SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA SSD1305 Advance Information 132 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller This document contains information on a new product. Specifications and information herein are subject to change without notice. http://www.solomon-systech.com SSD1305 Rev 1.9 P 1/70 May 2008 Copyright © 2008 Solomon Systech Limited CONTENTS 1 GENERAL DESCRIPTION .................................................................................................... 7 2 FEATURES ............................................................................................................................... 7 3 ORDERING INFORMATION................................................................................................ 7 4 BLOCK DIAGRAM ................................................................................................................. 8 5 DIE PAD FLOOR PLAN ......................................................................................................... 9 6 PIN ARRANGEMENT .......................................................................................................... 12 6.1 6.2 SSD1305T6R1 PIN ASSIGNMENT .........................................................................................................................12 SSD1305T7R1 PIN ASSIGNMENT .........................................................................................................................14 7 PIN DESCRIPTION............................................................................................................... 16 8 FUNCTIONAL BLOCK DESCRIPTIONS ......................................................................... 18 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 9 MCU INTERFACE SELECTION...............................................................................................................................18 MCU Parallel 6800-series Interface...............................................................................................................18 MCU Parallel 8080-series Interface...............................................................................................................19 MCU Serial Interface......................................................................................................................................21 MCU I2C Interface..........................................................................................................................................21 COMMAND DECODER ..........................................................................................................................................24 OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ......................................................................................25 FR SYNCHRONIZATION ........................................................................................................................................26 RESET CIRCUIT ....................................................................................................................................................26 SEGMENT DRIVERS / COMMON DRIVERS .............................................................................................................27 GRAPHIC DISPLAY DATA RAM (GDDRAM)......................................................................................................29 AREA COLOR DECODER.......................................................................................................................................30 SEG/COM DRIVING BLOCK ................................................................................................................................31 POWER ON AND OFF SEQUENCE .........................................................................................................................32 COMMAND TABLE.............................................................................................................. 33 9.1 10 DATA READ / WRITE ...........................................................................................................................................39 COMMAND DESCRIPTIONS ............................................................................................. 40 10.1 FUNDAMENTAL COMMAND .................................................................................................................................40 10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh) ......................................................40 10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh) .....................................................40 10.1.3 Set Memory Addressing Mode (20h)...............................................................................................................40 10.1.4 Set Column Address (21h) ..............................................................................................................................41 10.1.5 Set Page Address (22h)...................................................................................................................................42 10.1.6 Set Display Start Line (40h~7Fh) ...................................................................................................................43 10.1.7 Set Contrast Control for BANK0 (81h)...........................................................................................................43 10.1.8 Set Brightness for Area Color Banks (82h).....................................................................................................43 10.1.9 Set Look Up Table (LUT) (91h) .....................................................................................................................43 10.1.10 Set Bank Color of BANK1 to BANK16 (PAGE0) (92h) ..............................................................................44 10.1.11 Set Bank Color of BANK17 to BANK32 (PAGE0) (93h) ............................................................................44 10.1.12 Set Segment Re-map (A0h/A1h) ..................................................................................................................44 10.1.13 Entire Display ON (A4h/A5h) ...................................................................................................................44 10.1.14 Set Normal/Inverse Display (A6h/A7h).......................................................................................................44 10.1.15 Set Multiplex Ratio (A8h)............................................................................................................................44 10.1.16 Reserved (AAh) ...........................................................................................................................................44 10.1.17 Dim Mode setting (ABh) .............................................................................................................................44 10.1.18 Master Configuration (ADh).......................................................................................................................44 Solomon Systech May 2008 P 2/70 Rev 1.9 SSD1305 10.1.19 Set Display ON/OFF (ACh/AEh/AFh) ........................................................................................................45 10.1.20 Set Page Start Address for Page Addressing Mode (B0h~B7h)..................................................................45 10.1.21 Set COM Output Scan Direction (C0h/C8h)...............................................................................................45 10.1.22 Set Display Offset (D3h) .............................................................................................................................45 10.1.23 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) ....................................................................48 10.1.24 Set Area Color Mode ON/OFF & Low Power Display Mode (D8h) ..........................................................48 10.1.25 Set Pre-charge Period (D9h) ......................................................................................................................48 10.1.26 Set COM Pins Hardware Configuration (DAh)..........................................................................................49 10.1.27 Set VCOMH Deselect Level (DBh) .................................................................................................................51 10.1.28 Enter Read Modify Write (E0h) ..................................................................................................................51 10.1.29 NOP (E3h) ..................................................................................................................................................52 10.1.30 Exit Read Modify Write (EEh) ....................................................................................................................52 10.1.31 Status register Read ....................................................................................................................................52 10.2 GRAPHIC ACCELERATION COMMAND ..................................................................................................................53 10.2.1 Horizontal Scroll Setup (26h/27h) ..................................................................................................................53 10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)..........................................................................54 10.2.3 Deactivate Scroll (2Eh)...................................................................................................................................55 10.2.4 Activate Scroll (2Fh).......................................................................................................................................55 10.2.5 Set Vertical Scroll Area(A3h) .........................................................................................................................56 11 MAXIMUM RATINGS.......................................................................................................... 57 12 DC CHARACTERISTICS..................................................................................................... 58 13 AC CHARACTERISTICS..................................................................................................... 59 14 APPLICATION EXAMPLE.................................................................................................. 64 15 PACKAGE INFORMATION................................................................................................ 65 15.1 15.2 15.3 15.4 SSD1305 SSD1305Z DIE TRAY INFORMATION ...................................................................................................................65 SSD1305T6R1 DETAIL DIMENSION ....................................................................................................................66 SSD1305T7R1 DETAIL DIMENSION ....................................................................................................................68 SSD1305Z3 DIE TRAY INFORMATION .................................................................................................................69 Rev 1.9 P 3/70 May 2008 Solomon Systech TABLES TABLE 3-1 : ORDERING INFORMATION ................................................................................................... 7 TABLE 5-1 : SSD1305Z BUMP DIE PAD COORDINATES ....................................................................... 11 TABLE 6-1 : SSD1305T6R1 PIN ASSIGNMENT TABLE ......................................................................... 13 TABLE 6-2 : SSD1305T7R1 PIN ASSIGNMENT .................................................................................... 15 TABLE 7-1 : PIN DESCRIPTION ............................................................................................................. 16 TABLE 7-2 : MCU BUS INTERFACE PIN SELECTION ............................................................................. 17 TABLE 8-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE ........................ 18 TABLE 8-2 : CONTROL PINS OF 6800 INTERFACE .................................................................................. 18 TABLE 8-3 : CONTROL PINS OF 8080 INTERFACE (FORM 1) .................................................................. 20 TABLE 8-4 : CONTROL PINS OF 8080 INTERFACE (FORM 2) .................................................................. 20 TABLE 8-5 : CONTROL PINS OF SERIAL INTERFACE .............................................................................. 21 TABLE 9-1: COMMAND TABLE ............................................................................................................. 33 TABLE 9-2 : READ COMMAND TABLE .................................................................................................. 39 TABLE 9-3 : ADDRESS INCREMENT TABLE (AUTOMATIC)..................................................................... 39 TABLE 10-1 : EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH NO REMAP ........... 46 TABLE 10-2 :EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH REMAP ................. 47 TABLE 10-3 : COM PINS HARDWARE CONFIGURATION ....................................................................... 49 TABLE 10-4 : EXAMPLE OF READ MODIFY WRITE MODE .................................................................... 52 TABLE 11-1 : MAXIMUM RATINGS (VOLTAGE REFERENCED TO VSS) .................................................. 57 TABLE 12-1 : DC CHARACTERISTICS ................................................................................................... 58 TABLE 13-1 : AC CHARACTERISTICS ................................................................................................... 59 TABLE 13-2 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS .......................... 60 TABLE 13-3 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS .......................... 61 TABLE 13-4 : SERIAL INTERFACE TIMING CHARACTERISTICS .............................................................. 62 TABLE 13-5 :I2C INTERFACE TIMING CHARACTERISTICS ..................................................................... 63 Solomon Systech May 2008 P 4/70 Rev 1.9 SSD1305 FIGURES FIGURE 4-1 : SSD1305 BLOCK DIAGRAM .............................................................................................. 8 FIGURE 5-1 : SSD1305Z DIE DRAWING ................................................................................................. 9 FIGURE 5-2 : SSD1305Z ALIGNMENT MARKS DIMENSION .................................................................. 10 FIGURE 6-1 : SSD1305T6R1 PIN ASSIGNMENT ................................................................................... 12 FIGURE 6-2 : SSD1305T7R1 PIN ASSIGNMENT ................................................................................... 14 FIGURE 8-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ......................................... 19 FIGURE 8-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE .......................... 19 FIGURE 8-3 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE ............................ 19 FIGURE 8-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ .......................... 