SSD1331 - HP InfoTech S.R.L.

SOLOMON SYSTECH
SEMICONDUCTOR TECHNICAL DATA
SSD1331
Product Preview
96RGB x 64 Dot Matrix
OLED/PLED Segment/Common Driver with Controller
This document contains information on a product under development. Solomon Systech reserves the right to change
or discontinue this product without notice.
http://www.solomon-systech.com
SSD1331
Rev 0.13 P 1/64
Mar 2006
Copyright ¤ 2006 Solomon Systech Limited
CONTENTS
CONTENTS ......................................................................................................................................................... 2
1
GERENAL INFORMATION ..................................................................................................................... 6
2
FEATURES .............................................................................................................................................. 6
3
ORDERING INFORMATION ................................................................................................................... 6
4
BLOCK DIAGRAM .................................................................................................................................. 7
5
SSD1331Z GOLD BUMP DIE PAD ASSIGNMENT................................................................................ 8
6
PIN DESCRIPTION................................................................................................................................ 12
7
FUNCTIONAL BLOCK DESCRIPTIONS .............................................................................................. 15
7.1
MCU INTERFACE SELECTION ................................................................................................................. 15
7.1.1
6800-series Parallel Interface ...................................................................................................... 15
7.1.2
8080-series Parallel Interface ...................................................................................................... 16
7.1.3
Serial Interface............................................................................................................................. 17
7.2
COMMAND DECODER .............................................................................................................................18
7.3
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................................................ 18
7.3.1
Oscillator ...................................................................................................................................... 18
7.3.2
FR synchronization ...................................................................................................................... 19
7.4
RESET CIRCUIT ..................................................................................................................................... 19
7.5
GRAPHIC DISPLAY DATA RAM (GDDRAM)............................................................................................ 20
7.5.1
GDDRAM structure ...................................................................................................................... 20
7.5.2
Data bus to RAM mapping under different input mode ............................................................... 20
7.5.3
RAM mapping and Different color depth mode............................................................................ 21
7.6
GRAY SCALE DECODER .........................................................................................................................21
7.7
SEG / COM DRIVING BLOCK .................................................................................................................. 23
7.8
COMMON AND SEGMENT DRIVERS .......................................................................................................... 24
7.9
POWER ON AND OFF SEQUENCE ........................................................................................................... 27
8
COMMAND TABLE ............................................................................................................................... 28
8.1
9
DATA READ / WRITE ..............................................................................................................................34
COMMAND DESCRIPTIONS ................................................................................................................ 35
9.1
FUNDAMENTAL COMMAND ......................................................................................................................35
9.1.1
Set Column Address (15h)........................................................................................................... 35
9.1.2
Set Row Address (75h)................................................................................................................ 35
9.1.3
Set Contrast for Color A, B, C (81h, 82h, 83h) ...........................................................................36
9.1.4
Master Current Control (87h) ....................................................................................................... 36
9.1.5
Set Second Pre-charge Speed for Color A, B, C (8Ah)............................................................... 37
9.1.6
Set Re-map & Data Format (A0h) ............................................................................................... 37
9.1.7
Set Display Start Line (A1h)......................................................................................................... 42
9.1.8
Set Display Offset (A2h) .............................................................................................................. 42
9.1.9
Set Display Mode (A4h ~ A7h) .................................................................................................... 45
9.1.10 Set Multiplex Ratio (A8h) ............................................................................................................. 45
9.1.11 Set Master Configuration (ADh)................................................................................................... 45
9.1.12 Set Display On/Off (AEh / AFh) ................................................................................................... 45
9.1.13 Power Save Mode (B0h).............................................................................................................. 45
9.1.14 Phase 1 and 2 Period Adjustment (B1h) ..................................................................................... 45
9.1.15 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h) ....................................................... 46
9.1.16 Set Gray Scale Table (B8h) ......................................................................................................... 46
9.1.17 Enable Linear Gray Scale Table (B9h) ........................................................................................ 47
9.1.18 Set Pre-charge voltage (BBh) ...................................................................................................... 47
9.1.19 Set VCOMH Voltage (BEh)..............................................................................................................47
9.1.20 NOP (BCh, BDh, E3h) ................................................................................................................. 47
9.1.21 Set Command Lock (FDh) ........................................................................................................... 47
9.2
GRAPHIC ACCELERATION COMMAND SET DESCRIPTION.......................................................... 48
9.2.1
Draw Line (21h) ........................................................................................................................... 48
9.2.2
Draw Rectangle (22h) .................................................................................................................. 48
9.2.3
Copy (23h) ................................................................................................................................... 49
Solomon Systech
Mar 2006
P 2/64
Rev 0.13
SSD1331
9.2.4
9.2.5
9.2.6
9.2.7
9.2.8
9.2.9
Dim Window (24h) ....................................................................................................................... 49
Clear Window (25h) ..................................................................................................................... 50
Fill Enable/Disable (26h).............................................................................................................. 50
Continuous Horizontal & Vertical Scrolling Setup (27h) .............................................................. 51
Deactivate scrolling (2Eh) ............................................................................................................ 51
Activate scrolling (2Fh) ................................................................................................................ 51
10
MAXIMUM RATINGS............................................................................................................................. 52
11
DC CHARACTERISTICS....................................................................................................................... 53
12
AC CHARACTERISTICS....................................................................................................................... 54
13
APPLICATION EXAMPLE .................................................................................................................... 58
14
PACKAGE OPTIONS ............................................................................................................................ 59
14.1
14.2
14.3
SSD1331Z DIE TRAY INFORMATION ................................................................................................... 59
SSD1331U1R1 COF PACKAGE DIMENSIONS.............................................................................. 60
SSD1331U1R1 COF PACKAGE PIN ASSIGNMENT...................................................................... 62
SSD1331
Rev 0.13
P 3/64
Mar 2006
Solomon Systech
TABLES
Table 1 - Ordering Information ............................................................................................................................ 6
Table 2 - SSD1331Z Die Pad Coordinates.......................................................................................................... 9
Table 3 - Bus Interface selection ....................................................................................................................... 12
Table 4 - MCU interface assignment under different bus interface mode......................................................... 15
Table 5 - Control pins of 6800 interface ............................................................................................................ 15
Table 6 - Control pins of 8080 interface ............................................................................................................ 16
Table 7 - Control pins of 8080 interface (Alternative form)................................................................................ 17
Table 8 - Control pins of Serial interface ........................................................................................................... 17
Table 9 - Data bus usage under different bus width and color depth mode...................................................... 20
Table 10 - Command Table............................................................................................................................... 28
Table 11 - Address increment table (Automatic) ............................................................................................... 34
Table 12 - Illustration of different COM output settings ..................................................................................... 39
Table 13 - Example of Set Display Offset and Display Start Line with no Remap............................................ 43
Table 14 - Example of Set Display Offset and Display Start Line with Remap ................................................. 44
Table 15 - Result of Change of Brightness by Dim Window Command............................................................ 49
Table 16 - Maximum Ratings............................................................................................................................. 52
Table 17 - DC Characteristics ........................................................................................................................... 53
Table 18 - AC Characteristics............................................................................................................................ 54
Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics ............................................................ 55
Table 20 - 8080-Series MPU Parallel Interface Timing Characteristics ............................................................ 56
Table 21 - Serial Interface Timing Characteristics ............................................................................................ 57
Table 22 - SSD1331U1R1 pin assignment ....................................................................................................... 63
Solomon Systech
Mar 2006
P 4/64
Rev 0.13
SSD1331
FIGURES
Figure 1 - SSD1331 Block Diagram .................................................................................................................... 7
Figure 2 - SSD1331Z Die Drawing ...................................................................................................................... 8
Figure 3 - SSD1331Z Alignment mark dimensions ........................................................................................... 11
Figure 4 - Display data read back procedure - insertion of dummy read .......................................................... 16
Figure 5 - Display data read back procedure - insertion of dummy read .......................................................... 16
Figure 6 - Write procedure in SPI mode ............................................................................................................ 17
Figure 7 - Oscillator Circuit ................................................................................................................................ 18
Figure 8 - 65k Color Depth Graphic Display Data RAM Structure .................................................................... 20
Figure 9 - 256-color mode mapping .................................................................................................................. 21
Figure 10 - Relation between GDRAM content and gray scale table entry for three colors in 65K color mode21
Figure 11 - Illustration of relation between graphic display RAM value and gray scale control ........................ 22
Figure 12 - IREF Current Setting by Resistor Value ............................................................................................ 23
Figure 13 - ISEG current vs VCC setting at constant IREF, Contrast = FFh ........................................................... 23
Figure 14 - Segment and Common Driver Block Diagram ................................................................................ 24
Figure 15 - Segment and Common Driver Signal Waveform ............................................................................ 25
Figure 16 - Gray Scale Control by PWM in Segment........................................................................................ 26
Figure 17 : The Power ON sequence ................................................................................................................ 27
Figure 18 : The Power OFF sequence .............................................................................................................. 27
Figure 19 - Example of Column and Row Address Pointer Movement............................................................. 35
Figure 20 - Segment Output Current for Different Contrast Control and Master Current Setting ..................... 36
Figure 21 - Effect of setting the second pre-charge under different speeds ..................................................... 37
Figure 22 - Address Pointer Movement of Horizontal Address Increment Mode .............................................. 37
Figure 23 - Address Pointer Movement of Vertical Address Increment Mode .................................................. 37
Figure 24 - Example of Column Address Mapping............................................................................................ 38
Figure 25 - COM Pins Hardware Configuration (MUX ratio: 64) ....................................................................... 40
Figure 26 - Typical Oscillator frequency adjustment by B3 command .............................................................. 46
Figure 27 - Example of gamma correction by gray scale table setting ............................................................. 47
Figure 28 – Typical Pre-charge voltage level setting by command BBh........................................................... 47
Figure 29 - Example of Draw Line Command ................................................................................................... 48
Figure 30 - Example of Draw Rectangle Command.......................................................................................... 48
Figure 31 - Example of Copy Command ........................................................................................................... 49
Figure 32 - Example of Copy + Clear = Move Command ................................................................................ 50
Figure 33 - Examples of Continuous Horizontal and Vertical Scrolling command setup .................................. 51
Figure 34 - 6800-series parallel interface characteristics.................................................................................. 55
Figure 35 - 8080-series parallel interface characteristics.................................................................................. 56
Figure 36 - Serial interface characteristics ........................................................................................................ 57
Figure 37 - Application Example for SSD1331U1R1......................................................................................... 58
Figure 38 - Die Tray Information........................................................................................................................ 59
Figure 39 - SSD1331U1R1 outline drawing ...................................................................................................... 60
Figure 40 - SSD1331U1R1 pin assignment drawing......................................................................................... 62
SSD1331
Rev 0.13
P 5/64
Mar 2006
Solomon Systech
1
GERENAL INFORMATION
The SSD1331 is a single chip CMOS OLED/PLED driver with 288 segments and 64 commons output,
supporting up to 96RGB x 64 dot matrix display. This chip is designed for Common Cathode type
OLED/PLED panel.
The SSD1331 had embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 9, 16 bits 8080 /
6800 parallel interface as well as serial peripheral interface. It has 256-step contrast and 65K color control.
To facilitate communication between lower operating voltages MCU, it has separate power for I/O interface
logic. SSD1331 is suitable for mobile phones, MP3, MP4 and other industrial devices.
2
FEATURES
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
3
Resolution: 96RGB x 64 dot matrix panel
65k color depth support by embedded 96x64x16 bit GDDRAM display buffer
Power supply:
for IC logic
o VDD = 2.4V to 3.5V
o VCC = 8.0V to 16.0V
for Panel driving
o VDDIO = 1.6V to VDD
for MCU interface
Segment maximum source current: 200uA
Common maximum sink current: 60mA
256 step contrast control for the each color component plus 16 step master current control
Pin selectable MCU interface
o 8/9/16 bits 6800-series parallel Interface
o 8/9/16 bits 8080-series Parallel Interface
o Serial Peripheral Interface
Color swapping function (RGB <-> BGR)
Graphic Accelerating Command (GAC) set with Continuous Horizontal, Vertical and Diagonal
Scrolling
Programmable Frame Rate
Wide range of operating temperature: -40 to 85 °C
ORDERING INFORMATION
Table 1 - Ordering Information
Ordering Part Number
SEG
COM
Package Form
Reference
SSD1331Z
96x3
64
COG
Page 8, 59
SSD1331U1R1
Solomon Systech
96x3
64
COF
Page 60
Remark
•
•
•
35mm film, 5 sprocket hole
8 bit or SPI interface
Output lead pitch: 0.06mm for SEG,
0.09mm for COM
Mar 2006
P 6/64
Rev 0.13
SSD1331
4
BLOCK DIAGRAM
SSD1331
Rev 0.13
P 7/64
SEG/COM Driving block
VD D B
VS S B
GDR
FB
VB R E F
Mar 2006
SC95
SB95
SA95
SC94
SB94
SA94
SC93
SB93
SA93
.
.
.
SC2
SB2
SA2
SC1
SB1
SA1
SC0
SB0
SA0
COM0
COM2
COM4
.
.
.
COM58
COM60
COM62
IR E F
VC O M H
Display Timing
Generator
FR
CL
GP1
CLS
GP0
Oscillator
Command Decoder
VDDIO
VSS
VLSS
AVDD
Common Drivers
(odd)
VCC
VDD
Segment Drivers
D[15:0]
COM63
COM61
COM59
.
.
.
COM5
COM3
COM1
Common Drivers
(Even)
BS[3:0]
GDDRAM
MCU Interface
RES#
CS#
D/C#
E(RD#)
R/W #(WR#)
Gray Scale Decoder
Figure 1 - SSD1331 Block Diagram
Solomon Systech
5
SSD1331Z GOLD BUMP DIE PAD ASSIGNMENT
Figure 2 - SSD1331Z Die Drawing
Pad 1
Die size
Die height
Min I/O pad pitch
Min SEG pad pitch
Min COM pad pitch
Bump height
13.1mm x 1.58mm
457um
76.2 um
40.2 um
41.8 um
Nominal 15um
Bump size
Pad 1-163
Pad164-195, 486-517
Pad 196-485
50um x 72um
72um x 28um
28um x 72um
Alignment mark
(5446.0, -402.0)
(-5446.0, -402.0)
+ shape
+ shape
SSD1331Z
Solomon Systech
75um x 75um
75um x 75um
Y
X
Pad 1,2,3,…->163
Gold Bumps face up
Mar 2006
P 8/64
Rev 0.13
SSD1331
Table 2 - SSD1331Z Die Pad Coordinates
P a d no .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
P ad N ame
NC
NC
NC
NC
NC
NC
VCC
VCC
VCC
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VLSS
VSS
VSS
VSS
B GGND
VDD
VDD
VDD
VDDIO
VDDIO
VDDIO
VCC
VCC
VCC
VSSB
VSSB
VSSB
GDR
GDR
GDR
GDR
GDR
GDR
GDR
VDDB
VDDB
VDDB
VDDB
VDDB
VDD
VDDIO
VDD
VDD
FB
VB REF
VSS
GP 0
GP 1
VDDIO
VCIR
VCIR
VCIR
VCIR
VCIR
VDD
VDD
VDD
VDD
A VDD
A VDD
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
VDDIO
B S0
VSS
B S1
VDDIO
SSD1331
X - A xis
-6319.4
-6243.2
-6167.0
-6090.8
-6014.6
-5791.2
-5715.0
-5638.8
-5562.6
-5486.4
-5410.2
-5334.0
-5257.8
-5181.6
-5105.4
-5029.2
-4953.0
-4876.8
-4800.6
-4724.4
-4648.2
-4572.0
-4495.8
-4419.6
-4343.4
-4267.2
-4191.0
-4114.8
-4038.6
-3962.4
-3886.2
-3810.0
-3733.8
-3657.6
-3581.4
-3505.2
-3429.0
-3352.8
-3276.6
-3200.4
-3124.2
-3048.0
-2971.8
-2895.6
-2819.4
-2743.2
-2667.0
-2590.8
-2514.6
-2438.4
-2362.2
-2286.0
-2209.8
-2133.6
-2057.4
-1981.2
-1905.0
-1828.8
-1752.6
-1676.4
-1600.2
-1524.0
-1447.8
-1371.6
-1295.4
-1219.2
-1143.0
-1066.8
-990.6
-914.4
-838.2
-762.0
-685.8
-609.6
-533.4
-457.2
-381.0
-304.8
-228.6
-152.4
Rev 0.13
Y - A xis
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
P 9/64
P a d no .
