADh. The level of VCOMH is programmed with reference to VREF.
Contrast Current for Color A, B, C (C1h)
This command is to set Contrast Current of each color A, B and C. The chip has three contrast control
circuits for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment
output current ISEG increases linearly with the contrast step, which results in brighter of the color. This
relation is shown in Figure 26. In many situations, the output brightness of color A, B and C pixels are
different under the same segment current condition. The contrasts of color A, B and C are set such that
the brightness of each color are the same on the OLED panel
Solomon Systech
Apr 2005
P 40/59
Rev 1.0
SSD1339
Master Contrast Current Control (C7h)
This command is to control the segment output current by a scale factor. This factor is common to color
A, B and C. The chip has 16 master control steps. The factor is ranged from 1 [0000] to 16 [1111]. POR
is 16 [1111]. The smaller the master current value, the dimmer the OLED panel display is set. For
example, if original segment output current of a color is 160uA at scale factor = 16, setting scale factor to
8 to reduce the current to 80uA. Please see Figure 26.
Segment output current
200
Output current Iseg (uA)
Master current setting
0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
150
Change contrast control
moves along the contrast
curve with constant slope
100
50
0
00
0F
1F
2F
3F
4F
5F
6F
7F
8F
9F
Contrast setting
AF
BF
CF
DF
EF
FF
Change master current
selects different contrast
slope.
Figure 26 – Segment output current for different contrast control and master current setting
Set Multiplex Ratio (CAh)
This command switches default 1:132 multiplex mode to any multiplex mode from 16 to 132. For
example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the
ending of the enabled common pins are depended on the setting of “Display Offset” register programmed
by command A2h.
SSD1339
Rev 1.0
P 41/59
Apr 2005
Solomon Systech
Graphic Acceleration command set description
Draw Line (83h)
This command draws a line by the given start, end column and row coordinates and the color of the line.
Line
Color
Row 2,
Column 2
Row 1,
Column 1
Figure 27 – Example of draw line command
For example, the line above can be drawn by the following command sequence.
1. Enter into draw line mode by command 21h
2. Send column start address of line, column1, for example = 1h
3. Send row start address of line, row 1, for example = 10h
4. Send column end address of line, column 2, for example = 28h
5. Send row end address of line, row 2, for example = 4h
6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color
Draw Rectangle (84h)
Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline
and fill area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is
disabled, the enclosed area will not be filled.
Row 1,
Column 1
Filled
Color
Outline
Color
Row 2,
Column 2
Figure 28 – Example of draw rectangle command
The following example illustrates the rectangle drawing command sequence.
1. Enter the “draw rectangle mode” by execute the command 22h
2. Set the starting column coordinates, Column 1. e.g., 03h.
3. Set the starting row coordinates, Row 1. e.g., 02h.
4. Set the finishing column coordinates, Column 2. e.g., 12h
5. Set the finishing row coordinates, Row 2. e.g., 15h
6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color
Solomon Systech
Apr 2005
P 42/59
Rev 1.0
SSD1339
Draw Circle (86h)
By providing the center coordination (column and row address) and radius length, specify the outline and
fill area colors, a circle will be drawn with the colors specified.
Radius
Outline
Color
Filled
Color
Center
column &
row address
Figure 29 – Example of draw circle command
The following example illustrates the circle drawing command sequence.
1. Enter the “draw circle mode” by execute the command 86h
2. Set the circle center column coordinates, e.g., 03h.
3. Set the circle center row coordinates. e.g., 10h.
4. Set the radius of circle. e.g., 12h
5. Set the outline color C, B and A. e.g., (0d, 0d, 40d) for red color
6. Set the filled color C, B and A. e.g., (28d, 0d, 0d) for blue color
SSD1339
Rev 1.0
P 43/59
Apr 2005
Solomon Systech
Copy (8Ah)
Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2,
Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the
new image will overlap the original one.
The following example illustrates the copy procedure.
1. Enter the “copy mode” by execute the command 23h
2. Set the starting column coordinates, Column 1. E.g., 00h.
3. Set the starting row coordinates, Row 1. E.g., 00h.
4. Set the finishing column coordinates, Column 2. E.g., 05h
5. Set the finishing row coordinates, Row 2. E.g., 05h
6. Set the new column coordinates, Column 3. E.g., 03h
7. Set the new row coordinates, Row 3. E.g., 03h
Original
Image
Row 1,
Column 1
Row 3,
Column 3
New Copied
Image
Row 3 + Row 2,
Column 3 + Column 2
Figure 30 – Example of copy command
Dim Window (8Ch)
This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point
(Row 2, Column 2). After the execution of this command, the selected window area will become darker as
follow.