20 FIGURE 8-5 : WRITE PROCEDURE IN SPI MODE..................................................................................... 21 FIGURE 8-6 : I2C -BUS DATA FORMAT................................................................................................... 22 FIGURE 8-7 : DEFINITION OF THE START AND STOP CONDITION ........................................................... 23 FIGURE 8-8 : DEFINITION OF THE ACKNOWLEDGEMENT CONDITION ..................................................... 24 FIGURE 8-9 : DEFINITION OF THE DATA TRANSFER CONDITION ........................................................... 24 FIGURE 8-10 : OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................... 25 FIGURE 8-11 : SEGMENT OUTPUT WAVEFORM IN THREE PHASES ......................................................... 27 FIGURE 8-12 : SEGMENT OUTPUT WAVEFORM FOR TWO DIFFERENT COLORS LUT SETTING ................ 27 FIGURE 8-13 : EXAMPLE OF SEGMENT OUTPUT WAVEFORM OF MONOCHROME DISPLAY SECTION UNDER MONOCHROME MODE ......................................................................................................... 28 FIGURE 8-14 : EXAMPLE OF SEGMENT OUTPUT WAVEFORM OF AREA COLOR DISPLAY SECTION UNDER AREA COLOR MODE........................................................................................................................ 28 FIGURE 8-15 : GDDRAM PAGES STRUCTURE OF SSD1305 ................................................................. 29 FIGURE 8-16 : ENLARGEMENT OF GDDRAM (NO ROW RE-MAPPING AND COLUMN-REMAPPING) ....... 29 FIGURE 8-17 : EXAMPLE OF AREA COLOR ASSIGNMENT ON A 132X64 OLED PANEL ........................... 30 FIGURE 8-18 : IREF CURRENT SETTING BY RESISTOR VALUE ............................................................... 31 FIGURE 8-19 : THE POWER ON SEQUENCE ........................................................................................... 32 FIGURE 8-20 : THE POWER OFF SEQUENCE ......................................................................................... 32 FIGURE 10-1 : ADDRESS POINTER MOVEMENT OF PAGE ADDRESSING MODE ....................................... 40 FIGURE 10-2 : EXAMPLE OF GDDRAM ACCESS POINTER SETTING IN PAGE ADDRESSING MODE (NO ROW AND COLUMN-REMAPPING) ................................................................................................... 40 FIGURE 10-3 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESSING MODE ........................... 41 FIGURE 10-4 : ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESSING MODE ............................... 41 FIGURE 10-5 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT ................................ 42 FIGURE 10-6 : SEGMENT CURRENT VS CONTRAST SETTING .................................................................. 43 FIGURE 10-7 :TRANSITION BETWEEN DIFFERENT MODES ..................................................................... 45 FIGURE 10-8 : TYPICAL OSCILLATOR FREQUENCY ADJUSTMENT BY D5 COMMAND (VDD =2.8V)........ 48 FIGURE 10-9 : HORIZONTAL SCROLL EXAMPLE: SCROLL RIGHT BY 4 COLUMNS ................................ 53 FIGURE 10-10 : HORIZONTAL SCROLL EXAMPLE: SCROLL LEFT BY 2 COLUMNS ................................. 53 FIGURE 10-11 : HORIZONTAL SCROLLING SETUP EXAMPLE .................................................................. 53 FIGURE 10-12 : CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING SETUP EXAMPLES .................. 54 FIGURE 10-13 : CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING EXAMPLE: WITH SETTING IN MUX RATIO .................................................................................................................................. 55 FIGURE 10-14 : VERTICAL SCROLL AREA SETUP EXAMPLES ................................................................. 56 FIGURE 13-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS ....................................... 60 FIGURE 13-2 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1) ................................. 61 FIGURE 13-3 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2) ................................. 61 FIGURE 13-4 : SERIAL INTERFACE CHARACTERISTICS .......................................................................... 62 FIGURE 13-5 : I2C INTERFACE TIMING CHARACTERISTICS ................................................................... 63 FIGURE 14-1 : APPLICATION EXAMPLE OF SSD1305T6R1 .................................................................. 64 SSD1305 Rev 1.9 P 5/70 May 2008 Solomon Systech FIGURE 15-1 SSD1305Z DIE TRAY INFORMATION ............................................................................... 65 FIGURE 15-2 SSD1305T6R1 DETAIL DIMENSION ............................................................................... 66 FIGURE 15-3 SSD1305T7R1 DETAIL DIMENSION ............................................................................... 68 FIGURE 15-4 SSD1305Z3 DIE TRAY INFORMATION ............................................................................. 69 Solomon Systech May 2008 P 6/70 Rev 1.9 SSD1305 1 GENERAL DESCRIPTION The SSD1305 is a CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dotmatrix graphic display system. It consists of 132 segments and 64 commons that can support a maximum display resolution of 132x64. There are 4-color selections to support monochrome or area color OLED/PLED. This IC is designed for Common Cathode type OLED panel. The SSD1305 embeds with contrast control, display RAM and oscillator, which reduces the number of external components and power consumption. It has 256-step brightness control and separate power for I/O interface logic. It is suitable for many compact portable applications, such as mobile phone sub-display, calculator and MP3 player, etc. 2 FEATURES • • • • • • • • • • • • • • • 3 Resolution: 132 x 64 dot matrix panel Area color support with 4 Color Selection and 64 steps per color Power supply: o VDD = 2.4V to 3.5V for IC logic o VCC = 7.0V to 15.0V for Panel driving o VDDIO = 1.6V to VDD for MCU interface Segment maximum source current: 320uA Common maximum sink current: 45mA Embedded 132 x 64 bit SRAM display buffer 256-step Contrast Control 8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface, Serial Peripheral Interface, I2C Interface Row Re-mapping and Column Re-mapping Continuous Horizontal, Vertical and Diagonal Scrolling Dim Mode operations Programmable Frame Frequency and Multiplexing Ratio On-Chip Oscillator Low power consumption Wide range of operating temperatures: -40 to 85 °C ORDERING INFORMATION Table 3-1 : Ordering Information Ordering Part Number SEG COM Package Form SSD1305Z 132 SSD1305T6R1 132 SSD1305T7R1 132 SSD1305Z3 SSD1305 132 Rev 1.9 64 64 64 64 P 7/70 Reference Gold Bump Die Page 9, 65 TAB TAB • Min SEG pad pitch: 52um • Min COM pad pitch: 45um Page 12 ,66 • • • Page 14, 68 • • • Gold Bump Die Page 69 May 2008 Remark • 35mm film, 4 sprocket hole Folding TAB 8-bit 80 / 8-bit 68 / SPI / I2C interface SEG lead pitch 0.120mm x 0.998 =0.11976mm COM lead pitch 0.120mm x 0.998 =0.11976mm 35mm film, 4 sprocket hole Folding TAB 8-bit 80 / 8-bit 68 / SPI / I2C interface SEG lead pitch 0.120mm x 0.998 =0.11976mm COM lead pitch 0.120mm x 0.998 =0.11976mm • Die Thickness : 300 um ± 25 um • • • Solomon Systech 4 BLOCK DIAGRAM Figure 4-1 : SSD1305 Block Diagram Solomon Systech May 2008 P 8/70 Rev 1.9 SSD1305 5 DIE PAD FLOOR PLAN Figure 5-1 : SSD1305Z Die Drawing Pad 1 Alignment marks (For details dimension please see p.9) Position Size T shape (-3240, 139) 75um x 75um + shape (3240, 139) 75um x 75um Die Size Die Thickness Min I/O pad pitch Min SEG pad pitch Min COM