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Mar 2006
P ad N ame
B S2
VSS
B S3
VDDIO
VDDIO
IREF
VCC
VCC
VCC
FR
CL
VSS
CLS
VDDIO
VDDIO
VDDIO
VDDIO
CSB
VSS
RESB
VDDIO
VDDIO
DC
VSS
RW
E
VDDIO
VDD
VDD
VDD
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
VSS
TR11
TR10
TR9
TR8
TR7
TR6
VSS
TR5
TR4
TR3
TR2
TR1
TR0
VSS
VCOM H
VCOM H
VCOM H
VDD
VDD
VDDIO
VDDIO
VCC
VCC
VCC
VCC
VCC
VCC
NC
VLSS
VLSS
NC
NC
NC
X - A xis
-76.2
0.0
76.2
152.4
228.6
304.8
381.0
457.2
533.4
609.6
685.8
762.0
838.2
914.4
990.6
1066.8
1143.0
1219.2
1295.4
1371.6
1447.8
1524.0
1600.2
1676.4
1752.6
1828.8
1905.0
1981.2
2057.4
2133.6
2209.8
2286.0
2362.2
2438.4
2514.6
2590.8
2667.0
2743.2
2819.4
2895.6
2971.8
3048.0
3124.2
3200.4
3276.6
3352.8
3429.0
3505.2
3581.4
3657.6
3733.8
3810.0
3886.2
3962.4
4038.6
4114.8
4191.0
4267.2
4343.4
4419.6
4495.8
4572.0
4648.2
4724.4
4800.6
4876.8
4953.0
5029.2
5105.4
5181.6
5257.8
5334.0
5410.2
5486.4
5562.6
5638.8
5715.0
5791.2
6014.6
6090.8
Y - A xis
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
-712.5
P a d no .
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
P ad N ame
NC
NC
NC
COM 31
COM 30
COM 29
COM 28
COM 27
COM 26
COM 25
COM 24
COM 23
COM 22
COM 21
COM 20
COM 19
COM 18
COM 17
COM 16
COM 15
COM 14
COM 13
COM 12
COM 11
COM 10
COM 9
COM 8
COM 7
COM 6
COM 5
COM 4
COM 3
COM 2
COM 1
COM 0
VLSS
SA 0
SB 0
SC0
SA 1
SB 1
SC1
SA 2
SB 2
SC2
SA 3
SB 3
SC3
SA 4
SB 4
SC4
SA 5
SB 5
SC5
SA 6
SB 6
SC6
SA 7
SB 7
SC7
SA 8
SB 8
SC8
SA 9
SB 9
SC9
SA 10
SB 10
SC10
SA 11
SB 11
SC11
SA 12
SB 12
SC12
SA 13
SB 13
SC13
SA 14
SB 14
X - A xis
6167.0
6243.2
6319.4
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
6420.1
5908.5
5828.1
5787.9
5747.7
5707.5
5667.3
5627.1
5586.9
5546.7
5506.5
5466.3
5426.1
5385.9
5345.7
5305.5
5265.3
5225.1
5184.9
5144.7
5104.5
5064.3
5024.1
4983.9
4943.7
4903.5
4863.3
4823.1
4782.9
4742.7
4702.5
4662.3
4622.1
4581.9
4541.7
4501.5
4461.3
4421.1
4380.9
4340.7
4300.5
4260.3
4220.1
4179.9
4139.7
4099.5
Y - A xis
-712.5
-712.5
-712.5
-647.9
-606.1
-564.3
-522.5
-480.7
-438.9
-397.1
-355.3
-313.5
-271.7
-229.9
-188.1
-146.3
-104.5
-62.7
-20.9
20.9
62.7
104.5
146.3
188.1
229.9
271.7
313.5
355.3
397.1
438.9
480.7
522.5
564.3
606.1
647.9
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
Solomon Systech
P a d no .
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
P ad N ame
SC14
SA 15
SB 15
SC15
SA 16
SB 16
SC16
SA 17
SB 17
SC17
SA 18
SB 18
SC18
SA 19
SB 19
SC19
SA 20
SB 20
SC20
SA 21
SB 21
SC21
SA 22
SB 22
SC22
SA 23
SB 23
SC23
SA 24
SB 24
SC24
SA 25
SB 25
SC25
SA 26
SB 26
SC26
SA 27
SB 27
SC27
SA 28
SB 28
SC28
SA 29
SB 29
SC29
SA 30
SB 30
SC30
SA 31
SB 31
SC31
SA 32
SB 32
SC32
SA 33
SB 33
SC33
SA 34
SB 34
SC34
SA 35
SB 35
SC35
SA 36
SB 36
SC36
SA 37
SB 37
SC37
SA 38
SB 38
SC38
SA 39
SB 39
SC39
SA 40
SB 40
SC40
SA 41
X - A xis
4059.3
4019.1
3978.9
3938.7
3898.5
3858.3
3818.1
3777.9
3737.7
3697.5
3657.3
3617.1
3576.9
3536.7
3496.5
3456.3
3416.1
3375.9
3335.7
3295.5
3255.3
3215.1
3174.9
3134.7
3094.5
3054.3
3014.1
2973.9
2933.7
2893.5
2853.3
2813.1
2772.9
2732.7
2692.5
2652.3
2612.1
2571.9
2531.7
2491.5
2451.3
2411.1
2370.9
2330.7
2290.5
2250.3
2210.1
2169.9
2129.7
2089.5
2049.3
2009.1
1968.9
1928.7
1888.5
1848.3
1808.1
1767.9
1727.7
1687.5
1647.3
1607.1
1566.9
1526.7
1486.5
1446.3
1406.1
1365.9
1325.7
1285.5
1245.3
1205.1
1164.9
1124.7
1084.5
1044.3
1004.1
963.9
923.7
883.5
Solomon Systech
Y - A xis
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
P a d no .
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
P ad N ame
SB 41
SC41
SA 42
SB 42
SC42
SA 43
SB 43
SC43
SA 44
SB 44
SC44
SA 45
SB 45
SC45
SA 46
SB 46
SC46
SA 47
SB 47
SC47
SA 48
SB 48
SC48
SA 49
SB 49
SC49
SA 50
SB 50
SC50
SA 51
SB 51
SC51
SA 52
SB 52
SC52
SA 53
SB 53
SC53
SA 54
SB 54
SC54
SA 55
SB 55
SC55
SA 56
SB 56
SC56
SA 57
SB 57
SC57
SA 58
SB 58
SC58
SA 59
SB 59
SC59
SA 60
SB 60
SC60
SA 61
SB 61
SC61
SA 62
SB 62
SC62
SA 63
SB 63
SC63
SA 64
SB 64
SC64
SA 65
SB 65
SC65
SA 66
SB 66
SC66
SA 67
SB 67
SC67
X - A xis
843.3
803.1
762.9
722.7
682.5
642.3
602.1
561.9
521.7
481.5
441.3
401.1
360.9
320.7
280.5
240.3
200.1
159.9
119.7
79.5
-81.3
-121.5
-161.7
-201.9
-242.1
-282.3
-322.5
-362.7
-402.9
-443.1
-483.3
-523.5
-563.7
-603.9
-644.1
-684.3
-724.5
-764.7
-804.9
-845.1
-885.3
-925.5
-965.7
-1005.9
-1046.1
-1086.3
-1126.5
-1166.7
-1206.9
-1247.1
-1287.3
-1327.5
-1367.7
-1407.9
-1448.1
-1488.3
-1528.5
-1568.7
-1608.9
-1649.1
-1689.3
-1729.5
-1769.7
-1809.9
-1850.1
-1890.3
-1930.5
-1970.7
-2010.9
-2051.1
-2091.3
-2131.5
-2171.7
-2211.9
-2252.1
-2292.3
-2332.5
-2372.7
-2412.9
-2453.1
Y - A xis
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
P a d no .
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
Mar 2006 P 10/64
P ad N ame
SA 68
SB 68
SC68
SA 69
SB 69
SC69
SA 70
SB 70
SC70
SA 71
SB 71
SC71
SA 72
SB 72
SC72
SA 73
SB 73
SC73
SA 74
SB 74
SC74
SA 75
SB 75
SC75
SA 76
SB 76
SC76
SA 77
SB 77
SC77
SA 78
SB 78
SC78
SA 79
SB 79
SC79
SA 80
SB 80
SC80
SA 81
SB 81
SC81
SA 82
SB 82
SC82
SA 83
SB 83
SC83
SA 84
SB 84
SC84
SA 85
SB 85
SC85
SA 86
SB 86
SC86
SA 87
SB 87
SC87
SA 88
SB 88
SC88
SA 89
SB 89
SC89
SA 90
SB 90
SC90
SA 91
SB 91
SC91
SA 92
SB 92
SC92
SA 93
SB 93
SC93
SA 94
SB 94
Rev 0.13
X - A xis
-2493.3
-2533.5
-2573.7
-2613.9
-2654.1
-2694.3
-2734.5
-2774.7
-2814.9
-2855.1
-2895.3
-2935.5
-2975.7
-3015.9
-3056.1
-3096.3
-3136.5
-3176.7
-3216.9
-3257.1
-3297.3
-3337.5
-3377.7
-3417.9
-3458.1
-3498.3
-3538.5
-3578.7
-3618.9
-3659.1
-3699.3
-3739.5
-3779.7
-3819.9
-3860.1
-3900.3
-3940.5
-3980.7
-4020.9
-4061.1
-4101.3
-4141.5
-4181.7
-4221.9
-4262.1
-4302.3
-4342.5
-4382.7
-4422.9
-4463.1
-4503.3
-4543.5
-4583.7
-4623.9
-4664.1
-4704.3
-4744.5
-4784.7
-4824.9
-4865.1
-4905.3
-4945.5
-4985.7
-5025.9
-5066.1
-5106.3
-5146.5
-5186.7
-5226.9
-5267.1
-5307.3
-5347.5
-5387.7
-5427.9
-5468.1
-5508.3
-5548.5
-5588.7
-5628.9
-5669.1
Y - A xis
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
643.6
SSD1331
P a d no .
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
P ad N ame
SC94
SA 95
SB 95
SC95
VLSS
COM 32
COM 33
COM 34
COM 35
COM 36
COM 37
COM 38
COM 39
COM 40
COM 41
COM 42
COM 43
COM 44
COM 45
COM 46
COM 47
COM 48
COM 49
COM 50
COM 51
COM 52
COM 53
COM 54
COM 55
COM 56
COM 57
COM 58
COM 59
COM 60
COM 61
COM 62
COM 63
X - A xis
-5709.3
-5749.5
-5789.7
-5829.9
-5910.3
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
-6420.1
Y - A xis
643.6
643.6
643.6
643.6
643.6
647.9
606.1
564.3
522.5
480.7
438.9
397.1
355.3
313.5
271.7
229.9
188.1
146.3
104.5
62.7
20.9
-20.9
-62.7
-104.5
-146.3
-188.1
-229.9
-271.7
-313.5
-355.3
-397.1
-438.9
-480.7
-522.5
-564.3
-606.1
-647.9
Figure 3 - SSD1331Z Alignment mark dimensions
+ shape
Unit in um
SSD1331
Rev 0.13
P 11/64
Mar 2006
Solomon Systech
6
PIN DESCRIPTION
Pin Name
VDD
Pin Type Description
Power Power supply pin for core VDD
AVDD
VDDIO
Power
Power
Analog power supply. It must be connected to VDD during operation.
Power supply for interface logic level. It should be match with the MCU interface
voltage level.
VDDIO must always be equal or lower than VDD.
VCC
Power
Power supply for panel driving voltage. This is also the most positive power
voltage supply pin.
VSS
Power
Ground pin
VLSS
Power
Analog system ground pin.
VCOMH
O
COM signal deselected voltage level.
A capacitor should be connected between this pin and VSS.
BGGND
Power
Connect to Ground
VDDB
Power
Reserved pin. It should be connect to VDD externally.
VSSB
Power
Reserved pin. It should be connected to VSS externally.
GDR
O
Reserved pin. Keep NC (i.e. no connection).
FB
I
Reserved pin. Keep NC (i.e. no connection).
VBREF
O
Reserved pin. Keep NC (i.e. no connection).
GP0
I/O
Reserved pin. Keep NC (i.e. no connection).
GP1
I/O
Reserved pin. Keep NC (i.e. no connection).
VCIR
O
Reserved pin. Keep NC (i.e. no connection).
BS[3:0]
I
MCU bus interface selection pins.
Table 3 - Bus Interface selection
BS[3:0]
0000
0100
0101
0110
0111
1100
1110
IREF
I
Bus Interface Selection
SPI
8-bit 6800 parallel
16-bit 6800 parallel
8-bit 8080 parallel
16-bit 8080 parallel
9-bit 6800 parallel
9-bit 8080 parallel
This pin is the segment output current reference pin.
A resistor should be connected between this pin and VSS to maintain the IREF
current at 10uA. Please refer to Figure 12 for the details formula of resistor
value.
Solomon Systech
Mar 2006 P 12/64
Rev 0.13
SSD1331
Pin Name
FR
Pin Type Description
O
This pin outputs RAM write synchronization signal. Proper timing between MCU
data writing and frame display timing can be achieve to prevent tearing effect.
Keep NC if not used.
Refer to section 7.3.2 for details usage.
CL
I
External clock input pin.
When internal clock is enable, this pin is not used and should be kept NC.
When internal clock is disable, this pin is the external clock source input pin.
CLS
I
Internal clock selection pin.
When this pin is pulled high (i.e. connect to VDDIO), internal oscillator is enable
(normal operation).
When this pin is pulled low, an external clock signal should be connected to CL.
CS#
I
This pin is the chip select input connecting to the MCU.
RES#
I
This pin is reset signal input.
When the pin is low, initialization of the chip is executed.
Keep this pin high (i.e. connect to VDDIO) during normal operation.
D/C#
I
This pin is Data/Command control pin connecting to the MCU.
When the pin is pulled high (i.e. connect to VDDIO), the data at D[15:0]will be
interpreted as display data.
When the pin is pulled low, the data at D[15:0] will be interpreted as command.
R/W# (WR#)
I
This pin is read / write control input pin connecting to the MCU interface.
When interfacing to a 6800-series microprocessor, this pin will be used as
Read/Write (R/W#) selection input. Read mode will be carried out when this pin
is pulled high (i.e. connect to VDDIO) and write mode when low.
When 8080 interface mode is selected, this pin will be the Write (WR#) input.
Data write operation is initiated when this pin is pulled low and the chip is
selected.
When serial interface is selected, this pin R/W#(WR#) must be connected to
VSS.
E (RD#)
I
This pin is MCU interface input.
When interfacing to a 6800-series microprocessor, this pin will be used as the
Enable (E) signal. Read/write operation is initiated when this pin is pulled high
(i.e. connect to VDDIO) and the chip is selected.
When connecting to an 8080-microprocessor, this pin receives the Read (RD#)
signal. Read operation is initiated when this pin is pulled low and the chip is
selected.
When serial interface is selected, this pin E(RD#) must be connected to VSS.
D[15:0]
I/O
These pins are bi-directional data bus connecting to the MCU data bus.
Unused pins are recommended to tie low. (Except for D2 pin in serial mode)
Refer to Section 7.1 for different bus interface connection.
SA[95:0]
SB[95:0]
SC[95:0]
O
These pins provide the OLED segment driving signals. These pins are in high
impedance state when display is off by command Set Display Off.
These 288 segment pins are divided into 3 groups, SA, SB and SC. Each group
can have different color settings for color A, B and C.
SSD1331
Rev 0.13
P 13/64
Mar 2006
Solomon Systech
Pin Name
COM[63:0]
Pin Type Description
I/O
These pins provide the Common switch signals to the OLED panel. These pins
are in high impedance state when display is off by command Set Display Off.
TR[11:0]
NC
Solomon Systech
I
NC
Testing reserved pins. These pins should be kept float.
Dummy pins. These pins should be kept float and should not be connected to
any other signal pins nor any electrical signal. Do not connect NC pins together.