Table 5 – Result of change of brightness by dim window command
Original gray scale
GS0 ~ GS15
GS16 ~ GS19
GS20 ~ GS23
:
GS60 ~ GS63
New gray scale after dim window command
No change
GS4
GS5
:
GS15
Additional execution of this command over the same window area will not change the data content.
Solomon Systech
Apr 2005
P 44/59
Rev 1.0
SSD1339
Clear Window (8Eh)
This command sets the window area specify by starting point (Row 1, Column 1) and the ending point
(Row 2, Column 2) to clear the window display. The graphic display data RAM content of the specified
window area will be set to zero.
This command can be combined with Copy command to make as a “move” result. The following example
illustrates the copy plus clear procedure and results in moving the window object.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Enter the “copy mode” by execute the command 23h
Set the starting column coordinates, Column 1. E.g., 00h.
Set the starting row coordinates, Row 1. E.g., 00h.
Set the finishing column coordinates, Column 2. E.g., 05h
Set the finishing row coordinates, Row 2. E.g., 05h
Set the new column coordinates, Column 3. E.g., 06h
Set the new row coordinates, Row 3. E.g., 06h
Enter the “clear mode” by execute the command 24h
Set the starting column coordinates, Column 1. E.g., 00h.
Set the starting row coordinates, Row 1. E.g., 00h.
Set the finishing column coordinates, Column 2. E.g., 05h
Set the finishing row coordinates, Row 2. E.g., 05h
Row 1,
Column 1
Original
Image
New Copied
Image
Clear
Command
Row 3,
Column 3
Row 3 + Row 2,
Column 3 + Column 2
Figure 31 – Example of copy + clear = Move command
Fill Enable/Disable (92h)
This command has two functions.
• Enable/Disable fill (A[0])
0 = Disable filling of color into rectangle in draw rectangle command. (POR)
1 = Enable filling of color into rectangle in draw rectangle command.
• Enable/Disable reverse copy (A[4])
0 = Disable reverse copy (POR)
1 = During copy command, the new image colors are swapped such that “GS0” <-> “GS63”,
“GS1” <-> “GS62”, ….
SSD1339
Rev 1.0
P 45/59
Apr 2005
Solomon Systech
Horizontal Scroll (96h)
This command consists of 5 consecutive bytes to set up the horizontal scroll parameters. It determined
the scrolling start page, end page and the scrolling speed.
Before issuing this command, the horizontal scroll must be deactivated (9Eh). Otherwise, RAM content
may be corrupted.
Stop Moving (9Eh)
Stop motion of horizontal scrolling.
Start Moving (9Fh)
Start motion of horizontal scrolling. This command should only be issued after Horizontal scroll setup
parameters are defined.
The following actions are prohibited after the horizontal scroll is activated
1.
RAM access (Data write or read)
2.
Changing horizontal scroll setup parameters
The SSD1339 horizontal scroll is designed for 132 columns scrolling
Solomon Systech
Apr 2005
P 46/59
Rev 1.0
SSD1339
10. MAXIMUM RATINGS
Table 6 – Maximum ratings
(Voltage Reference to VSS)
Symbol
VDD
VCC
VREF
VCOMH
Vin
TA
Tstg
Parameter
Supply Voltage
Supply Voltage/Output voltage
SEG/COM output voltage
Input voltage
Operating Temperature
Storage Temperature Range
Value
-0.3 to +4
0 to 18
0 to 18
0 to 16
0 to 16
Vss-0.3 to Vdd+0.3
-40 to +90
-65 to +150
Unit
V
V
V
V
V
V
ºC
ºC
*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to
the limits in the Electrical Characteristics tables or Pin Description.
SSD1339
Rev 1.0
P 47/59
Apr 2005
Solomon Systech
11. DC CHARACTERISTICS
Table 7 – DC characteristics
(Unless otherwise specified, Voltage Referenced to VSS, VDD = 2.4 to 3.5V, TA = 25°C)
Symbol
Vcc
VDD
VDDIO
VOH
Parameter
Test Condition
Min
Operating Voltage
Logic Supply Voltage
Power Supply for I/O pins
High Logic Output Level
Iout =100uA, 3.3MHz
VOL
Low Logic Output Level
VIH
High Logic Input Level
VIL
Low Logic Input Level
ISLEEP
Sleep mode Current
ICC
VCC Supply Current
IDD
VDD Supply Current
ISEG
Segment Output Current
Setting
VDD=2.7V, VCC=11V, IREF=10uA,
All one pattern, Display on,
Segment pin under test is
connected with a 20KΩ resistive
load to Vcc.