pad pitch Bump Height 8.2mm x 1.2mm 457 um ± 25 um 65 um 52 um 45 um Nominal 15 um SSD1305Z Bump Size Pad # 1, 126, 148, 293 18-109 2-5, 122-125, 149-151, 290-292 6-17, 110-121,152-289 127-147, 294-314 X [um] 94 42 50 32 94 Y [um] 50 70 50 94 32 Y SSD1305Z X Pad 1,2,3,…->126 Gold Bumps face up SSD1305 Rev 1.9 P 9/70 May 2008 Solomon Systech Figure 5-2 : SSD1305Z Alignment Marks Dimension Solomon Systech May 2008 P 10/70 Rev 1.9 SSD1305 Table 5-1 : SSD1305Z Bump Die Pad Coordinates Pad no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Pad Name NC NC NC NC NC COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 NC NC VCC VCC VCC VCOMH VLSS VLSS VLSS VSS VSS TR11 TR10 TR9 TR8 TR7 TR6 VSS TR5 TR4 TR3 TR2 TR1 TR0 VSS VSSB GDR GDR VDDB VDDB VDDB FB VBREF BGGND VSS VDDB VCIR VCIR VDD VDD VDD VDD VDDIO VDDIO VDDIO VCC VCC VCC VDDIO BS0 VSS BS1 VDDIO BS2 VSS FR CL VSS CS# RES# D/C# VSS R/W#(WR#) E(RD#) SSD1305 X-pos -3980.5 -3821.5 -3746.5 -3671.5 -3596.5 -3537.5 -3492.5 -3447.5 -3402.5 -3357.5 -3312.5 -3267.5 -3222.5 -3177.5 -3132.5 -3087.5 -3042.5 -2957.5 -2892.5 -2827.5 -2762.5 -2697.5 -2632.5 -2567.5 -2502.5 -2437.5 -2372.5 -2307.5 -2242.5 -2177.5 -2112.5 -2047.5 -1982.5 -1917.5 -1852.5 -1787.5 -1722.5 -1657.5 -1592.5 -1527.5 -1462.5 -1397.5 -1332.5 -1267.5 -1202.5 -1137.5 -1072.5 -1007.5 -942.5 -877.5 -812.5 -747.5 -682.5 -617.5 -552.5 -487.5 -422.5 -357.5 -292.5 -227.5 -162.5 -97.5 -32.5 32.5 97.5 162.5 227.5 292.5 357.5 422.5 487.5 552.5 617.5 682.5 747.5 812.5 877.5 942.5 1007.5 1072.5 Y-pos -546.0 -546.0 -546.0 -546.0 -546.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 Rev 1.9 Pad no. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 Pad Name VDDIO D0 D1 D2 D3 VSS D4 D5 D6 D7 VSS CLS VDDIO VDDIO VDD VDD VDD IREF VCOMH VCC VCC VCC VCC VCC VCC VLSS VLSS VLSS NC NC COM31 COM30 COM29 COM28 COM27 COM26 COM25 COM24 COM23 COM22 COM21 NC NC NC NC NC COM20 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 NC NC NC NC NC NC NC SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 P 11/70 X-pos 1137.5 1202.5 1267.5 1332.5 1397.5 1462.5 1527.5 1592.5 1657.5 1722.5 1787.5 1852.5 1917.5 1982.5 2047.5 2112.5 2177.5 2242.5 2307.5 2372.5 2437.5 2502.5 2567.5 2632.5 2697.5 2762.5 2827.5 2892.5 2957.5 3042.5 3087.5 3132.5 3177.5 3222.5 3267.5 3312.5 3357.5 3402.5 3447.5 3492.5 3537.5 3596.5 3671.5 3746.5 3821.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3980.5 3856.5 3766.5 3676.5 3585.2 3533.3 3481.3 3429.4 3377.4 3325.5 3273.5 3221.5 3169.6 May 2008 Y-pos -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -536.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -524.0 -546.0 -546.0 -546.0 -546.0 -546.0 -468.4 -423.4 -378.4 -333.4 -288.4 -243.4 -198.4 -153.4 -108.4 -63.4 -18.4 26.6 71.6 116.6 161.6 206.6 251.6 296.6 341.6 386.6 431.6 501.1 501.1 501.1 501.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 Pad no. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Pad Name SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 SEG81 SEG82 SEG83 SEG84 SEG85 X-pos 3117.6 3065.7 3013.7 2961.7 2909.8 2857.8 2805.9 2753.9 2701.9 2650.0 2598.0 2546.1 2494.1 2442.1 2390.2 2338.2 2286.3 2234.3 2182.3 2130.4 2078.4 2026.5 1974.5 1922.5 1870.6 1818.6 1766.7 1714.7 1662.7 1610.8 1558.8 1506.9 1454.9 1402.9 1351.0 1299.0 1247.1 1195.1 1143.1 1091.2 1039.2 987.3 935.3 883.3 831.4 779.4 727.5 675.5 623.5 571.6 519.6 467.7 415.7 363.7 259.8 207.9 155.9 103.9 52.0 0.0 -52.0 -103.9 -155.9 -207.8 -259.8 -311.8 -363.7 -415.7 -467.6 -519.6 -571.6 -623.5 -675.5 -727.4 -779.4 -831.4 -883.3 -935.3 -987.2 -1039.2 Y-pos 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 Pad no. 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 Pad Name SEG86 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99 SEG100 SEG101 SEG102 SEG103 SEG104 SEG105 SEG106 SEG107 SEG108 SEG109 SEG110 SEG111 SEG112 SEG113 SEG114 SEG115 SEG116 SEG117 SEG118 SEG119 SEG120 SEG121 SEG122 SEG123 SEG124 SEG125 SEG126 SEG127 SEG128 SEG129 SEG130 SEG131 NC NC NC NC NC NC NC COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 X-pos -1091.2 -1143.1 -1195.1 -1247.0 -1299.0 -1351.0 -1402.9 -1454.9 -1506.8 -1558.8 -1610.8 -1662.7 -1714.7 -1766.6 -1818.6 -1870.6 -1922.5 -1974.5 -2026.4 -2078.4 -2130.4 -2182.3 -2234.3 -2286.2 -2338.2 -2390.2 -2442.1 -2494.1 -2546.0 -2598.0 -2650.0 -2701.9 -2753.9 -2805.8 -2857.8 -2909.8 -2961.7 -3013.7 -3065.6 -3117.6 -3169.6 -3221.5 -3273.5 -3325.4 -3377.4 -3429.4 -3481.3 -3533.3 -3585.2 -3676.5 -3766.5 -3856.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 -3980.5 Solomon Systech Y-pos 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 479.1 501.1 501.1 501.1 501.1 431.6 386.6 341.6 296.6 251.6 206.6 161.6 116.6 71.6 26.6 -18.4 -63.4 -108.4 -153.4 -198.4 -243.4 -288.4 -333.4 -378.4 -423.4 -468.4 6 PIN ARRANGEMENT 6.1 SSD1305T6R1 pin assignment Figure 6-1 : SSD1305T6R1 Pin Assignment Solomon Systech May 2008 P 12/70 Rev 1.9 SSD1305 Table 6-1 : SSD1305T6R1 Pin Assignment Table Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 SSD1305 Rev 1.9 Name NC VCC VCOMH IREF D7 D6 D5 D4 D3 D2 D1 D0 E(RD#) R/W# D/C# RES# CS# FR BS2 BS1 VDDIO VDD VCIR BGGND VBREF NC FB VDDB GDR VSS NC NC NC COM63 COM61 COM59 COM57 COM55 COM53 COM51 COM49 COM47 COM45 COM43 COM41 COM39 COM37 COM35 COM33 COM31 COM29 COM27 COM25 COM23 COM21 COM19 COM17 COM15 COM13 COM11 COM9 COM7 COM5 COM3 COM1 NC NC NC NC NC NC NC SEG131 SEG130 SEG129 SEG128 SEG127 SEG126 SEG125 SEG124 P 13/70 Pin # 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 May 2008 Name SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 SEG99 SEG98 SEG97 SEG96 SEG95 SEG94 SEG93 SEG92 SEG91 SEG90 SEG89 SEG88 SEG87 SEG86 SEG85 SEG84 SEG83 SEG82 SEG81 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 SEG72 SEG71 SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 Pin # 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Name SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 NC NC NC NC NC NC NC NC NC NC NC COM0 COM2 COM4 COM6 COM8 COM10 COM12 COM14 COM16 COM18 COM20 COM22 COM24 COM26 COM28 COM30 COM32 COM34 COM36 COM38 COM40 COM42 COM44 COM46 COM48 Pin # 241 242 243 244 245 246 247 248 249 Name COM50 COM52 COM54 COM56 COM58 COM60 COM62 NC NC Solomon Systech 6.2 SSD1305T7R1 pin assignment Figure 6-2 : SSD1305T7R1 Pin Assignment Solomon Systech May 2008 P 14/70 Rev 1.9 SSD1305 Table 6-2 : SSD1305T7R1 Pin Assignment Pin # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 SSD1305 Rev 1.9 Name NC VCC VCOMH IREF D7 D6 D5 D4 D3 D2 D1 D0 E/RD# R/W# D/C# RES# CS# NC BS2 BS1 VDD NC NC NC VBREF NC FB VDDB GDR VSS NC NC NC COM63 COM61 COM59 COM57 COM55 COM53 COM51 COM49 COM47 COM45 COM43 COM41 COM39 COM37 COM35 COM33 COM31 COM29 COM27 COM25 COM23 COM21 COM19 COM17 COM15 COM13 COM11 COM9 COM7 COM5 COM3 COM1 NC NC NC NC NC NC NC SEG131 SEG130 SEG129 SEG128 SEG127 SEG126 SEG125 SEG124 Pin # 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 P 15/70 May 2008 Name SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 SEG99 SEG98 SEG97 SEG96 SEG95 SEG94 SEG93 SEG92 SEG91 SEG90 SEG89 SEG88 SEG87 SEG86 SEG85 SEG84 SEG83 SEG82 SEG81 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 SEG72 SEG71 SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 Pin # 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Name SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 NC NC NC NC NC NC NC NC NC NC NC COM0 COM2 COM4 COM6 COM8 COM10 COM12 COM14 COM16 COM18 COM20 COM22 COM24 COM26 COM28 COM30 COM32 COM34 COM36 COM38 COM40 COM42 COM44 COM46 COM48 Pin # 241 242 243 244 245 246 247 248 249 Name COM50 COM52 COM54 COM56 COM58 COM60 COM62 NC NC Solomon Systech 7 PIN DESCRIPTION Key: I = Input, O =Output, IO = Bi-directional (input/output), P = Power pin Table 7-1 : Pin Description Pin Name VDD Pin Type Description P Power supply pin for core logic operation. VDDIO P Power supply for interface logic level. It should be match with MCU interface voltage level. VDDIO must always be equal or lower than VDD. VCC P Power supply for panel driving voltage. This is also the most positive power voltage supply pin. VSS P This is a ground pin. VLSS P This is an analog ground pin. It should be connected to VSS externally. VCOMH O The pin for COM signal deselected voltage level. A capacitor should be connected between this pin and VSS. BGGND P This pin must be connected to ground. VDDB P This is a reserved pin. It must be connected to VDD. VSSB P This is a reserved pin. It must be connected to VSS. GDR O This is a reserved pin. It should be kept NC (i.e. Float during normal operation). FB I This is a reserved pin. It should be kept NC (i.e. Float during normal operation). VBREF P This is a reserved pin. It should be kept NC (i.e. Float during normal operation). VCIR O This is a reserved pin. It should be kept NC (i.e. Float during normal operation). BS[2:0] I MCU bus interface selection pins. Please refer to Table 7-2 for the details of setting. IREF I This is segment output current reference pin. A resistor should be connected between this pin and VSS to maintain the IREF current at 10uA. Please refer to Figure 8-18 for the details of resistor value. FR O This pin outputs RAM write synchronization signal. Proper timing between MCU data writing and frame display timing can be achieved to prevent tearing effect. It should be kept NC if it is not used. Please refer to Section 8.4 for details usage. CL I This is external clock input pin. When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be connected to VSS. When internal clock is disabled (i.e. LOW in CLS pin), this pin is the external clock source input pin. CLS I This is internal clock enable pin. When it is pulled HIGH (i.e. connect to VDDIO), internal clock is enabled. When it is pulled LOW, the internal clock is disabled; an external clock source must be connected to the CL pin for normal operation. RES# I This pin is reset signal input. When the pin is LOW, initialization of the chip is executed. Keep this pin HIGH (i.e. connect to VDDIO) during normal operation. Solomon Systech May 2008 P 16/70 Rev 1.9 SSD1305 Pin Name CS# Pin Type Description This pin is the chip select input. (active LOW) I D/C# I This is Data/Command control pin. When it is pulled HIGH (i.e. connect to VDDIO), the data at D[7:0] is treated as data. When it is pulled LOW, the data at D[7:0] will be transferred to the command register. In I2C mode, this pin acts as SA0 for slave address selection. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams: Figure 13-1 to Figure 13-5. E (RD#) I When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH (i.e. connect to VDDIO) and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin must be connected to VSS. R/W#(WR#) I This is read / write control input pin connecting to the MCU interface. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH (i.e. connect to VDDIO) and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin must be connected to VSS. D[7:0] IO These are 8-bit bi-directional data bus to be connected to the microprocessor’s data bus. When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be the serial data input: SDIN and D2 should be left opened. When I2C mode is selected, D2, D1 should be tied together and serve as SDAout, SDAin in application and D0 is the serial clock input, SCL. TR0-TR11 - Testing reserved pins. It should be kept NC. SEG0 ~ SEG131 O These pins provide Segment switch signals to OLED panel. They are in high impedance stage when display is OFF. COM0 ~ COM63 O These pins provide Common switch signals to OLED panel. They are in high impedance state when display is OFF. NC - This is dummy pin. Do not group or short NC pins together. Table 7-2 : MCU Bus Interface Pin Selection Pin Name I2C Interface BS0 BS1 BS2 SSD1305 0 1 0 Rev 1.9 6800parallel interface (8 bit) 0 0 1 P 17/70 May 2008 8080parallel interface (8 bit) 0 1 1 Serial interface 0 0 0 Note (1) 0 is connected to VSS (2) 1 is connected to VDDIO Solomon Systech 8 FUNCTIONAL BLOCK DESCRIPTIONS 8.1 MCU Interface selection SSD1305 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 7-2 for BS[2:0] setting). Table 8-1 : MCU interface assignment under different bus interface mode Pin Name Bus Interface 8-bit 8080 8-bit 6800 SPI I2C 8.1.1 Data/Command Interface D7 D6 D5 D4 Control Signal D3 D[7:0] D[7:0] Tie LOW Tie LOW D2 D1 NC SDAOUT D0 E R/W# RD# WR# E R/W# SDIN SCLK Tie LOW SDAIN SCL Tie LOW CS# CS# CS# CS# D/C# D/C# D/C# D/C# SA0 RES# RES# RES# RES# RES# MCU Parallel 6800-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#. A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal. Table 8-2 : Control pins of 6800 interface Function E R/W# CS# D/C# Write command ↓ L L L Read status ↓ H L L Write data ↓ L L H Read data ↓ H L H Note (1) ↓ stands for falling edge of signal H stands for HIGH in signal L stands for LOW in signal In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1. Solomon Systech May 2008 P 18/70 Rev 1.9 SSD1305 Figure 8-1 : Data read back procedure - insertion of dummy read R/W# E N Databus Write column address 8.1.2 Dummy read n n+1 Read 1st data Read 2nd data n+2 Read 3rd data MCU Parallel 8080-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW. Figure 8-2 : Example of Write procedure in 8080 parallel interface mode CS# WR# D[7:0] D/C# RD# high low Figure 8-3 : Example of Read procedure in 8080 parallel interface mode CS# RD# D[7:0] D/C# WR# high low SSD1305 Rev 1.9 P 19/70 May 2008 Solomon Systech Table 8-3 : Control pins of 8080 interface (Form 1) Function Write command Read status Write data Read data RD# H ↑ WR# ↑ H H ↑ ↑ H CS# L L L L D/C# L L H H Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal (4) Refer to Figure 13-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal. Table 8-4 : Control pins of 8080 interface (Form 2) Function Write command Read status Write data Read data RD# H L H L WR# L H L H CS# ↑ ↑ ↑ ↑ D/C# L L H H Note ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal (4) Refer to Figure 13-3 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics (1) In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4. Figure 8-4 : Display data read back procedure - insertion of dummy read WR# RD# Databus N Write column address Solomon Systech Dummy read n n+1 Read 1st data Read 2nd data May 2008 P 20/70 n+2 Read 3rd data Rev 1.9 SSD1305 8.1.3 MCU Serial Interface The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground. Table 8-5 : Control pins of Serial interface Function E(RD#) R/W#(WR#) CS# D/C# D0 Write command Tie LOW Tie LOW L L ↑ Write data Tie LOW Tie LOW L H ↑ Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. Under serial mode, only write operations are allowed. Figure 8-5 : Write procedure in SPI mode CS# D/C# SDIN/ SCLK DB1 DB2 DBn SCLK(D0) SDIN(D1) 8.1.4 D7 D6 D5 D4 D3 D2 D1 D0 MCU I2C Interface The I2C communication interface consists of slave address bit SA0, I2C-bus data signal SDA (SDAOUT/D2 for output and SDAIN/D1 for input) and I2C-bus clock signal SCL (D0). Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device. a) Slave address bit (SA0) SSD1305 has to recognize the slave address before transmitting or receiving any information by the I2C-bus. The device will respond to the slave address following by the slave address bit (“SA0” bit) and the read/write select bit (“R/W#” bit) with the following byte format, b7 b6 b5 b4 b3 b2 b1 b0 0 1 1 1 1 0 SA0 R/W# “SA0” bit provides an extension bit for the slave address. Either “0111100” or “0111101”, can be selected as the slave address of SSD1305. D/C# pin acts as SA0 for slave address selection. “R/W#” bit is used to determine the operation mode of the I2C-bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode. SSD1305 Rev 1.9 P 21/70 May 2008 Solomon Systech b) I2C-bus data signal (SDA) SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA. It should be noticed that the ITO track resistance and the pulled-up resistance at “SDA” pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in “SDA”. “SDAIN” and “SDAOUT” are tied together and serve as SDA. The “SDAIN” pin must be connected to act as SDA. The “SDAOUT” pin may be disconnected. When “SDAOUT” pin is disconnected, the acknowledgement signal will be ignored in the I2C-bus. c) I2C-bus clock signal (SCL) The transmission of information in the I2C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL. 8.1.4.1 I2C-bus Write data The I2C-bus interface gives access to write data and command into the device. Please refer to Figure 8-6 for the write mode of I2C-bus in chronological order. Figure 8-6 : I2C -bus data format Note: Write mode P 1 byte ACK Control byte ACK m ≥ 0 words Data byte D/C# Co ACK Slave Address Control byte ACK D/C# Co ACK R/W# SA0 S 00 11 111 11 01 Co – Continuation bit D/C# – Data / Command Selection bit ACK – Acknowledgement SA0 – Slave address bit R/W# – Read / Write Selection bit S – Start Condition / P – Stop Condition Data byte n ≥ 0 bytes MSB ……………….LSB R/W# SA0 011110 SSD1305 Slave Address ACK D/C Co 0 0 0 0 0 0 Control byte Solomon Systech May 2008 P 22/70 Rev 1.9 SSD1305 8.1.4.2 Write mode for I2C 1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 8-7. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH. 2) The slave address is following the start condition for recognition use. For the SSD1305, the slave address is either “b0111100” or “b0111101” by changing the SA0 to LOW or HIGH (D/C pin acts as SA0). 3) The write mode is established by setting the R/W# bit to logic “0”. 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 8-8 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse. 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six “0” ‘s. a. If the Co bit is set as logic “0”, the transmission of the following information will contain data bytes only. b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic “0”, it defines the following data byte as a command. If the D/C# bit is set to logic “1”, it defines the following data byte as a data which will be stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write. 6) Acknowledge bit will be generated after receiving each control byte or data byte. 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 8-7. The stop condition is established by pulling the “SDA in” from LOW to HIGH while the “SCL” stays HIGH. Figure 8-7 : Definition of the Start and Stop Condition tSSTOP tHSTART SDA SDA SCL SSD1305 SCL S P START condition STOP condition Rev 1.9 P 23/70 May 2008 Solomon Systech Figure 8-8 : Definition of the acknowledgement condition DATA OUTPUT BY TRANSMITTER Non-acknowledge DATA OUTPUT BY RECEIVER Acknowledge SCL FROM MASTER 1 2 8 9 S Clock pulse for acknowledgement START Condition Please be noted that the transmission of the data bit has some limitations. 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the “HIGH” period of the clock pulse. Please refer to the Figure 8-9 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW. 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors. Figure 8-9 : Definition of the data transfer condition SDA SCL Data line is stable 8.2 Change of data Command Decoder This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin. If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to the corresponding command register. Solomon Systech May 2008 P 24/70 Rev 1.9 SSD1305 8.3 Oscillator Circuit and Display Time Generator Figure 8-10 : Oscillator Circuit and Display Time Generator Internal Oscillator Fosc M U X CL CLK Divider DCLK Display Clock CLS This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be connected to VSS. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4]. The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can be programmed from 1 to 16 by command D5h DCLK = FOSC / D The frame frequency of display is determined by the following formula. FFRM = Fosc D × K × No. of Mux where • D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to 16. • K is the number of display clocks per row. The value is derived by K = Phase 1 period + Phase 2 period + BANK0 pulse width = 2 + 2 + 50 = 54 at power on reset (Please refer to Section 8.6 “Segment Drivers / Common Drivers” for the details of the “Phase”) • Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64MUX). • FOSC is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register setting results in higher frequency. SSD1305 Rev 1.9 P 25/70 May 2008 Solomon Systech 8.4 FR synchronization FR synchronization signal can be used to prevent tearing effect. One frame FR 100% Memory Access Process 0% Time Fast write MCU Slow write MCU SSD1305 displaying memory updates to OLED screen The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one. For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and should be finished well before the rising edge of the next FR pulse. For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse and must be finished before the rising edge of the 3rd FR pulse. 8.5 Reset Circuit When RES# input is LOW, the chip is initialized with the following status: 1. Display is OFF 2. 132 x 64 Display Mode 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h) 4. Shift register data clear in serial interface 5. Display start line is set at display RAM address 0 6. Column address counter is set at 0 7. Normal scan direction of the COM outputs 8. Contrast control register is set at 80h 9. Normal display mode (Equivalent to A4h command) Solomon Systech May 2008 P 26/70 Rev 1.9 SSD1305 8.6 Segment Drivers / Common Drivers Segment drivers deliver 132 current sources to drive the OLED panel. The driving current can be adjusted from 0 to 320uA with 256 steps. Common drivers generate voltage-scanning pulses. The segment driving waveform is divided into three phases: 1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next image content display. 2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the corresponding voltage level from VSS. The period of phase 2 can be programmed in length from 1 to 15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage. 3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the current drive stage. SSD1305 employs PWM (Pulse Width Modulation) method to control the brightness of area color A, B, C, D color individually. The longer the waveform in current drive stage is, the brighter is the pixel and vice versa. Figure 8-11 : Segment Output Waveform in three phases Longer phase 3 => brighter pixel Segment VSS Phase: 1 2 Time 3 After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This threestep cycle is run continuously to refresh image display on OLED panel. The length of phase 3 for area colors: A,B,C and monochrome BANK0 can be configured by command 91h “Set Look Up Table”. There are 64 steps available for each color but the one of color D is fixed at 64. The unit of the step is in DCLK. For example, the look up table for area color A, B, is set to 20, 40 DCLKs respectively. Color B is set to be brighter than color A. Then the result segment output waveform of these two colors is shown below. Figure 8-12 : Segment Output Waveform for two different colors LUT setting Color A 20 DCLKs Color B 40 