Mar 2006 P 14/64
Rev 0.13
SSD1331
7
FUNCTIONAL BLOCK DESCRIPTIONS
7.1
MCU Interface Selection
SSD1331 MCU interface consist of 16 data pin and 5 control pins. The pin assignment at different interface
mode is summarized in Table 4. Different MCU mode can be set by hardware selection on BS[3:0] pins (refer
to Table 3 for BS pins setting)
Table 4 - MCU interface assignment under different bus interface mode
ʳʳʳʳʳʳʳʳʳʳʳʳʳʳʳʳʳˣ˼́ʳˡ˴̀˸
˕̈̆ʳ˜́̇˸̅˹˴˶˸
ˋ˵ʳ˂ʳˋ˃ˋ˃
ˋ˵ʳ˂ʳˉˋ˃˃
ˌ˵ʳ˂ʳˋ˃ˋ˃
ˌ˵ʳ˂ʳˉˋ˃˃
˄ˉ˵ʳ˂ʳˋ˃ˋ˃
˄ˉ˵ʳ˂ʳˉˋ˃˃
˦ˣ˜
7.1.1
˗˴̇˴ʳ˂ʳ˖̂̀̀˴́˷ʳ˜́̇˸̅˹˴˶˸
˗˄ˈ ˗˄ˇ ˗˄ˆ ˗˄˅ ˗˄˄ ˗˄˃ ˗ˌ ˗ˋ ˗ˊ ˗ˉ ˗ˈ
Tie Low
Tie Low
Tie Low
Tie Low
˗˄ˈˀ˗˃
˗˄ˈˀ˗˃
Tie Low
˗ˇ ˗ˆ ˗˅
˗ˊˀ˗˃
˗ˊˀ˗˃
˗ˋˀ˗˃
˗ˋˀ˗˃
˗˄
˗˃
ˡ˖ ˦˗˜ˡ SCLK
˖̂́̇̅̂˿ʳ˦˼˺́˴˿
˘
˥˂˪ʶ
˖˦ʶ
˗˂˖ʶ
˥˗ʶ
˪˥ʶ
˖˦ʶ
˗˂˖ʶ
˘
˥˂˪ʶ
˖˦ʶ
˗˂˖ʶ
˥˗ʶ
˪˥ʶ
˖˦ʶ
˗˂˖ʶ
˘
˥˂˪ʶ
˖˦ʶ
˗˂˖ʶ
˥˗ʶ
˪˥ʶ
˖˦ʶ
˗˂˖ʶ
˘
˥˂˪ʶ
˖˦ʶ
˗˂˖ʶ
˖˦ʶ
˗˂˖ʶ
Tie Low
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
˥˘˦ʶ
6800-series Parallel Interface
A low in R/W# indicates WRITE operation and high in R/W# indicates READ operation.
A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write.
The E input serves as data latch signal while CS# is low. Data is latched at the falling edge of E signal.
Table 5 - Control pins of 6800 interface
Function
E
R/W#
CS#
D/C#
Write command
↓
L
L
L
Read status
↓
H
L
L
Write data
↓
L
L
H
Read data
↓
H
L
H
Note
(1)
Ļ stands for falling edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual display
data read. This is shown in Figure 4.
SSD1331
Rev 0.13
P 15/64
Mar 2006
Solomon Systech
Figure 4 - Display data read back procedure - insertion of dummy read
R/W#
E
N
Databus
Write column
address
7.1.2
Dummy read
n
n+1
n+2
Read 1st data
Read 2nd data
Read 3rd data
8080-series Parallel Interface
A low in D/C# indicates COMMAND read/write and high in D/C# indicates DATA read/write.
A rising edge of RD# input serves as a data READ latch signal while CS# is kept low.
A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept low.
Table 6 - Control pins of 8080 interface
Function
Write command
Read status
Write data
Read data
RD#
H
↑
H
↑
WR#
↑
H
↑
H
CS#
L
L
L
L
D/C#
L
L
H
H
Note
(1)
Ĺ stands for rising edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual display
data read. This is shown in Figure 6.
Figure 5 - Display data read back procedure - insertion of dummy read
WR#
RD#
Databus
N
Write column
address
Solomon Systech
Dummy read
n
n+1
Read 1st data
Read 2nd data
Mar 2006 P 16/64
n+2
Rev 0.13
Read 3rd data
SSD1331
Alternatively, E(RD#) and R/W#(WR#) can be keep stable while CS# is serve as the data/command latch
signal.
Table 7 - Control pins of 8080 interface (Alternative form)
Function
Write command
Read status
Write data
Read data
RD#
H
L
H
L
WR#
L
H
L
H
CS#
↑
↑
↑
↑
D/C#
L
L
H
H
Note
(1)
Ĺ stands for rising edge of signal
(2)
H stands for high in signal
(3)
L stands for low in signal
7.1.3 Serial Interface
The serial interface consists of serial clock SCLK (D0), serial data SDIN (D1), D/C# and CS#. SCLK is shifted
into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6… D0. D/C# is sampled on
every eighth clock and the data byte in the shift register is written to the Display Data RAM or command
register in the same clock.
Under serial mode, only write operations are allowed.
Table 8 - Control pins of Serial interface
Function
Write command
Write data
E
Tie low
Tie low
R/W#
Tie low
Tie low
CS#
L
L
D/C#
L
H
Figure 6 - Write procedure in SPI mode
CS#
D/C#
SDIN/
SCLK
DB1
DB2
DBn
SCLK(D0)
SDIN(D1)
SSD1331
D7
D6
D5
Rev 0.13
P 17/64
Mar 2006
D4
D3
D2
D1
D0
Solomon Systech
7.2
Command Decoder
This module determines whether the input should be interpreted as data or command based upon the input of
the D/C# pin.
If D/C# pin is high, data is written to Graphic Display Data RAM (GDDRAM). If it is low, the inputs at D0-D15
are interpreted as a Command and it will be decoded and be written to the corresponding command register.
7.3
7.3.1
Oscillator Circuit and Display Time Generator
Oscillator
Internal
Oscillator
Fosc
CL
M
U
X
CLK
DCLK
Divider
Display
Clock
CLS
Figure 7 - Oscillator Circuit
This module is an On-Chip low power RC oscillator circuitry (Figure 7). The operation clock (CLK) can be
generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is high, internal
oscillator is selected. If CLS pin is low, external clock from CL pin will be used for CLK. The frequency of
internal oscillator FOSC can be programmed by command B3h (Set oscillator frequency).
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can
be programmed from 1 to 16 by command B3h.
DCLK = FOSC / D
The frame frequency of display is determined by the following formula.
FFRM =
Fosc
D × K × No. of Mux
where
• D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from
1 to 16.
• K is the number of display clocks per row. The value is derived by
K = Phase 1 period + Phase 2 period + PW63 (longest current drive pulse width)
= 4 + 7 + 125 = 136 at power on reset
• Number of multiplex ratio is set by command A8h. The power on reset value is 64
• FOSC is the oscillator frequency. It can be adjusted by command B3h A[7:4]
If the frame frequency is set too low, display flickering may occur. On the other hand, higher frame frequency
leads to higher power consumption on the whole system. In normal application, it’s suggested to set the
frame frequency between 100Hz and 110Hz.
Solomon Systech
Mar 2006 P 18/64
Rev 0.13
SSD1331
7.3.2
FR synchronization
FR synchronization signal can be used to prevent tearing effect.
One frame
FR
100%
Memory
Access
Process
0%
Time
Fast write MCU
Slow write MCU
SSD1331 displaying memory updates to OLED screen
The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can
finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer
writing time to complete(more than one frame but within two frames), it is a slow write one.
For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and
should be finished well before the rising edge of the next FR pulse.
For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse
and must be finished before the rising edge of the 3rd FR pulse.
7.4
Reset Circuit
When RES# input is pulled low, the chip is initialized with the following status:
1. Display is OFF
2. 64 MUX Display Mode
3. Display start line is set at display RAM address 0
4. Display offset set to 0
5. Normal segment and display data column address and row address mapping (SEG0 mapped to
address 00H and COM0 mapped to address 00H)
6. Column address counter is set at 0
7. Master contrast control register is set at 0FH
8. Individual contrast control registers of color A, B, and C are set at 80H
9. Shift register data clear in serial interface
10. Normal display mode (Equivalent to A4 command)
SSD1331
Rev 0.13
P 19/64
Mar 2006
Solomon Systech
7.5
Graphic Display Data RAM (GDDRAM)
7.5.1
GDDRAM structure
The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 96 x 64 x
16bits.
For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software.
For vertical scrolling of the display, an internal register storing display start line can be set to control the
portion of the RAM data to be mapped to the display.
Each pixel has 16-bit data. Three sub-pixels for color A, B and C have 6 bits, 5 bits and 6 bits respectively.
The arrangement of data pixel in graphic display data RAM is shown below.
Figure 8 - 65k Color Depth Graphic Display Data RAM Structure
Column
Address
Normal
0
1
2
:
93
94
Remap
95
B5
B4
B3
B2
B1
B0
94
B5
B4
B3
B2
B1
B0
93
B5
B4
B3
B2
B1
B0
:
2
B5
B4
B3
B2
B1
B0
1
B5
B4
B3
B2
B1
B0
A4
A3
A2
A1
A0
Data
Format
Row
Address
Normal
Remap
0
63
1
2
62
61
:
:
61
2
62
63
1
0
SEG OUTPUT
7.5.2
C4
C3
C2
C1
C0
A4
A3
A2
A1
A0
C4
C3
C2
C1
C0
A4
A3
A2
A1
A0
C4
C3
C2
C1
C0
A4
A3
A2
A1
A0
:
C4
C3
C2
C1
C0
A4
A3
A2
A1
A0
95
C4
C3
C2
C1
C0
A4
A3
A2
A1
A0
0
B5
B4
B3
B2
B1
B0
C4
C3
C2
C1
C0
COM
OUTPUT
5
6
5
5
6
5
5
6
5
5
6
5
5
6
5
5
6
5
COM0
:
COM1
COM2
:
no. of bits of data in this cell
COM61
:
SA0 SB0 SC0 SA1 SB1 SC1 SA2 SB2 SC2
COM62
COM63
:
SA93 SB93 SC93 SA94 SB94 SC94 SA95 SB95 SC95
Data bus to RAM mapping under different input mode
Table 9 - Data bus usage under different bus width and color depth mode
Data bus
Bus width Color Depth Input order D15 D14 D13 D12 D11 D10
8 bits
256
8 bits
65k
format 1
8 bits
65k
format 2
16 bits
65k
9 bits
65k
Solomon Systech
1st
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
X
X
X
X
X
X
X
X
C4
C3
C2
B5
B4
B3
A4
A3
X
X
X
X
X
X
X
X
C4
C3
C2
C1
C0
B5
B4
B3
2nd
X
X
X
X
X
X
X
X
B2
B1
B0
A4
A3
A2
A1
A0
1st
X
X
X
X
X
X
X
X
X
X
C4
C3
C2
C1
C0
X
2nd
X
X
X
X
X
X
X
X
X
X
B5
B4
B3
B2
B1
B0
3rd
X
X
X
X
X
X
X
X
X
X
A4
A3
A2
A1
A0
X
C4
C3
C2
C1
C0
B5
B4
B3
B2
B1
B0
A4
A3
A2
A1
A0
1st
X
X
X
X
X
X
X
C4
C3
C2
C1
C0
X
B5
B4
B3
2nd
X
X
X
X
X
X
X
B2
B1
B0
A4
A3
A2
A1
A0
X
Mar 2006 P 20/64
Rev 0.13
SSD1331
7.5.3
RAM mapping and Different color depth mode
At 65k color depth mode, color A, B, C are directly mapped to the RAM content. At 256-color mode, the RAM
content will be filled up to 65k format.
Figure 9 - 256-color mode mapping
SCn
SBn
SAn
65k color
C4
C3
C2
C1
C0
B5
B4
B3
B2
B1
B0
A4
A3
A2
A1
A0
256 color
C4
C3
C2
*C4
*C4
B5
B4
B3
B5
*B5
*B5
A4
A3
*A4
*A4
*A4
Note:
(1)
n = 0 ~ 95
(2)
bits with * are copied from corresponding bits in order to fill up 65K format.
7.6
Gray Scale Decoder
The gray scale effect is generated by controlling the pulse width of segment drivers in current drive phase.
The gray scale table stores the corresponding pulse widths of the 63 gray scale levels (GS0~GS63). The
wider the pulse width, the brighter the pixel will be. A single gray scale table supports all the three colors A, B
and C. The pulse widths can be set by software commands.
As shown in Figure 10, color B sub-pixel RAM data has 6 bits, represent the 64 gray scale levels from GS0 to
GS63. color A and color C sub-pixel RAM data has only 5 bits, represent 32 gray scale levels from GS0,
GS2, …, GS62.
Figure 10 - Relation between GDRAM content and gray scale table entry for three colors in 65K color mode
Color A, C
RAM data (5 bits)
00000
00001
00010
:
:
:
11110
11111
-
Color B
RAM data (6 bits)
000000
000001
000010
000011
000100
:
:
:
111100
111101
111110
111111
Gray Scale
GS0
GS1
GS2
GS3
GS4
:
:
:
GS60
GS61
GS62
GS63
Default pulse width of GS[0:63]
in terms of DCLK
0
1
3
5
7
:
:
:
119
121
123
125
The duration of different GS are programmable.
SSD1331
Rev 0.13
P 21/64
Mar 2006
Solomon Systech
Figure 11 - Illustration of relation between graphic display RAM value and gray scale control
Gray scale table
Gray Scale
GS0
GS1
GS2
:
GS62
GS63
Segment
Voltage
Value/DCLKs
0
1
3
:
123
125
Color B RAM data = 000001
GS1
pulse width = 1 DCLKs
Color B RAM data = 111111
GS63
pulse width = 125 DCLKs
VP
VLSS
Time
Segment
Voltage
Color A RAM data = 00001
GS2
pulse width = 3 DCLKs
Color A RAM data = 11111
GS62
pulse width = 123 DCLKs
VP
VLSS
Time
Solomon Systech
Mar 2006 P 22/64
Rev 0.13
SSD1331
7.7
SEG / COM Driving block
This block is used to derive the incoming power sources into the different levels of internal use voltage and
current.
• VCC is the most positive voltage supply.
• VCOMH is the Common deselected level. It is internally regulated.
• VLSS is the ground path of the analog and panel current.
• IREF is a reference current source for segment current drivers ISEG. The relationship between
reference current and segment current of a color is:
ISEG = Contrast / 256 x IREF x scale factor
in which
the contrast (0~255) is set by Set Contrast command; and
the scale factor (1 ~ 16) is set by Master Current Control command.
For example, in order to achieve ISEG = 160uA at maximum contrast 255, IREF is set to around 10uA.
This current value is obtained by connecting an appropriate resistor from IREF pin to VSS as shown in
Figure 12.
Recommended range for IREF = 10uA +/- 2uA
SSD1331
IREF (voltage
at this pin =
VCC – 3)
IREF ≈ 10uA
R1
VSS
Figure 12 - IREF Current Setting by Resistor Value
Since the voltage at IREF pin is VCC – 3V, the value of resistor R1 can be found as below.
R1 = (Voltage at IREF – VSS) / IREF = (VCC – 3) / 10uA ≈ 1.3MΩ for VCC = 16V.
Figure 13 - ISEG current vs VCC setting at constant IREF, Contrast = FFh
ISEG (uA)
Typical ISEG current vs VCC (IREF = 10uA, Contrast = FFh)
210
200
190
180
170
160
150
140
7
SSD1331
9
Rev 0.13
11
P 23/64
VCC (V)
Mar 2006
13
15
17
19
Solomon Systech
7.8
Common and Segment Drivers
Segment drivers consist of 288 (96 x 3 colors) current sources to drive OLED panel. The driving current can
be adjusted from 0 to 160uA with 256 steps by contrast setting command (81h,82h,83h). Common drivers
generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are
shown as follow.
Figure 14 - Segment and Common Driver Block Diagram
VCC
ISEG
VCOMH
Current
Drive
Non-select
Row
Reset
OLED
Pixel
Selected
Row
VLSS
VLSS
Segment Driver
Common Driver
The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in
reverse bias by driving those commons to voltage VCOMH as shown in Figure 15
In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal
to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the
segment drives to ISEG when the pixel is turned ON.