Segment output current uniformity
Dev
Typ
Max
7
2.4
1.5
0.9*VDDIO
11
2.7
2.7
-
Iout =100uA, 3.3MHz
0
-
Iout =100uA, 3.3MHz
0.8*VDDIO
-
Iout =100uA, 3.3MHz
0
-
VDD=2.7V, Display OFF, No panel
attached
-
-
5
-
1.3
-
VDD=3.0V, VCC=18V, Display ON
Contrast =FF, No panel attached
VDD=3.0V, VCC=18V, Display ON
Contrast =FF, No panel attached
Contrast = FF
18
3.5
3.5
VDDIO
0.1*VDDI
O
VDDIO
0.2*VDDI
O
-
0.4
-
-
160
-
Contrast = AF
Unit
V
V
V
V
V
V
V
uA
mA
mA
uA
uA
110
uA
Contrast = 5F
-
60
-
Contrast = 00
-
0
-
uA
-
-
3
%
Dev = (ISEG – IMID)/IMID
IMID = (IMAX + IMIN)/2
ISEG[0:395] = Segment current at
contrast = FF
Adj. Dev
Adjacent pin output current
uniformity (contrast = FF)
Adj Dev = (I[n]-I[n+1]) / (I[n]+I[n+1])
-
±2.0
--
%
VCC
Booster output voltage (Vcc)
Vin=3V, L=22uH; R1=450Kohm;
R2=50Kohm;
Icc = 30mA(soaking)
-
12
-
V
Solomon Systech
Apr 2005
P 48/59
Rev 1.0
SSD1339
12. AC CHARACTERISTICS
Table 8 – AC characteristics
(Unless otherwise specified, Voltage Referenced to VSS, VDD = 2.4 to 3.5V, TA = 25°C.)
Symbol
Parameter
Test Condition
FOSC
Oscillation Frequency of Display
Timing Generator
FFRM
Frame Frequency for 132 MUX
Mode
Min
Typ
Max
Unit
Vdd = 2.7V
-
2.0
-
MHz
132RGB x 132 Graphic Display
Mode, Display ON, Internal
Oscillator Enabled
-
FOSC X
1/(D*K*132)
-
Hz
D: divide ratio (POR =1)
K: number of display clocks (POR=136, i.e. phase1 dclk+phase2 dclk+ phase3 dclk=4+7+125)
Refer to command table for detail description
SSD1339
Rev 1.0
P 49/59
Apr 2005
Solomon Systech
Table 9 – 6800-Series MPU parallel interface timing characteristics
(VDD - VSS = 2.4 to 3.5V, TA = 25°C)
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
PW CSL
PW CSH
tR
tF
Parameter
Min
Typ
Max
Unit
300
0
0
40
15
20
120
60
60
60
-
-
70
140
ns
ns
ns
ns
ns
ns
ns
ns
-
-
ns
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Chip Select Low Pulse Width (read)
Chip Select Low Pulse Width (write)
Chip Select High Pulse Width (read)
Chip Select High Pulse Width (write)
Rise Time
Fall Time
-
-
ns
-
15
15
ns
ns
D/C#
tAS
tAH
R/W#
E
tcycle
CS#
tR
tF
tDHW
tDSW
D0~D7(WRITE) *
Valid Data
tDHR
tACC
D0~D7(READ) *
PW CSH
PW CSL
Valid Data
tOH
* when 9 bit used: D0 ~ D8 instead; when 16 bit used: D0 ~ D15 instead; when 18 bit used: D0 ~ D17
instead.
Figure 32 – 6800-series MPU parallel interface characteristics
Solomon Systech
Apr 2005
P 50/59
Rev 1.0
SSD1339
Table 10 – 8080-Series MPU parallel interface timing characteristics
(VDD - VSS = 2.4 to 3.5V, TA = 25°C)
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
PW CSL
PW CSH
tR
tF
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Chip Select Low Pulse Width (read)
Chip Select Low Pulse Width (write)
Chip Select High Pulse Width (read)
Chip Select High Pulse Width (write)
Rise Time
Fall Time
Min
Typ
Max
Unit
300
0
0
40
15
20
120
60
60
60
-
-
70
140
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
ns
-
15
15
ns
ns
D/C
tAS
t AH
CS#
tF
tcycle
tR
PW CSL
RD#
PW CSH
WR#
tDSW
D0-D17
* (Write data to driver)
tDHW
Valid Data
D0-D17
tDHR
tACC
* (Read data from driver)
Valid Data
t
* when 8 bit used: D0 ~ D7 instead; when 9 bit used: D0 ~ D8 instead; when 16 bit used: D0 ~ D15 instead;
when 18 bit used: D0 ~ D17 instead.