DCLKs Segment 44 DCLKs VSS SSD1305 Rev 1.9 64 DCLKs (fixed) P 27/70 May 2008 24 DCLKs 64 DCLKs (fixed) Time Solomon Systech In phase 3, the segment output waveforms under the monochrome mode and area color mode are different. In monochrome mode, if the length of current drive pulse width is set to 50, after finishing 50 DCLKs in current drive phase, the driver IC will go back to phase 1 for next row display. Figure 8-13 : Example of Segment Output Waveform of monochrome display section under monochrome mode Segment 50 DCLKs VSS Time In area color mode, the phase 3 of both BANK0 and area color banks (BANK1 to BANK32) are fixed into 64 DCLKs. For instance, if the length of the pulse width is set to 50, then after the end of 50 DCLKs of current drive phase, the segment waveform will be gone to VSS level and the driver is still in current drive phase. This phase will be end after 64 DCLKs from the start of the phase is passed. And then the drive goes back to phase 1 for next row display. Figure 8-14 shows the example of the segment output waveform of area color display section when the pulse width of area color is set to 50. Figure 8-14 : Example of Segment Output Waveform of area color display section under area color mode Segment 50 DCLKs VSS 64 DCLKs (fixed) Solomon Systech 64 DCLKs (fixed) Time May 2008 P 28/70 Rev 1.9 SSD1305 8.7 Graphic Display Data RAM (GDDRAM) The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 132 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, as shown in Figure 8-15. In GDDRAM, PAGE0 and PAGE1 are belonged to area color section with resolution 132x16. PAGE2 to PAGE7 are used for monochrome 132x48 dot matrix display. Figure 8-15 : GDDRAM pages structure of SSD1305 PAGE0, BANK1 PAGE0, BANK16 PAGE1, BANK17 PAGE1, BANK32 Row re-mapping PAGE0 (COM 63-COM56) PAGE0 (COM0-COM7) PAGE1 (COM 55-COM48) PAGE1 (COM8-COM15) PAGE2 (COM47-COM40) PAGE2 (COM16-COM23) PAGE3 (COM39-COM32) PAGE3 (COM24-COM31) PAGE4 (COM31-COM24) BANK0 (Background) PAGE2 – PAGE7 PAGE5 (COM23-COM16) PAGE6 (COM15-COM8) PAGE4 (COM32-COM39) PAGE5 (COM40-COM47) PAGE6 (COM48–COM55) PAGE7 (COM 7-COM0) PAGE7 (COM56-COM63) SEG0 ---------------------------------------------------------------SEG131 Column re-mapping SEG131 ---------------------------------------------------------------SEG0 When one data byte is written into GDDRAM, all the rows image data of the same page of the current column are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is written into the top row, while data bit D7 is written into bottom row as shown in Figure 8-16. SEG0 SEG1 SEG2 SEG3 SEG4 .................... LSB D0 .................... PAGE2 MSB D7 SEG127 SEG128 SEG129 SEG130 SEG131 Figure 8-16 : Enlargement of GDDRAM (No row re-mapping and column-remapping) COM16 COM17 : : : : : COM23 Each lattice represents one bit of image data SSD1305 Rev 1.9 P 29/70 May 2008 Solomon Systech For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as shown in Figure 8-15. For vertical shifting of the display, an internal register storing the display start line can be set to control the portion of the RAM data to be mapped to the display (command D3h). 8.8 Area Color Decoder The 132x64 display matrix is divided into 8 pages. The first two pages, PAGE0 and PAGE1, are divided into 32 banks. BANK16 and BANK32 consist of a display area of 12x8 pixels. Other banks (BANK0 to BANK15 & BANK17 to BANK31) have matrices of 8x8 pixels. Each bank can be programmed to any one of the four colors (color A, B, C and D) as the example shown in Figure 8-17. Detailed operation can be referred to command 92h in Table 9-1. Figure 8-17 : Example of area color assignment on a 132x64 OLED panel 8 8 BANK17 Solomon Systech BANK1 BANK16 8 12 A B C D A A A A A A A A A A D C C A B C D B B B B B B B B D A B 8 BANK32 May 2008 P 30/70 Rev 1.9 SSD1305 8.9 SEG/COM Driving block This block is used to derive the incoming power sources into the different levels of internal use voltage and current. • VCC is the most positive voltage supply. • VCOMH is the Common deselected level. It is internally regulated. • VLSS is the ground path of the analog and panel current. • IREF is a reference current source for segment current drivers ISEG. The relationship between reference current and segment current of a color is: ISEG = Contrast / 256 x IREF x scale factor in which the contrast (0~255) is set by Set Contrast command 81h; and the scale factor is 32 by default. The magnitude of IREF is controlled by the value of resistor, which is connected between IREF pin and Vss as shown in Figure 8-18. It is recommended to set IREF to 10uA+/- 2uA so as to achieve ISEG = 320uA at maximum contrast 255. Figure 8-18 : IREF Current Setting by Resistor Value SSD1305 IREF (voltage at this pin = VCC – 3) IREF ~ 10uA R1 VSS Since the voltage at IREF pin is VCC – 3V, the value of resistor R1 can be found as below. R1 = (Voltage at IREF – VSS) / IREF = (VCC – 3) / 10uA ≈ 910kΩ for VCC = 12V. SSD1305 Rev 1.9 P 31/70 May 2008 Solomon Systech 8.10 Power ON and OFF sequence The following figures illustrate the recommended power ON and power OFF sequence of SSD1305 (assume VDD and VDDIO are at the same voltage level). Power ON sequence: 1. Power ON VDD, VDDIO. 2. After VDD, VDDIO become stable, set RES# pin LOW (logic low) for at least 3us (t1) (4) and then HIGH (logic high). 3. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then Power ON VCC.(1) 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (tAF). Figure 8-19 : The Power ON sequence ON VDD, VDDIO RES# ON VCC Send AFh command for Display ON VDD, VDDIO GND t1 RES# GND t2 VCC GND tAF ON SEG/COM OFF Power OFF sequence: 1. Send command AEh for display OFF. 2. Power OFF VCC.(1), (2), (3) 3. Wait for tOFF. Power OFF VDD, VDDIO. .(where Minimum tOFF=0ms (5) , Typical tOFF=100ms) Figure 8-20 : The Power OFF sequence Send command AEh for display OFF VCC OFF VCC OFF VDD ,VDDIO GND tOFF VDD ,VDDIO GND Note: (1) Since an ESD protection circuit is connected between VDD, VDDIO and VCC, VCC becomes lower than VDD whenever VDD, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in Figure 8-19 and Figure 8-20. (2) VCC should be kept float (disable) when it is OFF. (3) Power Pins (VDD , VCC) can never be pulled to ground under any circumstance. (4) The register values are reset after t1. (5) VDD should not be Power OFF before VCC Power OFF. Solomon Systech May 2008 P 32/70 Rev 1.9 SSD1305 9 COMMAND TABLE Table 9-1: Command Table (D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated) Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command 0 00~0F 0 0 0 0 X3 X2 X1 X0 Set Lower Column Start Address for Page Addressing Mode Description Set the lower nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. 0 10~1F 0 0 0 1 X3 X2 X1 X0 Set Higher Column Start Address for Page Addressing Mode Set the higher nibble of the column start address register for Page Addressing Mode using X[3:0] as data bits. The initial display line register is reset to 0000b after RESET. 0 0 20 A[1:0] 0 * 0 * 1 * 0 * 0 * 0 * 0 A1 0 Set Memory A0 Addressing Mode A[1:0] = 00b, Horizontal Addressing Mode A[1:0] = 01b, Vertical Addressing Mode A[1:0] = 10b, Page Addressing Mode (RESET) A[1:0] = 11b, Invalid 0 0 0 21 A[7:0] B[7:0] 0 A7 B7 0 A6 B6 1 A5 B5 0 A4 B4 0 A3 B3 0 A2 B2 0 A1 B1 1 Set Column Address Setup column start and end address A[7:0] : Column start address, range : 0-131d, A0 (RESET=0d) B0 B[7:0]: Column end address, range : 0-131d, (RESET =131d) 0 0 0 22 A[2:0] B[2:0] 0 * * 0 * * 1 * * 0 * * 0 * * 0 A2 B2 1 A1 B1 0 Set Page Address A0 B0 Setup page start and end address A[2:0] : Page start Address, range : 0-7d, (RESET = 0d) B[2:0] : Page end Address, range : 0-7d, (RESET = 7d) 0 40~7F 0 1 X5 X4 X3 X2 X1 X0 Set Display Start Line Set display RAM display start line register from 0-63 using X5X3X2X1X0. Display start line register is reset to 000000b during RESET. 