Solomon Systech
Mar 2006 P 24/64
Rev 0.13
SSD1331
Figure 15 - Segment and Common Driver Signal Waveform
One Frame Period
Non-select Row
COM0
VCOMH
VLSS
Selected Row
COM1
VCOMH
VLSS
COM
Voltage
This row is selected to
turn on
VCOMH
VLSS
Time
Segment
Voltage
Waveform for ON
VP
Waveform for OFF
VLSS
Time
SSD1331
Rev 0.13
P 25/64
Mar 2006
Solomon Systech
There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to VLSS
in order to discharge the previous data charge stored in the parasitic capacitance along the segment
electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 16 DCLK. An OLED
panel with larger capacitance requires a longer period for discharging.
In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level VP from
VLSS. The amplitude of VP can be programmed by the command BBh. The period of phase 2 can be
programmed in length from 1 to 16 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of
OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage.
In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second
pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by
commands 8Ah, 8Bh and 8Ch.
Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant
current to the pixel. The driver IC employs Pulse Width Modulation (PWM) method to control the gray scale of
each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice
versa. This is shown in the following figure.
Figure 16 - Gray Scale Control by PWM in Segment
Phase2
Phase1
Phase4
Phase3
Segment
Voltage
VP
VLSS
Time
Wider pulse width
drives pixel brighter
OLED
Panel
After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step
cycle is run continuously to refresh image display on OLED panel.
The length of phase 4 is defined by command B8h “Set Gray Scale Table” or B9h “Enable Linear Gray Scale
Table”. In the table, the gray scale is defined in incremental way, with reference to the length of previous table
entry.
Solomon Systech
Mar 2006 P 26/64
Rev 0.13
SSD1331
7.9
Power ON and OFF sequence
The following figures illustrate the recommended power ON and power OFF sequence of SSD1331 (assume
VDD and VDDIO are at the same voltage level).
Power ON sequence:
1. Power ON VDD, VDDIO.
2. After VDD, VDDIO become stable, set RES# pin LOW (logic low) for at least 3us (t1) and then HIGH
(logic high).
3. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then Power ON VCC.(1)
4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (tAF).
Figure 17 : The Power ON sequence
ON VDD, VDDIO
RES# ON VCC
Send AFh command for Display ON
VDD, VDDIO
GND
t1
RES#
GND
t2
VCC
GND
tAF
ON
SEG/COM
OFF
Power OFF sequence:
1. Send command AEh for display OFF.
2. Wait until panel discharges completely.
3. Power OFF VCC.(1), (2)
4. Wait for 100ms (tOFF). Power OFF VDD, VDDIO.
Figure 18 : The Power OFF sequence
Send command AEh for display OFFOFF VCC
VCC
OFF VDD ,VDDIO
GND
tOFF
VDD ,VDDIO
GND
Note:
(1)
Since an ESD protection circuit is connected between VDD and VCC, VCC becomes lower than VDD whenever
VDD is ON and VCC is OFF as shown in the dotted line of VCC in Figure 18 and Figure 19.
(2)
VCC should be kept float when it is OFF.
SSD1331
Rev 0.13
P 27/64
Mar 2006
Solomon Systech
8
COMMAND TABLE
Table 10 - Command Table
Fundamental Commands
D/C#
Hex
D7 D6 D5 D4 D3 D2 D1 D0
0
15
0
0
0
0
A[6:0]
B[6:0]
*
*
A6 A5 A4 A3 A2 A1 A0
B6 B5 B4 B3 B2 B1 B0
0
1
0
1
0
Command
1
Description
Default
Setup Column start and end address
A[6:0] start address from 00d-95d
00d (00h)
B[6:0] end address from 00d-95d
95d (5Fh)
Set Column
Address
0
0
75
A[5:0]
0
*
1 1 1 0 1 0 1
* A5 A4 A3 A2 A1 A0
Setup Row start and end address
A[5:0] start address from 00d-63d
00d (00h)
0
B[5:0]
*
*
B[5:0] end address from 00d-63d
63d (3Fh)
Set contrast for all color "A" segment
(Pins:SA0 – SA95)
A[7:0] valid range: 00d to 255d
128d (80h)
Set contrast for all color "B" segment
(Pins:SB0 – SB95).
A[7:0] valid range: 00d to 255d
128d (80h)
Set contrast for all color "C" segment
(Pins:SC0 – SC95).
A[7:0] valid range: 00d to 255d
128d (80h)
B5 B4 B3 B2 B1 B0
Set Row
Address
0
0
81
1
0
0
0
0
0
0
1
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast
for Color "A"
0
0
82
1
0
0
0
0
0
1
0
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast
for Color "B"
0
0
83
1
0
0
0
0
0
1
1
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Set Contrast
for Color "C"
0
87
1
0
0
0
0
A[3:0]
0
0
0
0 A3 A2 A1 A0
0
1
1
Set master current attenuation factor
A[3:0] from 00d to 15d corresponding to 1/16,
2/16… to 16/16 attenuation.
1
15d (0Fh)
Master Current
Control
Solomon Systech
Mar 2006 P 28/64
Rev 0.13
SSD1331
Fundamental Commands
D/C#
Hex
0
8A
0
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0
1
0
0
0
1
0
1
Command
0
8B
1
0
0
0
1
0
1
A0
1
0
1
0
0
0
0
Default
A[7:0] of 81h
A[7:0]: Set Second Pre-charge Speed
Ranges: 0000000b to 1111111b,
a higher value of A[7:0] gives a higher Second
A[7:0] of 82h
Pre-charge speed.
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
1
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
8C
1 0 0 0 1 1 0 0
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
Description
A[7:0] of 83h
Note
(1)
The default values of A[7:0] in 8Ah, A[7:0]
in 8Bh and A[7:0] in 8Ch are equal to the
contrast values for color A, B and C( refer
to commands: 81h, 82h, 83h) respectively.
Set Second (2)
All six bytes (8Ah A[7:0], 8Bh A[7:0] and
Pre-charge
8Ch A[7:0]) must be inputted together. For
Speed for
example: the original value is like that
Color “A”, “B”
Original value
and “C”
8Ah A[7:0]:
80h
8Bh A[7:0]:
80h
8Ch A[7:0]:
80h
If it is wanted to change the value of 8Bh
A[7:0] to 75h, then all the following 6 bytes
must be inputted:
8Ah,80h,
8Bh,75h,
8Ch,80h.
0
Set driver remap and color depth
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
A[0]=0, Horizontal address increment
A[0]=0
A[0]=1, Vertical address increment
A[1]=0, RAM Column 0 to 95 maps to Pin Seg
(SA,SB,SC) 0 to 95
A[1]=1, RAM Column 0 to 95 maps to Pin Seg
(SA,SB,SC) 95 to 0
A[1]=0
A[2]=0, normal order SA,SB,SC (e.g. RGB)
A[2]=0
A[2]=1, reverse order SC,SB,SA (e.g. BGR)
A[3]=0, Disable left-right swapping on COM
A[3]=0
Remap & Color A[3]=1, Set left-right swapping on COM
Depth setting
A[4]=0, Scan from COM 0 to COM [N –1]
A[4]=1, Scan from COM [N-1] to COM0.
Where N is the multiplex ratio.
A[4]=0
A[5]=0, Disable COM Split Odd Even
(RESET)
A[5]=1, Enable COM Split Odd Even
A[5]=0
A[7:6] = 00; 256 color format
A[7:6] = 01; 65k color format
A[7:6]=01
A[7:6] = 10; 65k color format 2
If 9 / 18 bit mode is selected, color depth will
be fixed to 65k regardless of the setting.
0
0
A1
A[5:0]
1
0
0 1 0 0 0 0 1
0 A5 A4 A3 A2 A1 A0
0
A2
1
0
0
A[5:0]
0
0 A5 A4 A3 A2 A1 A0
SSD1331
1
0
Rev 0.13
0
0
P 29/64
1
Set Display
Start Line
0
Set display start line register by Row
A[5:0]: from 00d to 63d
00d (00h)
Set vertical offset by Com
Set Display
Offset
Mar 2006
A[5:0]: from 00d to 63d
00d (00h)
Solomon Systech
Fundamental Commands
D/C#
Hex
0
A4 /
0
A5 /
0
0
D7 D6 D5 D4 D3 D2 D1 D0
1
0
1
0
0
Command
1 X1 X0
Set Display
Mode
A6 /
A7 /
0
A8
1
0
0
A[5:0]
0
0 A5 A4 A3 A2 A1 A0
1
0
1
0
0
0
0
AD
1
0
1
0
1
1
0
0
A[7:0]
1
0
0
0
1
1
1 A0
Description
Default
A4h=Normal Display
A4h
A5h=Entire Display On, all pixels turn on at
GS63
A6h=Entire Display Off, all pixels turn off
A7h=Inverse Display
Set MUX ratio to N+1 Mux
Set Multiplex N = A[5:0] from 15d to 63d
Ratio
A[5:0] from 00d to 14d are invalid entry
A[0]=0b, Select external VCC supply
A[0]=1b, Reserved (RESET)
1
Set Master
Note
Configuration (1)
Bit A[0] must be set to 0b after RESET.
(2)
The setting will be activated after issuing
Set Display ON command (AFh)
0
AE
1
0
1
0
1
1
1 A0
0
0
0
0
0
B0
1
0
1
1
0
0
0
0
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
B1
1
0
1
1
0
0
0
1
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
B3
1
0
1
1
0
0
1
1
0
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
0
0
B8
A[6:0]
1 0 1 1 1 0 0 0
* A6 A5 A4 A3 A2 A1 A0
0
B[6:0]
*
0
0
C[6:0] *
…
...
0
AE[6:0] *
0
AF[6:0] *
A[0] = 1
AEh = Display off (sleep mode)
Set Display
On/Off
AF
63d (3Fh)
AFh = Display on in normal mode
AEh
A[7:0]=1Ah, Enable power save mode
(RESET)
1Ah
Power Save
Other setting = TBD
Mode
A[3:0] Phase 1 period in N DCLK. 1~15
DCLK allowed.
Phase 1 and 2
A[7:4] Phase 2 period in N DCLK. 1~15
period
adjustment DCLK allowed
A[3:0]: Define the divide ratio (D) of the
74h
D0h
display clocks (DCLK):
Display Clock Divide ratio (D) = A[3:0] + 1 (i.e., 1 to 16)
Divider /
A[7:4] Fosc frequency.
Oscillator
Frequency Frequency increases as setting value
increases
These 32 parameters define pulse widths of
GS1 to GS63 in terms of DCLK
A[6:0]: Pulse width for GS1, RESET=01d
B6 B5 B4 B3 B2 B1 B0
B[6:0]: Pulse width for GS3, RESET=05d
C6 C5 C4 C3 C2 C1 C0
C[6:0]: Pulse width for GS5, RESET=09d
…
… … … … … … …
AE[6:0]: Pulse width for GS61, RESET=121d
AE6 AE5 AE4 AE3 AE2 AE1 AE0
AF[6:0]: Pulse width for GS63, RESET=125d
AF6 AF5 AF4 AF3 AF2 AF1 AF0 Set Gray Scale Note:
(1)
GS0 has no pre-charge and current drive
Table
stages.
(2)
GS2, GS4…GS62 are derived by
Pn = (Pn-1+Pn+1)/2
(3)
Pn will be truncated to integer if it is with
decimal point.
(4)
Pn+1 should always be set to larger than
Pn-1
(5)
Max pulse width is 125
Solomon Systech
Mar 2006 P 30/64
Rev 0.13
SSD1331
Fundamental Commands
D/C#
Hex
0
B9
D7 D6 D5 D4 D3 D2 D1 D0
1
0
1
1
1
0
0
Command
1
Description
Default
Reset built in gray scale table (Linear)
Pulse width for GS1 = 1d;
Pulse width for GS2 = 3d;
Enable Linear Pulse width for GS3 = 5d;
Gray Scale …
Table
Pulse width for GS61 = 121d;
Pulse width for GS62 = 123d;
Pulse width for GS63 = 125d.
0
BB
1
0
1
1
1
0
1
1
Set pre-charge voltage level. All three color
share the same pre-charge voltage.
0
A[5:1] Hex code pre-charge voltage
0.10 x VCC
Set Pre-charge 00000 00h
:
:
:
level
11111 3Eh
0.50 x VCC
Refer to Figure 28 for the details setting of
0
A[5:0]
0
0 A5 A4 A3 A2 A1
0
BC-BD
1
0
1
1
1
1
0 X0
BE
1
0
1
1
1
1
1
0
A[5:1]
0
0 A5 A4 A3 A2 A1 0
3Eh
A[5:1].
NOP
0
Set COM deselect voltage level (V COMH)
Set VCOMH
0
E3
1
1
1
0
0
0
1
1
1
0
FD
1
1
1
1
1
0
1
0
A[2]
0
0
0
1
0 A2 1
0
Command for No operation
NOP
A[5:1]
00000
01000
10000
11000
11111
Hex code
00h
10h
20h
30h
3Eh
3Eh
V COMH
0.44 x VCC
0.52 x VCC
0.61 x VCC
0.71 x VCC
0.83 x VCC
Command for No operation
A[2]: MCU protection status
A[2] = 0b, Unlock OLED driver IC MCU
interface from entering command [reset]
12h
A[2] = 1b, Lock OLED driver IC MCU
Set Command interface from entering command
Lock
Note
(1)
The locked OLED driver IC MCU
interface prohibits all commands and
memory access except the FDh
command.
SSD1331
Rev 0.13
P 31/64
Mar 2006
Solomon Systech
Graphic Acceleration Commands
D/C#
Hex
D7 D6 D5 D4 D3 D2 D1 D0
1
0
0
0
0
Command
1
Description
0
21
0
0
0
A[6:0]
*
A6 A5 A4 A3 A2 A1 A0
B[5:0]: Row Address of Start
0
B[5:0]
*
*
C[6:0]: Column Address of End
0
C[6:0]
*
C6 C5 C4 C3 C2 C1 C0
0
D[5:0]
*
*
D5 D4 D3 D2 D1 D0
0
E[5:1]
*
*
E5 E4 E3 E2 E1 *
F[5:0]: Color B of the line
0
F[5:0]
*
*
F 5 F4 F3 F2 F1 F0
G[5:1]: Color A of the line
0
G[5:1]
*
*
G 5 G4 G3 G2 G1 *
A[6:0]: Column Address of Start
B5 B4 B3 B2 B1 B0
0
22
0
0
0
A[6:0]
*
A6 A5 A4 A3 A2 A1 A0
0
B[5:0]
*
0
C[6:0]
*
0
D[5:0]
*
*
1
0
0
0
1
Draw Line
0
A[6:0]: Column Address of Start
B[5:0]: Row Address of Start
B5 B4 B3 B2 B1 B0
C[6:0]: Column Address of End
D[5:0]: Row Address of End
D5 D4 D3 D2 D1 D0
E[5:1]: Color C of the line
Drawing
Rectangle
0
E[5:1]
*
*
E5 E4 E3 E2 E1
0
F[5:0]
*
*
F 5 F4 F3 F2 F1 F0
0
G[5:1]
*
*
G 5 G4 G3 G2 G1
*
H[5:1]: Color C of the fill area
0
H[5:1]
*
*
H5 H4 H3 H2 H1
*
I[5:0]: Color B of the fill area
J[5:1]: Color A of the fill area
0
I[5:0]
*
*
I5
I1
I0
0
J[5:1]
*
*
J5 J4 J3 J2 J1
*
0
23
0
0
1
1
A6 A5 A4 A3 A2 A1 A0
0
A[6:0]
*
0
B[5:0]
*
*
I4
0
I3
0
I2
*
D[5:0]: Row Address of End
E[5:1]: Color C of the line
C6 C5 C4 C3 C2 C1 C0
*
0
1
C[6:0]
*
0
D[5:0]
*
0
E[6:0]
*
0
F[5:0]
*
*
F 5 F4 F3 F2 F1 F0
0
24
0
0
1
A6 A5 A4 A3 A2 A1 A0
0
A[6:0]
*
0
B[5:0]
*
0
C[6:0]
*
0
D[5:0]
*
C6 C5 C4 C3 C2 C1 C0
A[6:0]: Column Address of Start
B[5:0]: Row Address of Start
C[6:0]: Column Address of End
Copy
D5 D4 D3 D2 D1 D0
*
0
1
0
F[5:0]: Row Address of New Start
0
A[6:0]: Column Address of Start
B[5:0]: Row Address of Start
B5 B4 B3 B2 B1 B0
C[6:0]: Column Address of End
C6 C5 C4 C3 C2 C1 C0
*
D5 D4 D3 D2 D1 D0
D[5:0]: Row Address of End
E[6:0]: Column Address of New Start
E6 E5 E4 E3 E2 E1 E0
0
F[5:0]: Color B of the line
G[5:1]: Color A of the line
B5 B4 B3 B2 B1 B0
0
*
Default
D[5:0]: Row Address of End
Dim Window
The effect of dim window:
GS15~GS0 no change
GS19~GS16 become GS4
GS23~GS20 become GS5
...