Figure 33 – 8080-series MPU parallel interface characteristics
SSD1339
Rev 1.0
P 51/59
Apr 2005
Solomon Systech
Table 11 – Serial interface timing characteristics
(VDD - VSS = 2.4 to 3.5V, TA = 25°C)
Symbol
Parameter
250
tcycle
Clock Cycle Time
tAS
tAH
tCSS
tCSH
tDSW
tDHW
tCLKL
tCLKH
Address Setup Time
Address Hold Time
Chip Select Setup Time
Chip Select Hold Time
Write Data Setup Time
Write Data Hold Time
Clock Low Time
Clock High Time
Rise Time
Fall Time
tR
tF
Min
150
150
120
60
100
100
100
100
-
Typ
Max
Unit
-
-
ns
-
15
15
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
D/C#
tAS
tAH
tCSS
CS#
tCSH
tcycle
tCLK
tCLKH
SCLK(D0)
tF
tR
tDHW
tDSW
SDIN(D1)
Valid Data
CS#
SCLK(D0)
SDIN(D1)
D7
D6
D5
D4
D3
D2
D1
D0
Figure 34 – Serial interface characteristics
Solomon Systech
Apr 2005
P 52/59
Rev 1.0
SSD1339
13. APPLICATION EXAMPLE
The configuration for 8-bit 6800-parallel interface mode, externally VCC is shown in the following
diagram: (VDD = VDDIO = 3.0V, external VCC = 12V, IREF = 10uA)
COM1
.
COM131
SA0
SB0
SC0
.
.
.
.
.
.
.
.
.
.
SA131
SB131
SC131
COM130
.
COM0
Color OLED Panel
132RGB x 132
SSD1339Z
NC
VCC VCOMH NC D7~D0 E
RW# DC# RES# CS#
IREF
BS2
BS1
VDD VDDIO
VP_C VP_B VP_A VBREF RESE FB VDDB GDR VSS NC
C1
R1
C2
C3
D7~D0
E
VSS [GND]
RW# DC# RES# CS#
Pin connected to MCU interface: D0~D7, E, R/W#, D/C#, RES#, CS#
Pin internally connected to VDD: M/S#, CLS
Pin internally connected to VSS: VSSB, BGGND
Pin internally connected to VCC: VREF
Pin externally connected to VDD: BS0,1
Pin externally connected to VSS: BS2
Pin floated: VP_C, VP_B, VP_A, VBREF, RESE, FB, VDDB, GDR
C1~C3: 4.7uF
Voltage at IREF = VCC – 3V
R1 = (Voltage at IREF - VSS) / IREF = 910KΩ
Figure 35 – Application example for 8-bit 6800-parallel interface mode
SSD1339
Rev 1.0
P 53/59
Apr 2005
Solomon Systech
14. PACKAGE INFORMATION
SSD1339U3 Pin Assignment
Figure 36 - SSD1339U3 pin assignment
Solomon Systech
Apr 2005
P 54/59
Rev 1.0
SSD1339
Table 12 - SSD1339U3 pin assignment
Name
Pin
#
NC
VCC
COMH
VDDIO
VSL
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
E
R/W#
BS0
BS1
BS2
CS#
D/C#
RES#
IREF
VBREF
RESE
FB
VDDIO
GDR
VSS
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
SSD1339
Name
Pin
#
Name
Pin
#
Name
Pin
#
Name
Pin
#
Name
Pin
#
NC
NC
NC
NC
COM129
COM128
COM127
COM126
COM125
COM124
COM123
COM122
COM121
COM120
COM119
COM118
COM117
COM116
COM115
COM114
COM113
COM112
COM111
COM110
COM109
COM108
COM107
COM106
COM105
COM104
COM103
COM102
COM101
COM100
COM99
COM98
COM97
COM96
COM95
COM94
COM93
COM92
COM91
COM90
COM89
COM88
COM87
COM86
COM85
COM84
COM83
COM82
COM81
COM80
COM79
COM78
COM77
COM76
COM75
COM74
COM73
COM72
COM71
COM70
COM69
COM68
COM67
COM66
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
NC
NC
NC
SA127
SC126
SB126
SA126
SC125
SB125
SA125
SC124
SB124
SA124
SC123
SB123
SA123
SC122
SB122
SA122
SC121
SB121
SA121