GS63~GS60 become GS15
0
25
0
0
A6 A5 A4 A3 A2 A1 A0
0
A[6:0]
*
0
B[5:0]
*
*
1
0
0
1
0
1
A[6:0]: Column Address of Start
B[5:0]: Row Address of Start
B5 B4 B3 B2 B1 B0 Clear Window C[6:0]: Column Address of End
0
C[6:0]
*
0
D[5:0]
*
C6 C5 C4 C3 C2 C1 C0
*
D5 D4 D3 D2 D1 D0
0
26
0
0
1
0
0
1
1
0
A[4:0]
*
*
*
A4 0
0
0 A0
D[5:0]: Row Address of End
0
Fill Enable /
Disable
A0
0 : Disable Fill for Draw Rectangle
Command (RESET)
1 : Enable Fill for Draw Rectangle
Command
A[3:1] 000: Reserved values
A4
0 : Disable reverse copy (RESET)
1 : Enable reverse during copy
command.
Solomon Systech
Mar 2006 P 32/64
Rev 0.13
SSD1331
Graphic Acceleration Commands
D/C#
Hex
0
27
D7 D6 D5 D4 D3 D2 D1 D0
0
0
0
A[6:0]
*
A6 A5 A4 A3 A2 A1 A0
0
B[5:0]
*
0
C[6:0]
*
0
D[5:0]
*
*
0
E[1:0]
*
*
*
1
0
0
1
1
Command
1
Description
Default
A[6:0]: Set number of column as horizontal
scroll offset
Range: 0d-95d ( no horizontal scroll if
equals to 0)
B[5:0]: Define start row address
B5 B4 B3 B2 B1 B0
C6 C5 C4 C3 C2 C1 C0
D5 D4 D3 D2 D1
*
*
*
*
E1
C[6:0]: Set number of rows to be horizontal
scrolled
B[5:0]+C[6:0] <=64
D0
D[5:0]: Set number of row as vertical scroll
Continuous
offset
Horizontal &
Range: 0d-63d ( no vertical scroll if
Vertical
equals to 0)
Scrolling Setup
E[1:0]: Set time interval between each scroll
E0
step
00b 6 frames
01b 10 frames
10b 100 frames
11b 200 frames
Note:
Vertical scroll is run with 64MUX setting
only
Stop scrolling
(1)
0
2E
0
0
1
0
1
1
1
0
0
2F
0
0
1
0
1
1
1
1
SSD1331
Rev 0.13
P 33/64
Mar 2006
Deactivate
scrolling
Activate
scrolling
Start scrolling
Solomon Systech
8.1
Data Read / Write
To read data from the GDDRAM, input HIGH to R/W#(WR#)# pin and D/C# pin for 6800-series parallel mode,
LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode. No data read is provided in serial
mode operation.
In normal data read mode, GDDRAM column address pointer will be increased by one automatically after
each data read.
Also, a dummy read is required before the first data read.
To write data to the GDDRAM, input LOW to R/W#(WR#) pin and HIGH to D/C# pin for 6800-series parallel
mode AND 8080-series parallel mode. For serial interface mode, it is always in write mode. GDDRAM column
address pointer will be increased by one automatically after each data write.
Table 11 - Address increment table (Automatic)
D/C#
R/W#(WR#)
Comment
Address Increment
0
0
1
1
0
1
0
1
Write Command
Read Status
Write Data
Read Data
No
No
Yes
Yes
Solomon Systech
Mar 2006 P 34/64
Rev 0.13
SSD1331
9
9.1
COMMAND DESCRIPTIONS
Fundamental Command
9.1.1 Set Column Address (15h)
This command specifies column start address and end address of the display data RAM. This command also
sets the column address pointer to column start address. This pointer is used to define the current read/write
column address in graphic display data RAM. If horizontal address increment mode is enabled by command
A0h, after finishing read/write one column data, it is incremented automatically to the next column address.
Whenever the column address pointer finishes accessing the end column address, it is reset back to start
column address.
9.1.2 Set Row Address (75h)
This command specifies row start address and end address of the display data RAM. This command also
sets the row address pointer to row start address. This pointer is used to define the current read/write row
address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after
finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row
address pointer finishes accessing the end row address, it is reset back to start row address.
The figure below shows the way of column and row address pointer movement through the example: column
start address is set to 2 and column end address is set to 93, row start address is set to 1 and row end
address is set to 62. Horizontal address increment mode is enabled by command A0h. In this case, the
graphic display data RAM column accessible range is from column 2 to column 93 and from row 1 to row 62
only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing
read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM
location for next read/write operation (solid line in Figure 19). Whenever the column address pointer finishes
accessing the end column 93, it is reset back to column 2 and row address is automatically increased by 1
(solid line in Figure 19). While the end row 62 and end column 93 RAM location is accessed, the row address
is reset back to 1 (dotted line in Figure 19).
Col 0
Col 1
Col 2
…..
…….
Col 93
Col 94
Col 95
Row 0
Row 1
Row 2
:
:
:
:
:
:
Row 61
Row 62
Row 63
Figure 19 - Example of Column and Row Address Pointer Movement
SSD1331
Rev 0.13
P 35/64
Mar 2006
Solomon Systech
9.1.3 Set Contrast for Color A, B, C (81h, 82h, 83h)
This command is to set Contrast Setting of each color A, B and C. The chip has three contrast control circuits
for color A, B and C. Each contrast circuit has 256 contrast steps from 00h to FFh. The segment output
current ISEG increases linearly with the contrast step, which results in brighter of the color. This relation is
shown in Figure 20.
9.1.4 Master Current Control (87h)
This command is to control the segment output current by a scaling factor. This factor is common to color A, B
and C. The chip has 16 master control steps. The factor is ranged from 1 [0000b] to 16 [1111b]. RESET is 16
[1111b]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if
original segment output current of a color is 160uA at scale factor = 16, setting scale factor to 8 to reduce the
current to 80uA. Please see Figure 20.
Segment output current
0F
0E
0D
0C
0B
0A
09
08
07
06
05
04
03
02
01
00
Change contrast control
moves along the contrast
curve with constant slope
˃˃
˃˙
˄˙
˅˙
ˆ˙
ˇ˙
ˈ˙
ˉ˙
ˊ˙
ˋ˙
ˌ˙
˔˙
˕˙
˖˙
˗˙
˘˙
Change master current selects different
l
ˢ̈̇̃̈̇ʳ˶̈̅̅˸́̇ʳ˜̆˸˺ʳʻ̈˔ʼ
Master current setting
˙˙
˖̂́̇̅˴̆̇ʳ̆˸̇̇˼́˺
Figure 20 - Segment Output Current for Different Contrast Control and Master Current Setting
Solomon Systech
Mar 2006 P 36/64
Rev 0.13
SSD1331
9.1.5
Set Second Pre-charge Speed for Color A, B, C (8Ah)
The value set should match with the contrast of the color A, B, C. An initial trial should be the value same as
the contrast A, B, C. When faster speed is needed, higher value can be set and vice versa. Figure 21 shows
the effect of setting second pre-charge under different speeds through using command 8Ah, 8Bh and 8Ch.
Figure 21 - Effect of setting the second pre-charge under different speeds
Second Pre-charge speed = 255 Different settings in Second
Pre-charge speed
Phase2
Phase4
Phase1
Second Pre-charge
speed = 1
...
Phase3
Segment
Voltage
VP
VLSS
Time
9.1.6
Set Re-map & Data Format (A0h)
This command has multiple configurations and each bit setting is described as follows.
• Address increment mode (A[0])
When it is set to 0, the driver is set as horizontal address increment mode. After the display RAM is
read/written, the column address pointer is increased automatically by 1. If the column address
pointer reaches column end address, the column address pointer is reset to column start address and
row address pointer is increased by 1. The sequence of movement of the row and column address
point for horizontal address increment mode is shown in Figure 22.
Figure 22 - Address Pointer Movement of Horizontal Address Increment Mode
Row 0
Row 1
:
Row 62
Row 63
Col 0
Col 1
…..
Col 94
Col 95
:
:
:
:
:
When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is
read/written, the row address pointer is increased automatically by 1. If the row address pointer
reaches the row end address, the row address pointer is reset to row start address and column
address pointer is increased by 1. The sequence of movement of the row and column address point
for vertical address increment mode is shown in Figure 23.
Figure 23 - Address Pointer Movement of Vertical Address Increment Mode
Col 0
Row 0
Row 1
:
Row 62
Row 63
SSD1331
Rev 0.13
P 37/64
Mar 2006
Col 1
…..
…..
…..
:
…..
…..
Col 94
Col 95
Solomon Systech
•
Column Address Mapping (A[1])
This command bit is made for flexible layout of segment signals in OLED module with segment
arranged from left to right or vice versa. The display direction is either mapping display data RAM
column 0 to SEG0 pin (A[1] = 0), or mapping display data RAM column 95 to SEG0 pin (A[1] = 1).
The effects of both are shown in Figure 24.
Figure 24 - Example of Column Address Mapping
………………
SA0 SB0 SC0
SSD1331
………………
SA95 SB95 SC95
Column 0 maps to SEG0 pin
SA0 SB0 SC0
SSD1331
SA95 SB95 SC95
Column 95 maps to SEG0 pin
•
RGB Mapping (A[2])
This command bit is made for flexible layout of segment signals in OLED module to match filter
design.
•
COM Left / Right Remap (A[3])
This command bit is made for flexible layout of common signals in OLED module with COM0
arranged on either left or right side. Details of pin arrangement can be found in Table 12 and Figure
25.
•
COM Scan Direction Remap (A[4])
This bit determines the scanning direction of the common for flexible layout of common signals in
OLED module either from up to down or vice versa. Details of pin arrangement can be found in Table
12 and Figure 25.
•
Odd Even Split of COM pins (A[5])
This bit can set the odd even arrangement of COM pins.
A[5] = 0: Disable COM split odd even, pin assignment of common is in sequential as
COM63 COM62 .... COM 33 COM32..SC95..SA0..COM0 COM1.... COM30 COM31
A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as
COM63 COM61.... COM3 COM1..SC95..SA0..COM0 COM2.... COM60 COM62
Details of pin arrangement can be found in Table 12 and Figure 25.
•
Display color mode (A[7:6])
Select either 65k or 256 color mode. The display RAM data format in different mode is described in
section 7.5
Solomon Systech
Mar 2006 P 38/64
Rev 0.13
SSD1331
Table 12 - Illustration of different COM output settings
Case A
Case B
Case C
Case D
Case E
Case F
Case G
Case H
A[5:3]=000 A[5:3]=001 A[5:3]=010 A[5:3]=011 A[5:3]=100 A[5:3]=101 A[5:3]=110 A[5:3]=111
IC Pad no.
Pin name
Output signal
195
COM0
Row0
Row32
Row63
Row31
Row0
Row1
Row63
Row62
194
COM1
Row1
Row33
Row62
Row30
Row2
Row3
Row61
Row60
193
COM2
Row2
Row34
Row61
Row29
Row4
Row5
Row59
Row58
192
COM3
Row3
Row35
Row60
Row28
Row6
Row7
Row57
Row56
191
COM4
Row4
Row36
Row59
Row27
Row8
Row9
Row55
Row54
190
COM5
Row5
Row37
Row58
Row26
Row10
Row11
Row53
Row52
…
…
…
…
…
…
…
…
…
…
169
COM26
Row26
Row58
Row37
Row5
Row52
Row53
Row11
Row10
168
COM27
Row27
Row59
Row36
Row4
Row54
Row55
Row9
Row8
167
COM28
Row28
Row60
Row35
Row3
Row56
Row57
Row7
Row6
166
COM29
Row29
Row61
Row34
Row2
Row58
Row59
Row5
Row4
165
COM30
Row30
Row62
Row33
Row1
Row60
Row61
Row3
Row2
164
COM31
Row31
Row63
Row32
Row0
Row62
Row63
Row1
Row0
488
COM32
Row32
Row0
Row31
Row63
Row1
Row0
Row62
Row63
489
COM33
Row33
Row1
Row30
Row62
Row3
Row2
Row60
Row61
490
COM34
Row34
Row2
Row29
Row61
Row5
Row4
Row58
Row59
491
COM35
Row35
Row3
Row28
Row60
Row7
Row6
Row56
Row57
492
COM36
Row36
Row4
Row27
Row59
Row9
Row8
Row54
Row55
493
COM37
Row37
Row5
Row26
Row58
Row11
Row10
Row52
Row53
…
…
…
…
…
…
…
…
…
…
514
COM58
Row58
Row26
Row5
Row37
Row53
Row52
Row10
Row11
515
COM59
Row59
Row27
Row4
Row36
Row55
Row54
Row8
Row9
516
COM60
Row60
Row28
Row3
Row35
Row57
Row56
Row6
Row7
517
COM61
Row61
Row29
Row2
Row34
Row59
Row58
Row4
Row5
518
COM62
Row62
Row30
Row1
Row33
Row61
Row60
Row2
Row3
519
COM63
Row63
Row31
Row0
Row32
Row63
Row62
Row0
Row1
SSD1331
Rev 0.13
P 39/64
Mar 2006
Solomon Systech
Figure 25 - COM Pins Hardware Configuration (MUX ratio: 64)
Case and Conditions
COM pins Configurations
ROW63
A
A[5] =0
A[4]=0
A[3]=0
Disable Odd
COM Scan
Disable COM Left
ROW32
Even Split of
Direction: from
/ Right Remap
96 x 64
COM pins
COM0 to COM63
ROW31
ROW0
COM32
COM0
SSD1331Z
COM63
COM31
Pad 1,2,3,…->163
Gold Bumps face up
B
ROW63
A[5] =0
Disable Odd
Even Split of
COM pins
A[4]=0
A[3]=1
COM Scan
Enable COM Left
Direction: from
/ Right Remap
COM0 to COM63
ROW31
ROW32
96 x 64
ROW0
COM0
COM32
SSD1331Z
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
ROW0
C
A[5] =0
Disable Odd
Even Split of
COM pins
A[4]=1
A[3]=0
COM Scan
Disable COM Left
Direction: from
/ Right Remap
COM63 to COM0
ROW32
ROW31
96 x 64
ROW63
COM32
COM0
SSD1331Z
COM63
COM31
Pad 1,2,3,…->163
Gold Bumps face up
Solomon Systech
Mar 2006 P 40/64
Rev 0.13
SSD1331
Case and Conditions
COM pins Configurations
D
A[5] =0
A[4]=1
A[3]=1
Disable Odd
COM Scan
Enable COM Left
ROW32
Even Split of
Direction: from
/ Right Remap
96 x 64
COM pins
COM63 to COM0
ROW0
ROW31
ROW63
COM0
COM32
SSD1331Z
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
E
A[5] =1
A[4]=0
A[3]=0
Enable Odd Even COM Scan
Disable COM Left
Split of COM pins Direction: from
/ Right Remap
COM0 to COM63
ROW63
ROW62
ROW61
96 x 64
ROW2
ROW1
ROW0
COM32
COM0
SSD1331Z
COM62
COM1
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
F
ROW63
ROW62
A[5] =1
A[4]=0
A[3]=1
Enable Odd Even COM Scan
Enable COM Left
Split of COM pins Direction: from
/ Right Remap
COM0 to COM63
ROW61
96 x 64
ROW2
ROW1
ROW0
COM32
COM33
COM0
SSD1331Z
COM30
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
SSD1331
Rev 0.13
P 41/64
Mar 2006
Solomon Systech
Case and Conditions
COM pins Configurations
ROW0
G
A[5] =1
A[4]=1
A[3]=0
ROW2
Enable Odd Even COM Scan
Disable COM Left
Split of COM pins Direction: from
/ Right Remap
96 x 64
COM63 to COM0
ROW1
ROW61
ROW62
ROW63
COM32
COM0
SSD1331Z
COM62
COM1
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
H
ROW0
ROW1
A[5] =1
A[4]=1
A[3]=1
Enable Odd Even COM Scan
Enable COM Left
Split of COM pins Direction: from
/ Right Remap
COM63 to COM0
ROW2
96 x 64
ROW61
ROW62
ROW63
COM32
COM33
COM0
SSD1331Z
COM30
COM31
COM63
Pad 1,2,3,…->163
Gold Bumps face up
9.1.7 Set Display Start Line (A1h)
This command is to set Display Start Line register to determine starting address of display RAM to be
displayed by selecting a value from 0 to 63. Table 13 and Table 14 show examples of this command. In
there, “Row” means the graphic display data RAM row.
9.1.8 Set Display Offset (A2h)
This command specifies the mapping of display start line (it is assumed that COM0 is the display start line,
display start line register equals to 0) to one of COM0-63. For example, to move the COM16 towards the
COM0 direction for 16 lines, the 6-bit data in the second command should be given by 0010000b. Table 13
and Table 14 show examples of this command. In there, “Row” means the graphic display data RAM row.
Solomon Systech
Mar 2006 P 42/64
Rev 0.13
SSD1331
Table 13 - Example of Set Display Offset and Display Start Line with no Remap
Output
Hardware pin
name
COM0
64
64
64
56
56
56
Set MUX ratio(A8h)
0
0
0
0
0
0
COM Scan Direction Remap (A0h A[4])
0
8
0
0
8
0
Display offset (A2h)
0
0
8
0
0
8
Row0
RAM0
Row8
RAM8
Row0
RAM8
Row0
RAM0
Row8
RAM8
Row0
Display start line (A1h)
RAM8
COM1
Row1
RAM1
Row9
RAM9
Row1
RAM9
Row1
RAM1
Row9
RAM9
Row1
RAM9
COM2
Row2
RAM2
Row10
RAM10
Row2
RAM10
Row2
RAM2
Row10
RAM10
Row2
RAM10
COM3
Row3
RAM3
Row11
RAM11
Row3
RAM11
Row3
RAM3
Row11
RAM11
Row3
RAM11
COM4
Row4
RAM4
Row12
RAM12
Row4
RAM12
Row4
RAM4
Row12
RAM12
Row4
RAM12
COM5
Row5
RAM5
Row13
RAM13
Row5
RAM13
Row5
RAM5
Row13
RAM13
Row5
RAM13
COM6
Row6
RAM6
Row14
RAM14
Row6
RAM14
Row6
RAM6
Row14
RAM14
Row6
RAM14
COM7
Row7
RAM7
Row15
RAM15
Row7
RAM15
Row7
RAM7
Row15
RAM15
Row7
RAM15
COM8
Row8
RAM8
Row16
RAM16
Row8
RAM16
Row8
RAM8
Row16
RAM16
Row8
COM9
Row9
RAM9
Row17
RAM17
Row9
RAM17
Row9
RAM9
Row17
RAM17
Row9
RAM17
COM10
Row10
RAM10
Row18
RAM18
Row10
RAM18
Row10
RAM10
Row18
RAM18
Row10
RAM18
COM11
Row11
RAM11
Row19
RAM19
Row11
RAM19
Row11
RAM11
Row19
RAM19
Row11
RAM19
COM12
Row12
RAM12
Row20
RAM20
Row12
RAM20
Row12
RAM12
Row20
RAM20
Row12
RAM20
COM13
Row13
RAM13
Row21
RAM21
Row13
RAM21
Row13
RAM13
Row21
RAM21
Row13
RAM21
COM14
Row14
RAM14
Row22
RAM22
Row14
RAM22
Row14
RAM14
Row22
RAM22
Row14
RAM22
COM15
Row15
RAM15
Row23
RAM23
Row15
RAM23
Row15
RAM15
Row23
RAM23
Row15
RAM23
COM16
Row16
RAM16
Row24
RAM24
Row16
RAM24
Row16
RAM16
Row24
RAM24
Row16
RAM24
COM17
Row17
RAM17
Row25
RAM25
Row17
RAM25
Row17
RAM17
Row25
RAM25
Row17
RAM25
COM18
Row18
RAM18
Row26
RAM26
Row18
RAM26
Row18
RAM18
Row26
RAM26
Row18
RAM26
COM19
Row19
RAM19
Row27
RAM27
Row19
RAM27
Row19
RAM19
Row27
RAM27
Row19
RAM27
COM20
Row20
RAM20
Row28
RAM28
Row20
RAM28
Row20
RAM20
Row28
RAM28
Row20
RAM28
COM21
Row21
RAM21
Row29
RAM29
Row21
RAM29
Row21
RAM21
Row29
RAM29
Row21
RAM29
COM22
Row22
RAM22
Row30
RAM30
Row22
RAM30
Row22
RAM22
Row30
RAM30
Row22
RAM30
COM23
Row23
RAM23
Row31
RAM31
Row23
RAM31
Row23
RAM23
Row31
RAM31
Row23
RAM31
COM24
Row24
RAM24
Row32
RAM32
Row24
RAM32
Row24
RAM24
Row32
RAM32
Row24
RAM32
COM25
Row25
RAM25
Row33
RAM33
Row25
RAM33
Row25
RAM25
Row33
RAM33
Row25
RAM33
COM26
Row26
RAM26
Row34
RAM34
Row26
RAM34
Row26
RAM26
Row34
RAM34
Row26
RAM34
COM27
Row27
RAM27
Row35
RAM35
Row27
RAM35
Row27
RAM27
Row35
RAM35
Row27
RAM35
COM28
Row28
RAM28
Row36
RAM36
Row28
RAM36
Row28
RAM28
Row36
RAM36
Row28
RAM36
COM29
Row29
RAM29
Row37
RAM37
Row29
RAM37
Row29
RAM29
Row37
RAM37
Row29
RAM37
COM30
Row30
RAM30
Row38
RAM38
Row30
RAM38
Row30
RAM30
Row38
RAM38
Row30
RAM38
COM31
Row31
RAM31
Row39
RAM39
Row31
RAM39
Row31
RAM31
Row39
RAM39
Row31
RAM39
COM32
Row32
RAM32
Row40
RAM40
Row32
RAM40
Row32
RAM32
Row40
RAM40
Row32
COM33
Row33
RAM33
Row41
RAM41
Row33
RAM41
Row33
RAM33
Row41
RAM41
Row33
RAM41
COM34
Row34
RAM34
Row42
RAM42
Row34
RAM42
Row34
RAM34
Row42
RAM42
Row34
RAM42
COM35
Row35
RAM35
Row43
RAM43
Row35
RAM43
Row35
RAM35
Row43
RAM43
Row35
RAM43
COM36
Row36
RAM36
Row44
RAM44
Row36
RAM44
Row36
RAM36
Row44
RAM44
Row36
RAM44
COM37
Row37
RAM37
Row45
RAM45
Row37
RAM45
Row37
RAM37
Row45
RAM45
Row37
RAM45
COM38
Row38
RAM38
Row46
RAM46
Row38
RAM46
Row38
RAM38
Row46
RAM46
Row38
RAM46
COM39
Row39
RAM39
Row47
RAM47
Row39
RAM47
Row39
RAM39
Row47
RAM47
Row39
RAM47
COM40
Row40
RAM40
Row48
RAM48
Row40
RAM48
Row40
RAM40
Row48
RAM48
Row40
RAM48
COM41
Row41
RAM41
Row49
RAM49
Row41
RAM49
Row41
RAM41
Row49
RAM49
Row41
RAM49
COM42
Row42
RAM42
Row50
RAM50
Row42
RAM50
Row42
RAM42
Row50
RAM50
Row42
RAM50
COM43
Row43
RAM51
RAM16
RAM40
Row43
RAM43
Row51
RAM51
Row43
RAM51
Row43
RAM43
Row51
RAM51
COM44
Row44
RAM44
Row52
RAM52
Row44
RAM52
Row44
RAM44
Row52
RAM52
Row44
RAM52
COM45
Row45
RAM45
Row53
RAM53
Row45
RAM53
Row45
RAM45
Row53
RAM53
Row45
RAM53
COM46
Row46
RAM46
Row54
RAM54
Row46
RAM54
Row46
RAM46
Row54
RAM54
Row46
RAM54
COM47
Row47
RAM47
Row55
RAM55
Row47
RAM55
Row47
RAM47
Row55
RAM55
Row47
RAM55
COM48
Row48
RAM48
Row56
RAM56
Row48
RAM56
Row48
RAM48
-
-
Row48
RAM56
COM49
Row49
RAM49
Row57
RAM57
Row49
RAM57
Row49
RAM49
-
-
Row49
RAM57
COM50
Row50
RAM50
Row58
RAM58
Row50
RAM58
Row50
RAM50
-
-
Row50
RAM58
COM51
Row51
RAM51
Row59
RAM59
Row51
RAM59
Row51
RAM51
-
-
Row51
RAM59
COM52
Row52
RAM52
Row60
RAM60
Row52
RAM60
Row52
RAM52
-
-
Row52
RAM60
COM53
Row53
RAM53
Row61
RAM61
Row53
RAM61
Row53
RAM53
-
-
Row53
RAM61
COM54
Row54
RAM54
Row62
RAM62
Row54
RAM62
Row54
RAM54
-
-
Row54
RAM62
COM55
Row55
RAM55
Row63
RAM63
Row55
RAM63
Row55
RAM55
-
-
Row55
RAM63
COM56
Row56
RAM56
Row0
RAM0
Row56
RAM0
-
-
Row0
RAM0
-
-
COM57
Row57
RAM57
Row1
RAM1
Row57
RAM1
-
-
Row1
RAM1
-
-
COM58
Row58
RAM58
Row2
RAM2
Row58
RAM2
-
-
Row2
RAM2
-
-
COM59
Row59
RAM59
Row3
RAM3
Row59
RAM3
-
-
Row3
RAM3
-
-
COM60
Row60
RAM60
Row4
RAM4
Row60
RAM4
-
-
Row4
RAM4
-
-
COM61
Row61
RAM61
Row5
RAM5
Row61
RAM5
-
-
Row5
RAM5
-
-
COM62
Row62
RAM62
Row6
RAM6
Row62
RAM6
-
-
Row6
RAM6
-
-
COM63
Row63
RAM63
Row7
RAM7
Row63
RAM7
-
-
Row7
RAM7
-
-
Display
examples refer
to figures:
SSD1331
(a)
(b)
(c)
(a)
(b)
(e)
(f)
Rev 0.13
P 43/64
Mar 2006
(d)
(e)
(c)
(f)
(d)
(RAM)
Solomon Systech
Table 14 - Example of Set Display Offset and Display Start Line with Remap
Output
Hardw are
pin name
64
64
64
48
48
48
48
1
1
1
1
1
1
1
COM Scan Direction Remap (A0h A[4])
0
8
0
0
8
0
8
Display offset (A2h)
0
0
8
0
0
8
16
Set MUX ratio(A8h)
Display start line (A1h)
COM0
Row 63
RAM63
Row 7
RAM7
Row 63
RAM7
Row 47
RAM47
-
-
Row 47
RAM7
-
-
COM1
Row 62
RAM62
Row 6
RAM6
Row 62
RAM6
Row 46
RAM46
-
-
Row 46
RAM6
-
-
COM2
Row 61
RAM61
Row 5
RAM5
Row 61
RAM5
Row 45
RAM45
-
-
Row 45
RAM5
-
-
COM3
Row 60
RAM60
Row 4
RAM4
Row 60
RAM4
Row 44
RAM44
-
-
Row 44
RAM4
-
-
COM4
Row 59
RAM59
Row 3
RAM3
Row 59
RAM3
Row 43
RAM43
-
-
Row 43
RAM3
-
-
COM5
Row 58
RAM58
Row 2
RAM2
Row 58
RAM2
Row 42
RAM42
-
-
Row 42
RAM2
-
-
COM6
Row 57
RAM57
Row 1
RAM1
Row 57
RAM1
Row 41
RAM41
-
-
Row 41
RAM1
-
-
COM7
Row 56
RAM56
Row 0
RAM0
Row 56
RAM0
Row 40
RAM40
-
-
Row 40
RAM0
-
-
COM8
Row 55
RAM55
Row 63
RAM63
Row 55
RAM63
Row 39
RAM39
Row 47
RAM47
Row 39
RAM47
Row 47
RAM63
COM9
Row 54
RAM54
Row 62
RAM62
Row 54
RAM62
Row 38
RAM38
Row 46
RAM46
Row 38
RAM46
Row 46
RAM62
COM10
Row 53
RAM53
Row 61
RAM61
Row 53
RAM61
Row 37
RAM37
Row 45
RAM45
Row 37
RAM45
Row 45
RAM61
COM11
Row 52
RAM52
Row 60
RAM60
Row 52
RAM60
Row 36
RAM36
Row 44
RAM44
Row 36
RAM44
Row 44
RAM60
COM12
Row 51
RAM51
Row 59
RAM59
Row 51
RAM59
Row 35
RAM35
Row 43
RAM43
Row 35
RAM43
Row 43
RAM59
COM13
Row 50
RAM50
Row 58
RAM58
Row 50
RAM58
Row 34
RAM34
Row 42
RAM42
Row 34
RAM42
Row 42
RAM58
COM14
Row 49
RAM49
Row 57
RAM57
Row 49
RAM57
Row 33
RAM33
Row 41
RAM41
Row 33
RAM41
Row 41
RAM57
COM15
Row 48
RAM48
Row 56
RAM56
Row 48
RAM56
Row 32
RAM32
Row 40
RAM40
Row 32
RAM40
Row 40
RAM56
COM16
Row 47
RAM47
Row 55
RAM55
Row 47
RAM55
Row 31
RAM31
Row 39
RAM39
Row 31
RAM39
Row 39
RAM55
COM17
Row 46
RAM46
Row 54
RAM54
Row 46
RAM54
Row 30
RAM30
Row 38
RAM38
Row 30
RAM38
Row 38
RAM54
COM18
Row 45
RAM45
Row 53
RAM53
Row 45
RAM53
Row 29
RAM29
Row 37
RAM37
Row 29
RAM37
Row 37
RAM53
COM19
Row 44
RAM44
Row 52
RAM52
Row 44
RAM52
Row 28
RAM28
Row 36
RAM36
Row 28
RAM36
Row 36
RAM52
COM20
Row 43
RAM43
Row 51
RAM51
Row 43
RAM51
Row 27
RAM27
Row 35
RAM35
Row 27
RAM35
Row 35
RAM51
COM21
Row 42
RAM42
Row 50
RAM50
Row 42
RAM50
Row 26
RAM26
Row 34
RAM34
Row 26
RAM34
Row 34
RAM50
COM22
Row 41
RAM41
Row 49
RAM49
Row 41
RAM49
Row 25
RAM25
Row 33
RAM33
Row 25
RAM33
Row 33
RAM49
COM23
Row 40
RAM40
Row 48
RAM48
Row 40
RAM48
Row 24
RAM24
Row 32
RAM32
Row 24
RAM32
Row 32
RAM48
COM24
Row 39
RAM39
Row 47
RAM47
Row 39
RAM47
Row 23
RAM23
Row 31
RAM31
Row 23
RAM31
Row 31
RAM47
COM25
Row 38
RAM38
Row 46
RAM46
Row 38
RAM46
Row 22
RAM22
Row 30
RAM30
Row 22
RAM30
Row 30
RAM46
COM26
Row 37
RAM37
Row 45
RAM45
Row 37
RAM45
Row 21
RAM21
Row 29
RAM29
Row 21
RAM29
Row 29
RAM45
COM27
Row 36
RAM36
Row 44
RAM44
Row 36
RAM44
Row 20
RAM20
Row 28
RAM28
Row 20
RAM28
Row 28
RAM44
COM28
Row 35
RAM35
Row 43
RAM43
Row 35
RAM43
Row 19
RAM19
Row 27
RAM27
Row 19
RAM27
Row 27
RAM43
COM29
Row 34
RAM34
Row 42
RAM42
Row 34
RAM42
Row 18
RAM18
Row 26
RAM26
Row 18
RAM26
Row 26
RAM42
COM30
Row 33
RAM33
Row 41
RAM41
Row 33
RAM41
Row 17
RAM17
Row 25
RAM25
Row 17
RAM25
Row 25
RAM41
COM31
Row 32
RAM32
Row 40
RAM40
Row 32
RAM40
Row 16
RAM16
Row 24
RAM24
Row 16
RAM24
Row 24
RAM40
COM32
Row 31
RAM31
Row 39
RAM39
Row 31
RAM39
Row 15
RAM15
Row 23
RAM23
Row 15
RAM23
Row 23
RAM39
COM33
Row 30
RAM30
Row 38
RAM38
Row 30
RAM38
Row 14
RAM14
Row 22
RAM22
Row 14
RAM22
Row 22
RAM38
COM34
Row 29
RAM29
Row 37
RAM37
Row 29
RAM37
Row 13
RAM13
Row 21
RAM21
Row 13
RAM21
Row 21
RAM37
COM35
Row 28
RAM28
Row 36
RAM36
Row 28
RAM36
Row 12
RAM12
Row 20
RAM20
Row 12
RAM20
Row 20
RAM36
COM36
Row 27
RAM27
Row 35
RAM35
Row 27
RAM35
Row 11
RAM11
Row 19
RAM19
Row 11
RAM19
Row 19
RAM35
COM37
Row 26
RAM26
Row 34
RAM34
Row 26
RAM34
Row 10
RAM10
Row 18
RAM18
Row 10
RAM18
Row 18
RAM34
COM38
Row 25
RAM25
Row 33
RAM33
Row 25
RAM33
Row 9
RAM9
Row 17
RAM17
Row 9
RAM17
Row 17
RAM33
COM39
Row 24
RAM24
Row 32
RAM32
Row 24
RAM32
Row 8
RAM8
Row 16
RAM16
Row 8
RAM16
Row 16
RAM32
COM40
Row 23
RAM23
Row 31
RAM31
Row 23
RAM31
Row 7
RAM7
Row 15
RAM15
Row 7
RAM15
Row 15
RAM31
COM41
Row 22
RAM22
Row 30
RAM30
Row 22
RAM30
Row 6
RAM6
Row 14
RAM14
Row 6
RAM14
Row 14
RAM30
COM42
Row 21
RAM21
Row 29
RAM29
Row 21
RAM29
Row 5
RAM5
Row 13
RAM13
Row 5
RAM13
Row 13
RAM29
RAM28
COM43
Row 20
RAM20
Row 28
RAM28
Row 20
RAM28
Row 4
RAM4
Row 12
RAM12
Row 4
RAM12
Row 12
COM44
Row 19
RAM19
Row 27
RAM27
Row 19
RAM27
Row 3
RAM3
Row 11
RAM11
Row 3
RAM11
Row 11
RAM27
COM45
Row 18
RAM18
Row 26
RAM26
Row 18
RAM26
Row 2
RAM2
Row 10
RAM10
Row 2
RAM10
Row 10
RAM26
COM46
Row 17
RAM17
Row 25
RAM25
Row 17
RAM25
Row 1
RAM1
Row 9
RAM9
Row 1
RAM9
Row 9
RAM25
COM47
Row 16
RAM16
Row 24
RAM24
Row 16
RAM24
Row 0
RAM0
Row 8
RAM8
Row 0
RAM8
Row 8
RAM24
COM48
Row 15
RAM15
Row 23
RAM23
Row 15
RAM23
-
-
Row 7
RAM7
-
-
Row 7
RAM23
COM49
Row 14
RAM14
Row 22
RAM22
Row 14
RAM22
-
-
Row 6
RAM6
-
-
Row 6
RAM22
COM50
Row 13
RAM13
Row 21
RAM21
Row 13
RAM21
-
-
Row 5
RAM5
-
-
Row 5
RAM21
COM51
Row 12
RAM12
Row 20
RAM20
Row 12
RAM20
-
-
Row 4
RAM4
-
-
Row 4
RAM20
COM52
Row 11
RAM11
Row 19
RAM19
Row 11
RAM19
-
-
Row 3
RAM3
-
-
Row 3
RAM19
COM53
Row 10
RAM10
Row 18
RAM18
Row 10
RAM18
-
-
Row 2
RAM2
-
-
Row 2
RAM18
COM54
Row 9
RAM9
Row 17
RAM17
Row 9
RAM17
-
-
Row 1
RAM1
-
-
Row 1
RAM17
COM55