SC120
SB120
SA120
SC119
SB119
SA119
SC118
SB118
SA118
SC117
SB117
SA117
SC116
SB116
SA116
SC115
SB115
SA115
SC114
SB114
SA114
SC113
SB113
SA113
SC112
SB112
SA112
SC111
SB111
SA111
SC110
SB110
SA110
SC109
SB109
SA109
SC108
SB108
SA108
SC107
SB107
SA107
SC106
SB106
SA106
SC105
SB105
SA105
SC104
SB104
SA104
SC103
SB103
SA103
SC102
SB102
SA102
SC101
SB101
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
SA101
SC100
SB100
SA100
SC99
SB99
SA99
SC98
SB98
SA98
SC97
SB97
SA97
SC96
SB96
SA96
SC95
SB95
SA95
SC94
SB94
SA94
SC93
SB93
SA93
SC92
SB92
SA92
SC91
SB91
SA91
SC90
SB90
SA90
SC89
SB89
SA89
SC88
SB88
SA88
SC87
SB87
SA87
SC86
SB86
SA86
SC85
SB85
SA85
SC84
SB84
SA84
SC83
SB83
SA83
SC82
SB82
SA82
SC81
SB81
SA81
SC80
SB80
SA80
SC79
SB79
SA79
SC78
SB78
SA78
SC77
SB77
SA77
SC76
SB76
SA76
SC75
SB75
SA75
SC74
SB74
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
SA74
SC73
SB73
SA73
SC72
SB72
SA72
SC71
SB71
SA71
SC70
SB70
SA70
SC69
SB69
SA69
SC68
SB68
SA68
SC67
SB67
SA67
SC66
SB66
SA66
SC65
SB65
SA65
SC64
SB64
SA64
NC
SC63
SB63
SA63
SC62
SB62
SA62
SC61
SB61
SA61
SC60
SB60
SA60
SC59
SB59
SA59
SC58
SB58
SA58
SC57
SB57
SA57
SC56
SB56
SA56
SC55
SB55
SA55
SC54
SB54
SA54
SC53
SB53
SA53
SC52
SB52
SA52
SC51
SB51
SA51
SC50
SB50
SA50
SC49
SB49
SA49
SC48
SB48
SA48
SC47
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
SB47
SA47
SC46
SB46
SA46
SC45
SB45
SA45
SC44
SB44
SA44
SC43
SB43
SA43
SC42
SB42
SA42
SC41
SB41
SA41
SC40
SB40
SA40
SC39
SB39
SA39
SC38
SB38
SA38
SC37
SB37
SA37
SC36
SB36
SA36
SC35
SB35
SA35
SC34
SB34
SA34
SC33
SB33
SA33
SC32
SB32
SA32
SC31
SB31
SA31
SC30
SB30
SA30
SC29
SB29
SA29
SC28
SB28
SA28
SC27
SB27
SA27
SC26
SB26
SA26
SC25
SB25
SA25
SC24
SB24
SA24
SC23
SB23
SA23
SC22
SB22
SA22
SC21
SB21
SA21
SC20
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
Rev 1.0
P 55/59
Apr 2005
Name
Pin
#
SB20
SA20
SC19
SB19
SA19
SC18
SB18
SA18
SC17
SB17
SA17
SC16
SB16
SA16
SC15
SB15
SA15
SC14
SB14
SA14
SC13
SB13
SA13
SC12
SB12
SA12
SC11
SB11
SA11
SC10
SB10
SA10
SC9
SB9
SA9
SC8
SB8
SA8
SC7
SB7
SA7
SC6
SB6
SA6
SC5
SB5
SA5
SC4
SB4
SA4
SC3
SB3
SA3
SC2
SB2
SA2
SC1
SB1
SA1
SC0
SB0
SA0
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
Name
Pin
#
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
NC
NC
NC
NC
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
Solomon Systech
SSD1339U3 COF details dimensions
Figure 37 - SSD1339U3 detail dimensions
1
2
38
39
Suggested connector to be used: KYOCERA – 046295041000883
Solomon Systech
Apr 2005
P 56/59
Rev 1.0
SSD1339
Contact Side
JAE
JACS-10142
SSD1339
Rev 1.0
P 57/59
Apr 2005
Solomon Systech
Solomon Systech
Apr 2005
P 58/59
Rev 1.0
SSD1339
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of
others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the
design or manufacture of the part.
http://www.solomon-systech.com
SSD1339
Rev 1.0
P 59/59
Apr 2005
Solomon Systech