Row 8
RAM8
Row 16
RAM16
Row 8
RAM16
-
-
Row 0
RAM0
-
-
Row 0
RAM16
COM56
Row 7
RAM7
Row 15
RAM15
Row 7
RAM15
-
-
-
-
-
-
-
-
COM57
Row 6
RAM6
Row 14
RAM14
Row 6
RAM14
-
-
-
-
-
-
-
-
COM58
Row 5
RAM5
Row 13
RAM13
Row 5
RAM13
-
-
-
-
-
-
-
-
COM59
Row 4
RAM4
Row 12
RAM12
Row 4
RAM12
-
-
-
-
-
-
-
-
COM60
Row 3
RAM3
Row 11
RAM11
Row 3
RAM11
-
-
-
-
-
-
-
-
COM61
Row 2
RAM2
Row 10
RAM10
Row 2
RAM10
-
-
-
-
-
-
-
-
COM62
Row 1
RAM1
Row 9
RAM9
Row 1
RAM9
-
-
-
-
-
-
-
-
COM63
Row 0
RAM0
Row 8
RAM8
Row 0
RAM8
-
-
-
-
-
-
-
-
Display
examples refer
to figures:
(a)
(b)
(a)
(e)
Solomon Systech
(c)
(d)
(e)
(b)
(c)
(f)
(g)
(f)
(g)
(d)
(RAM)
Mar 2006 P 44/64
Rev 0.13
SSD1331
9.1.9 Set Display Mode (A4h ~ A7h)
These are single byte command and they are used to set Normal Display, Entire Display On, Entire Display
Off and Inverse Display.
• Normal Display (A4h)
Reset the above effect and turn the data to ON at the corresponding gray level.
• Set Entire Display On (A5h)
Forces the entire display to be at “GS63” regardless of the contents of the display data RAM.
• Set Entire Display Off (A6h)
Forces the entire display to be at gray level “GS0” regardless of the contents of the display data RAM.
• Inverse Display (A7h)
The gray level of display data are swapped such that “GS0” <-> “GS63”, “GS1” <-> “GS62”, ….
9.1.10 Set Multiplex Ratio (A8h)
This command switches default 1:64 multiplex mode to any multiplex mode from 16 to 64. For example,
when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the
enabled common pins are depended on the setting of “Display Offset” register programmed by command A2h.
9.1.11 Set Master Configuration (ADh)
This command selects the external VCC power supply. External VCC power should be connected to the VCC pin.
A[0] bit must be set to 0b after RESET.
This command will be activated after issuing Set Display ON command (AFh)
9.1.12 Set Display On/Off (AEh / AFh)
These single byte commands are used to turn the OLED panel display on or off.
When the display is on, the selected circuits by Set Master Configuration command will be turned on.
When the display is off, those circuits will be turned off and the segment and common output are in high
impedance state.
These commands set the display to one of the two states:
o AEh: Display Off
o AFh: Display On
9.1.13 Power Save Mode (B0h)
This command is used in enabling the power saving mode.
9.1.14 Phase 1 and 2 Period Adjustment (B1h)
This command sets the length of phase 1 and 2 of segment waveform of the driver.
• Phase 1 (A[3:0]): Set the period from 1 to 15 in the unit of DCLKs. A larger capacitance of the OLED
pixel may require longer period to discharge the previous data charge completely.
• Phase 2 (A[7:4]): Set the period from 1 to 15 in the unit of DCLKs. A longer period is needed to
charge up a larger capacitance of the OLED pixel to the target voltage VP for color A, B and C.
SSD1331
Rev 0.13
P 45/64
Mar 2006
Solomon Systech
9.1.15 Set Display Clock Divide Ratio/ Oscillator Frequency (B3h)
This command consists of two functions:
• Display Clock Divide Ratio (A[3:0])
Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with
power on reset value = 1. Please refer to section 7.3.1 for the details relationship of DCLK and CLK.
•
Oscillator Frequency (A[7:4])
Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit
value results in 16 different frequency setting available as shown below. The default setting is 1101b
Figure 26 - Typical Oscillator frequency adjustment by B3 command
˄˃˃˃
ˢ̆˶˼˿˿˴̇̂̅ʳ˙̅˸̄̈˸́˶̌ʳ̉̆ʳ˕ˆʳ˶̂̀̀˴́˷ʳ̆˸̇̇˼́˺
˙̅˸̄̈˸́˶̌ʳʻ˾˛̍ʼ
ˌ˃˃
ˋ˃˃
ˊ˃˃
ˉ˃˃
ˈ˃˃
˔ˮˊˍˇ˰ʳ˼́ʳ˷˸˶˼̀˴˿
ˇ˃˃
˃
˅
ˇ
ˉ
ˋ
˄˃
˄˅
˄ˇ
˄ˉ
9.1.16 Set Gray Scale Table (B8h)
This command is used to set the gray scale table for the display. Except gray scale entry 0, which is zero as
it has no pre-charge and current drive, each odd entry gray scale level is programmed in the length of current
drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter is the OLED
pixel when it’s turned on. Please refer to section 7.6 for more detailed explanation of relation of display data
RAM, gray scale table and the pixel brightness.
Following the command B8h, the user has to set the pulse width for GS1, GS3, GS5, …, GS59, GS61, and
GS63 one by one in sequence and complies the following conditions.
GS1 > 0; GS3 > GS1 + 1; GS5 > GS3 + 1; ……
Afterwards, the driver automatically derives the pulse width of even entry of gray scale table GS2, GS4, …,
GS62 with the formula like below.
GSn = (GSn-1 + GSn+1) / 2
For example, if GS1 = 3 DCLKs and GS3 = 7 DCLKs, GS2 = (3+7)/2 = 5 DCLKs
The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is
desired that the brightness response of the panel is linearly proportional to the image data value in display
data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table
setting like example below can compensate this effect.
Solomon Systech
Mar 2006 P 46/64
Rev 0.13
SSD1331
Figure 27 - Example of gamma correction by gray scale table setting
Brightness
Pulse
Width
Brightness
Gray scale
table setting
Panel
response
Gray Scale
Result in linear
response
Gray Scale
Pulse width
9.1.17 Enable Linear Gray Scale Table (B9h)
This command reloads the preset linear gray scale table as GS1 = 1, GS2 = 3, GS3 = 5, …., GS62 = 123,
GS63 = 125 DCLKs.
9.1.18 Set Pre-charge voltage (BBh)
This command sets the pre-charge voltage level of segment pins. The level of VP is programmed with
reference to VCC. Figure 28 shows the details of setting Pre-charge voltage level by command BBh A[5:1].
Figure 28 – Typical Pre-charge voltage level setting by command BBh.
VP ratio
VP ratio vs BBh A[5:1] setting
0.6
0.5
0.4
0.3
0.2
11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
0
00000
0.1
BBh A[5:1] Setting
Note
(!)
VP ratio = 0.1 refers to VP voltage = 0.1 x VCC.
9.1.19 Set VCOMH Voltage (BEh)
This command sets the high voltage level of common pins. The level of VCOMH is programmed with reference
to VCC.
9.1.20 NOP (BCh, BDh, E3h)
These are command for no operation.
9.1.21 Set Command Lock (FDh)
This command is used to lock the OLED driver IC from accepting any command except itself. After entering
FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly entered command (except FDh 12h
A[2]=0b) and there will be no memory access. This is call “Lock” state. That means the OLED driver IC ignore
all the commands (except FDh 12h A[2]=0b) during the “Lock” state.
Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the “Lock”
state. And the driver IC will then respond to the command and memory access.
SSD1331
Rev 0.13
P 47/64
Mar 2006
Solomon Systech
9.2
GRAPHIC ACCELERATION COMMAND SET DESCRIPTION
9.2.1 Draw Line (21h)
This command draws a line by the given start, end column and row coordinates and the color of the line.
Line Color
Row 2,
Column 2
Row 1,
Column 1
Figure 29 - Example of Draw Line Command
For example, the line above can be drawn by the following command sequence.
1. Enter into draw line mode by command 21h
2. Send column start address of line, column1, for example = 1h
3. Send row start address of line, row 1, for example = 10h
4. Send column end address of line, column 2, for example = 28h
5. Send row end address of line, row 2, for example = 4h
6. Send color C, B and A of line, for example = 35d, 0d, 0d for blue color
9.2.2 Draw Rectangle (22h)
Given the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2), specify the outline and fill
area colors, a rectangle that will be drawn with the color specified. Remarks: If fill color option is disabled, the
enclosed area will not be filled.
Figure 30 - Example of Draw Rectangle Command
Row 1,
Column 1
Filled
Color
Outline
Color
Row 2,
Column 2
The following example illustrates the rectangle drawing command sequence.
1. Enter the “draw rectangle mode” by execute the command 22h
2. Set the starting column coordinates, Column 1. e.g., 03h.
3. Set the starting row coordinates, Row 1. e.g., 02h.
4. Set the finishing column coordinates, Column 2. e.g., 12h
5. Set the finishing row coordinates, Row 2. e.g., 15h
6. Set the outline color C, B and A. e.g., (28d, 0d, 0d) for blue color
7. Set the filled color C, B and A. e.g., (0d, 0d, 40d) for red color
Solomon Systech
Mar 2006 P 48/64
Rev 0.13
SSD1331
9.2.3 Copy (23h)
Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2,
Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new
image will overlap the original one.
The following example illustrates the copy procedure.
1. Enter the “copy mode” by execute the command 23h
2. Set the starting column coordinates, Column 1. E.g., 00h.
3. Set the starting row coordinates, Row 1. E.g., 00h.
4. Set the finishing column coordinates, Column 2. E.g., 05h
5. Set the finishing row coordinates, Row 2. E.g., 05h
6. Set the new column coordinates, Column 3. E.g., 03h
7. Set the new row coordinates, Row 3. E.g., 03h
Figure 31 - Example of Copy Command
Original
Image
Row 1,
Column 1
Row 3,
Column 3
New Copied
Image
Row 3 + Row 2,
Column 3 + Column 2
9.2.4 Dim Window (24h)
This command will dim the window area specify by starting point (Row 1, Column 1) and the ending point
(Row 2, Column 2). After the execution of this command, the selected window area will become darker as
follow.
Table 15 - Result of Change of Brightness by Dim Window Command
Original gray scale
GS0 ~ GS15
GS16 ~ GS19
GS20 ~ GS23
:
GS60 ~ GS63
New gray scale after dim window command
No change
GS4
GS5
:
GS15
Additional execution of this command over the same window area will not change the data content.
SSD1331
Rev 0.13
P 49/64
Mar 2006
Solomon Systech
9.2.5 Clear Window (25h)
This command sets the window area specify by starting point (Row 1, Column 1) and the ending point (Row 2,
Column 2) to clear the window display. The graphic display data RAM content of the specified window area
will be set to zero.
This command can be combined with Copy command to make as a “move” result. The following example
illustrates the copy plus clear procedure and results in moving the window object.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Enter the “copy mode” by execute the command 23h
Set the starting column coordinates, Column 1. E.g., 00h.
Set the starting row coordinates, Row 1. E.g., 00h.
Set the finishing column coordinates, Column 2. E.g., 05h
Set the finishing row coordinates, Row 2. E.g., 05h
Set the new column coordinates, Column 3. E.g., 06h
Set the new row coordinates, Row 3. E.g., 06h
Enter the “clear mode” by execute the command 24h
Set the starting column coordinates, Column 1. E.g., 00h.
Set the starting row coordinates, Row 1. E.g., 00h.
Set the finishing column coordinates, Column 2. E.g., 05h
Set the finishing row coordinates, Row 2. E.g., 05h
Clear
Command
Figure 32 - Example of Copy + Clear = Move Command
9.2.6 Fill Enable/Disable (26h)
This command has two functions.
• Enable/Disable fill (A[0])
0 = Disable filling of color into rectangle in draw rectangle command. (RESET)
1 = Enable filling of color into rectangle in draw rectangle command.
• Enable/Disable reverse copy (A[4])
0 = Disable reverse copy (RESET)
1 = During copy command, the new image colors are swapped such that “GS0” <-> “GS63”, “GS1” <> “GS62”, ….
Solomon Systech
Mar 2006 P 50/64
Rev 0.13
SSD1331
9.2.7 Continuous Horizontal & Vertical Scrolling Setup (27h)
This command setup the parameters required for horizontal and vertical scrolling.
Figure 33 - Examples of Continuous Horizontal and Vertical Scrolling command setup
Display snap shot after scrolling start
Display before scrolling start
Example 1 : Partial screen
horizontal left side scrolling with 1
column shift in every 6 frames
Sample code
27h // Continuous horizontal scroll
01h // Horizontal scroll by 1 column
28h // Define row 40 as start row address
18h // Scrolling 24 rows
00h // No vertical scroll
00h // Set time interval between each
scroll step as 6 frames
2Fh // Activate scrolling
Start row
address
No of scrolling
rows
Display snap shot after scrolling start
Display before scrolling start
Example 2 : Full screen vertical
scrolling with 1 row up in every
6 frames.
Sample code
27h // Continuous vertical scroll
00h // No horizontal scroll
00h // Start row address for vertical scrolling
40h // Number of scrolling rows for vertical scrolling
01h // Set vertical scrolling offset as 1 row
00h // Set time interval between each
scroll step as 6 frames
2Fh // Activate scrolling
Display snap shot after scrolling start
Display before scrolling start
Start row
address
No of scrolling
rows
Example 3 : Full screen
diagonal scrolling (horizontal left
side scrolling with 1 column shift
plus vertical scrolling with 1 row
up) in every 10 frames.
Sample code
27h // Continuous diagonal scroll
01h // Horizontal scroll by 1 column
00h // Define row 0 as start row address
40h // Scrolling 64 rows
01h // Set vertical scrolling offset as 1 row
01h // Set time interval between each
scroll step as 10 frames
2Fh // Activate scrolling
9.2.8 Deactivate scrolling (2Eh)
This command deactivates the scrolling action.
9.2.9 Activate scrolling (2Fh)
This command activates the scrolling function according to the setting done by Continuous Horizontal &
Vertical Scrolling Setup command 27h.
SSD1331
Rev 0.13
P 51/64
Mar 2006
Solomon Systech
10 MAXIMUM RATINGS
Table 16 - Maximum Ratings
(Voltage Reference to VSS)
Symbol
VDD
VDDIO
VCC
VSEG / VCOM
ISEG
Vin
TA
Tstg
Parameter
Supply Voltage
SEG/COM output voltage
SEG output current
Input voltage
Operating Temperature
Storage Temperature Range
Value
-0.3 to +4
-0.3 to VDD+0.5
0 to 17.0
0 to 17.0
0 to 220
VSS -0.3 to VDD +0.3
-40 to +85
-65 to +150
Unit
V
V
V
V
uA
V
ºC
ºC
*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the
limits in the Electrical Characteristics tables or Pin Description.
Solomon Systech
Mar 2006 P 52/64
Rev 0.13
SSD1331
11 DC CHARACTERISTICS
Table 17 - DC Characteristics
Conditions (unless specified):
Voltage referenced to VSS
VDD = 2.7, VDDIO = 1.8V, VCC = 11.0V, IREF = 10uA, at TA = 25°C.
Symbol
VCC
VDD
VDDIO
VOH
VOL
VIH
VIL
Parameter
Operating Voltage
Logic Supply Voltage
Power Supply for I/O pins
High Logic Output Level
Low Logic Output Level
High Logic Input Level
Low Logic Input Level
Test Condition
IOUT = 100uA, 3.3MHz
IOUT = 100uA, 3.3MHz
-
IDD_SLEEP Sleep mode VDD Current
IDDIO
SLEEP
Min
Typ
Max
Unit
8
11
16
V
2.4
2.7
3.5
V
1.6
1.8
VDD
V
0.9 x VDDIO
VDDIO
V
0
0.1 x VDDIO V
0.8 x VDDIO
VDDIO
V
0
0.2 x VDDIO V
Display OFF, No panel attached
-
0
10
uA
Sleep mode VDDIO Current Display OFF, No panel attached
-
0
10
uA
-
0
10
uA
-
700
1200
uA
-
170
500
Contrast = FFh
142
155
168
uA
Contrast = 7Fh
-
78
-
uA
Contrast = 3Fh
-
39
-
uA
Contrast = FFh
-3
-
+3
%
Contrast = FFh
-2
-
+2
%
COM[0:63], I = 20mA
-
25
30
Ω
ICC_SLEEP Sleep mode VCC Current
ICC
VCC Supply Current
IDD
VDD Supply Current
Display OFF, No panel attached
Display ON, Contrast = FFh, No
panel attached
Display ON, Contrast = FFh, No
panel attached
Segment Output Current:
VCC = 8V, Display ON, All
1’s pattern.
ISEG
(Segment pin under test is
connected with a 20K ȍ
resistive load to VSS)
Segment Output Current
Uniformity:
Dev = (ISEG – IMID) / IMID
Dev
IMID = (IMAX + IMIN) / 2
ISEG [0:287] = Segment
current at contrast settings
VCC =12V
Adjacent pin output
current uniformity:
Adj. Dev
Adj Dev = (I[n] - I[n+1]) /
(I[n]+I[n+1])
RCOM_ON COM pin output resistance
SSD1331
Rev 0.13
P 53/64
Mar 2006
uA
Solomon Systech
12 AC CHARACTERISTICS
Table 18 - AC Characteristics
Conditions (Unless otherwise specified):
Voltage referenced to VSS
VDD = VDDIO = 2.4V to 3.5V
VCC = 9.0V to 16.0V
TA = 25°C
Symbol
FOSC
Parameter
Oscillation Frequency of
Display Timing
Generator
FFRM
Frame Frequency
RES#
Reset low pulse width
Reset completion time
Test Condition
VDD = 2.7V
Display ON, Internal
Oscillator Enabled
-
Min
Typ
Max
Unit
774
860
946
KHz
-
FOSC x 1 / (D x K x N)
-
Hz
3
-
-
2
us
us
Note
(1)
Fosc stands for the frequency value of the internal oscillator
(2)
D stands for divide ratio
(3)
K stands for total number of display clocks per row. (RESET=136, i.e. phase1 DCLK+phase2 DCLK +
phase3 DCLK =4+7+125)
(4)
N stands for number of MUX selected by command A8h
Solomon Systech
Mar 2006 P 54/64
Rev 0.13
SSD1331
Table 19 - 6800-Series MPU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, VDDIO = 2.4V to VDD, TA = -40 to +85°C)
Symbol
tcycle
PWCSL
PWCSH
tcycle
PWCSL
PWCSH
tAS
tAH
tDSW
tDHW
tACC
tOH
tR
tF
Parameter
Clock Cycle Time (write cycle)
Control Pulse Low Width (write cycle)
Control Pulse High Width (write cycle)
Clock Cycle Time (read cycle)
Control Pulse Low Width (read cycle)
Control Pulse High Width (read cycle)
Address Setup Time
Address Hold Time
Data Setup Time
Data Hold Time
Data Access Time
Output Hold time
Min
130
60
60
200
100
100
0
10
40
10
-
Typ
-
Max
140
70
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
15
15
ns
ns
Rise Time
Fall Time
D/C#
tAS
tAH
R/W#
CS#
tR
tF
tcycle
PWCSH
PWCSL
E
tDHW
tDSW
D[15:0]
(WRITE)
Valid Data
tACC
D[15:0]
(READ)
tDHR
Valid Data
tOH
Figure 34 - 6800-series parallel interface characteristics
SSD1331
Rev 0.13
P 55/64
Mar 2006
Solomon Systech
Table 20 - 8080-Series MPU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, VDDIO = 2.4V to VDD, TA = -40 to 85°C)
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
PWCSL
PWCSH
tR
tF
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Chip Select Low Pulse Width (read)
Chip Select Low Pulse Width (write)
Chip Select High Pulse Width (read)
Chip Select High Pulse Width (write)
Rise Time
Fall Time
Min
Typ
Max
Unit
130
0
10
40
10
20
100
60
60
60
-
-
70
140
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
-
-
ns
-
15
15
ns
ns
D/C#
tAS
t AH
CS#
tF
tcycle
tR
PW CSL
PW CSH
RD#
WR#
tDSW
tDHW
D[15:0]
Valid Data
(Write data to driver)
D[15:0]
tDHR
tACC
(Read data from driver)
Valid Data
tOH
Figure 35 - 8080-series parallel interface characteristics
Solomon Systech
Mar 2006 P 56/64
Rev 0.13
SSD1331
Table 21 - Serial Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, VDDIO = 2.4V to VDD, TA = -40 to 85°C)
Symbol
tcycle
tAS
tAH
tCSS
tCSH
tDSW
tDHW
tCLKL
tCLKH
Parameter
Clock Cycle Time
Address Setup Time
Address Hold Time
Chip Select Setup Time
Chip Select Hold Time
Write Data Setup Time
Write Data Hold Time
Clock Low Time
Clock High Time
Rise Time
Fall Time
tR
tF
Min
Typ
Max
Unit
150
40
40
75
60
40
40
75
75
-
-
15
15
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
D/C#
tAS
tAH
tCSS
CS#
tCSH
tcycle
tCLKL
tCLKH
SCLK(D0)
tF
tR
tDHW
tDSW
SDIN(D1)
Valid Data
CS#
SCLK(D0)
D7
SDIN(D1)
D6
D5
D4
D3
D2
D1
D0
Figure 36 - Serial interface characteristics
SSD1331
Rev 0.13
P 57/64
Mar 2006
Solomon Systech
13 APPLICATION EXAMPLE
The configuration for 6800-parallel interface mode, externally VCC is shown in the following diagram:
(VDD = 3.0V, external VCC = 12V, IREF = 10uA)
COM1
.
.
COM63
SA0
SB0
SC0
.
.
.
.
.
.
.
.
.
.
SA95
SB95
SC95
COM62
.
.
COM0
Color OLED Panel
96RGB x 64
SSD1331U1
NC
VCC VCOMH NC D7~D0 E
R/W# D/C# RES# CS#
IREF
BS2
BS1
VDD
VBREF
FB VDDB
GDR
VSS
NC
C1
R1
C2
C3
D7~D0
E
VSS [GND]
R/W# D/C# RES# CS#
Pin connected to MCU interface: D0~D7, E, R/W#, D/C#, RES#, CS#
Pin internally connected to VDDIO: CLS,
Pin internally connected to VSS: VSSB, B00, BS3
Pin internally connected to VDD: AVDD
C1~C3: 4.7uF
Voltage at IREF = VCC – 3V
R1 = (Voltage at IREF - VSS) / IREF = 910KΩ for 12V VCC
Figure 37 - Application Example for SSD1331U1R1
Solomon Systech
Mar 2006 P 58/64
Rev 0.13
SSD1331
14 PACKAGE OPTIONS
14.1 SSD1331Z Die Tray Information
Figure 38 - Die Tray Information
Spec
mm
(mil)
76.00 ± 0.10
(2992)
W1
68.00 ± 0.10
(2677)
W2
4.20± 0.10
(165)
H
13.66±0.10
(538)
Dx
48.78±0.10
(1920)
TPx
7.55±0.10
(297)
Dy
61.00±0.10
(2402)
TPy
16.26 ± 0.05
(640)
Px
3.05 ± 0.05
(120)
Py
13.25 ± 0.01
(522)
X
1.73 ± 0.01
(68)
Y
0.62 ± 0.05
(24)
Z
N 84 (Pocket number)
SSD1331
Rev 0.13
P 59/64
Mar 2006
Solomon Systech
14.2 SSD1331U1R1 COF PACKAGE DIMENSIONS
Figure 39 - SSD1331U1R1 outline drawing
Solomon Systech
Mar 2006 P 60/64
Rev 0.13
SSD1331
SSD1331
Rev 0.13
P 61/64
Mar 2006
Solomon Systech
14.3 SSD1331U1R1 COF PACKAGE PIN ASSIGNMENT
Figure 40 - SSD1331U1R1 pin assignment drawing
Solomon Systech
Mar 2006 P 62/64
Rev 0.13
SSD1331
Table 22 - SSD1331U1R1 pin assignment
Pin no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Pin name
NC
VCC
VCOMH
NC
D7
D6
D5
D4
D3
D2
D1
D0
E
R/W#
D/C#
RES#
CS#
IREF
BS2
BS1
VDD
NC
NC
NC
VBREF
NC
FB
VDDB
GDR
VSS
NC
NC
NC
NC
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SC95
SSD1331
Pin no.
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Rev 0.13
Pin name
SB95
SA95
SC94
SB94
SA94
SC93
SB93
SA93
SC92
SB92
SA92
SC91
SB91
SA91
SC90
SB90
SA90
SC89
SB89
SA89
SC88
SB88
SA88
SC87
SB87
SA87
SC86
SB86
SA86
SC85
SB85
SA85
SC84
SB84
SA84
SC83
SB83
SA83
SC82
SB82
SA82
SC81
SB81
SA81
SC80
SB80
SA80
SC79
SB79
SA79
SC78
SB78
SA78
SC77
SB77
SA77
SC76
SB76
SA76
SC75
SB75
SA75
SC74
SB74
SA74
SC73
SB73
SA73
SC72
SB72
SA72
SC71
SB71
SA71
SC70
SB70
SA70
SC69
SB69
SA69
P 63/64
Pin no.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
Mar 2006
Pin name
SC68
SB68
SA68
SC67
SB67
SA67
SC66
SB66
SA66
SC65
SB65
SA65
SC64
SB64
SA64
SC63
SB63
SA63
SC62
SB62
SA62
SC61
SB61
SA61
SC60
SB60
SA60
SC59
SB59
SA59
SC58
SB58
SA58
SC57
SB57
SA57
SC56
SB56
SA56
SC55
SB55
SA55
SC54
SB54
SA54
SC53
SB53
SA53
SC52
SB52
SA52
SC51
SB51
SA51
SC50
SB50
SA50
SC49
SB49
SA49
SC48
SB48
SA48
SC47
SB47
SA47
SC46
SB46
SA46
SC45
SB45
SA45
SC44
SB44
SA44
SC43
SB43
SA43
SC42
SB42
Pin no.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
Pin name
SA42
SC41
SB41
SA41
SC40
SB40
SA40
SC39
SB39
SA39
SC38
SB38
SA38
SC37
SB37
SA37
SC36
SB36
SA36
SC35
SB35
SA35
SC34
SB34
SA34
SC33
SB33
SA33
SC32
SB32
SA32
SC31
SB31
SA31
SC30
SB30
SA30
SC29
SB29
SA29
SC28
SB28
SA28
SC27
SB27
SA27
SC26
SB26
SA26
SC25
SB25
SA25
SC24
SB24
SA24
SC23
SB23
SA23
SC22
SB22
SA22
SC21
SB21
SA21
SC20
SB20
SA20
SC19
SB19
SA19
SC18
SB18
SA18
SC17
SB17
SA17
SC16
SB16
SA16
SC15
Pin no.
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
Pin name
SB15
SA15
SC14
SB14
SA14
SC13
SB13
SA13
SC12
SB12
SA12
SC11
SB11
SA11
SC10
SB10
SA10
SC9
SB9
SA9
SC8
SB8
SA8
SC7
SB7
SA7
SC6
SB6
SA6
SC5
SB5
SA5
SC4
SB4
SA4
SC3
SB3
SA3
SC2
SB2
SA2
SC1
SB1
SA1
SC0
SB0
SA0
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM0
COM2
COM4
COM6
COM8
COM10
COM12
COM14
COM16
COM18
COM20
COM22
COM24
COM26
COM28
COM30
COM32
COM34
COM36
COM38
Pin no.
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
Pin name
COM40
COM42
COM44
COM46
COM48
COM50
COM52
COM54
COM56
COM58
COM60
COM62
NC
NC
NC
Solomon Systech
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for
each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of
others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or
manufacture of the part
http://www.solomon-systech.com
Solomon Systech
Mar 2006 P 64/64
Rev 0.13
SSD1331