0 0 81 A[7:0] 1 A7 0 A6 0 A5 0 A4 0 A3 0 A2 0 A1 1 Set Contrast Control Double byte command to select 1 out of 256 contrast steps. Contrast increases as the value increases. A0 For BANK0 (RESET = 80h) 0 0 82 A[7:0] 1 A7 0 A6 0 A5 0 A4 0 A3 0 A2 1 A1 0 Set Brightness For A0 Area Color Banks Double byte command to select 1 out of 256 brightness steps. Brightness increases as the value increases. (RESET = 80h) 0 0 0 0 0 91 X[5:0] A[5:0] B[5:0] C[5:0] 1 * * * * 0 * * * * 0 X5 A5 B5 C5 1 X4 A4 B4 C4 0 X3 A3 B3 C3 0 X2 A2 B2 C2 0 X1 A1 B1 C1 1 Set Look Up Table X0 (LUT) A0 B0 C0 Set current drive pulse width of BANK0, Color A, B and C. BANK0: X[5:0] = 31… 63; for pulse width set to 32 ~ 64 clocks (RESET = 110001b) Color A: A[5:0] same as above (RESET = 111111b) Color B: B[5:0] same as above (RESET = 111111b) Color C: C[5:0] same as above (RESET = 111111b) Note Color D pulse width is fixed at 64 clocks pulse. (1) SSD1305 Rev 1.9 P 33/70 May 2008 Solomon Systech Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 0 92 1 0 0 1 0 0 1 0 0 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 0 B[7:0] B7 B6 B5 B4 B3 B2 B1 B0 0 C[7:0] C7 C6 C5 C4 C3 C2 C1 C0 0 D[7:0] D7 D6 D5 D4 D3 D2 D1 D0 Command Description Set Bank Color of Set the bank color of BANK1~BANK16 to any one of BANK1 to BANK16 the 4 colors : A, B, C and D . (PAGE0) A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK1 A[3:2] : 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK2 : : D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK15 D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK16 0 0 0 0 0 93 A[7:0] B[7:0] C[7:0] D[7:0] 1 A7 B7 C7 D7 0 A6 B6 C6 D6 0 A5 B5 C5 D5 1 A4 B4 C4 D4 0 A3 B3 C3 D3 0 A2 B2 C2 D2 1 A1 B1 C1 D1 1 Set Bank Color of Set the bank color of BANK17~BANK32 to any one A0 BANK17~BANK32 of the 4 colors: A, B, C and D. B0 (PAGE1) A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C or C0 D of BANK17 D0 A[3:2] : 00b, 01b, 10b, or 1b1 for Color = A, B, C or D of BANK18 : : D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK31 D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B, C or D of BANK32 0 A0/A1 1 0 1 0 0 0 0 X0 Set Segment Re-map X[0]=0b: column address 0 is mapped to SEG0 (RESET) X[0]=1b: column address 131 is mapped to SEG0 0 A4/A5 1 0 1 0 0 1 0 X0 Entire Display ON X0=0b: Resume to RAM content display (RESET) Output follows RAM content X0=1b: Entire display ON Output ignores RAM content 0 A6/A7 1 0 1 0 0 1 1 X0 Set Normal/Inverse Display X[0]=0b: Normal display (RESET) 0 in RAM: OFF in display panel 1 in RAM: ON in display panel X[0]=1b: inverse display 0 in RAM: ON in display panel 1 in RAM: OFF in display panel 0 0 A8 A[5:0] 1 * 0 * 1 A5 0 A4 1 A3 0 A2 0 A1 0 Set Multiplex Ratio A0 Set MUX ratio to N+1 MUX N=A[5:0] : from 16MUX to 64MUX, RESET= 111111b (i.e. 64MUX) A[5:0] from 0 to 14 are invalid entry. 0 AA 1 0 1 0 1 0 1 0 Reserved Reserved 0 0 0 0 AB A[3:0] B[7:0] C[7:0] 1 * B7 C7 0 * B6 C6 1 * B5 C5 0 * B4 C4 1 A3 B3 C3 0 A2 B2 C2 1 A1 B1 C1 1 Dim mode setting A0 B0 C0 A[3:0] : Reserved (set as 0000b) B [7:0] : Set contrast for BANK0, valid range 0-255d, please refer to command 81h C [7:0] : Set brightness for color bank, valid range 0255d, please refer to command 82h Solomon Systech May 2008 P 34/70 Rev 1.9 SSD1305 Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description 0 AD 1 0 1 0 1 1 0 1 Master Configuration A[0]=0b, Select external VCC supply (RESET) A[0]=1b, Reserved 0 A[7:0] 1 0 0 0 1 1 1 A0 0 AC AE AF 1 0 1 0 1 1 A1 A0 Set Display ON/OFF ACh = Display ON in dim mode AEh = Display OFF (sleep mode) (RESET) AFh = Display ON in normal mode 0 B0~B7 1 0 1 1 0 X2 X1 X0 Set Page Start Address for Page Addressing Mode Set GDDRAM Page Start Address (PAGE0~PAGE7) for Page Addressing Mode using X[2:0]. 0 C0/C8 1 1 0 0 X3 0 0 0 Set COM Output Scan Direction X[3]=0b: normal mode (RESET) Scan from COM0 to COM[N –1] X[3]=1b: remapped mode. Scan from COM[N~1] to COM0 Where N is the Multiplex ratio. 0 0 D3 A[5:0] 1 * 1 * 0 A5 1 A4 0 A3 0 A2 1 A1 1 Set Display Offset A0 Set vertical shift by COM from 0~63. The value is reset to 00h after RESET. 0 D5 A[7:0] 1 A7 1 A6 0 A5 1 A4 0 A3 1 A2 0 A1 1 Set Display Clock A0 Divide Ratio/Oscillator Frequency A[3:0] : Define the divide ratio (D) of the display clocks (DCLK): Divide ratio= A[3:0] + 1, RESET is 0000b (divide ratio = 1) A[7:4] : Set the Oscillator Frequency, FOSC. Oscillator Frequency increases with the value of A[7:4] and vice versa. RESET is 0111b Range:0000b~1111b Frequency increases as setting value increases. Refer to section 10.1.23 for details. 0 0 D8 1 0 1 0 0 X5 1 X4 1 0 0 X2 0 0 0 Set Area Color Mode X[5:4]= 00b (RESET) : monochrome mode X[5:4]= 11b Area Color enable X0 ON/OFF & Low Power Display Mode X[2]=0b and X[0]=0b: Normal power mode(RESET) X[2]=1b and X[0]=1b: Set low power display mode 0 0 D9 A[7:0] 1 A7 1 A6 0 A5 1 A4 1 A3 0 A2 0 A1 1 Set Pre-charge Period A[3:0] : Phase 1 period of up to 15 DCLK clocks (RESET=2h); 0 is invalid entry A0 A[7:4] : Phase 2 period of up to 15 DCLK clocks (RESET=2h); 0 is invalid entry 0 0 DA 1 0 1 0 0 X5 1 X4 1 0 0 0 1 1 0 Set COM Pins 0 Hardware Configuration X[4]=0b, Sequential COM pin configuration X[4]=1b(RESET), Alternative COM pin configuration X[5]=0b(RESET), Disable COM Left/Right remap X[5]=1b, Enable COM Left/Right remap Please refer to Table 10-3 for details. SSD1305 Rev 1.9 P 35/70 May 2008 Solomon Systech Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command 0 DB 1 1 0 1 1 0 1 1 Set VCOMH Deselect 0 A[5:2] 0 0 A5 A4 A3 A2 0 0 Level Description A[5:2] 0000b 1101b 1111b Hex code 00h 34h 3Ch V COMH deselect level ~ 0.43 x VCC ~ 0.77 x VCC (RESET) ~ 0.83 x VCC 0 E0 1 1 1 0 0 0 0 0 Enter Read Modify Write 0 E3 1 1 1 0 0 0 1 1 NOP Details please refer to section 10.1.28. Command for no operation 0 EE 1 1 1 0 1 1 1 0 Exit Read Modify Write Exit the Read Modify Write mode (Please refer to command E0h) Solomon Systech Enter the Read Modify Write mode. May 2008 P 36/70 Rev 1.9 SSD1305 Graphic Acceleration Command Table D/C#Hex D7 D6 D5 D4 D3 0 26/27 0 0 1 0 0 0 A[2:0] * * * * * 0 B[2:0] * * * * * 0 C[2:0] * * * * * 0 D[2:0] * * * * * 0 0 0 0 0 0 29/2A A[2:0] B[2:0] C[2:0] D[2:0] E[5:0] SSD1305 0 * * * * * 0 * * * * * 1 * * * * E5 0 * * * * E4 Rev 1.9 D2 D1 D0 Command Description 1 1 X0 Horizontal Scroll X[0]=0, Right Horizontal Scroll X[0]=1, Left Horizontal Scroll A2 A1 A0 Setup B2 B1 B0 A[2:0] : Set number of column scroll offset C2 C1 C0 000b No horizontal scroll D2 D1 D0 001b Horizontal scroll by 1 column 010b Horizontal scroll by 2 columns 011b Horizontal scroll by 3 columns 100b Horizontal scroll by 4 columns Other values are invalid. B[2:0] : Define start page address 000b – PAGE0 011b – PAGE3 110b – PAGE6 001b – PAGE1 100b – PAGE4 111b – PAGE7 010b – PAGE2 101b – PAGE5 C[2:0] : Set time interval between each scroll step in terms of frame frequency 000b – 6 frames 100b – 3 frames 001b – 32 frames 101b – 4 frames 010b – 64 frames 110b – 2 frame 011b – 128 frames 111b – Invalid D[2:0] : Define end page address 000b – PAGE0 011b – PAGE3 110b – PAGE6 001b – PAGE1 100b – PAGE4 111b – PAGE7 010b – PAGE2 101b – PAGE5 The value of D[2:0] must be larger or equal to B[2:0] 1 * * * * E3 P 37/70 0 A2 B2 C2 D2 E2 X1 A1 B1 C1 D1 E1 May 2008 X0 A0 B0 C0 D0 E0 Continuous X1X0=01b : Vertical and Right Horizontal Scroll Vertical and X1X0=10b : Vertical and Left Horizontal Scroll Horizontal Scroll A[2:0] : Set number of column scroll offset Setup 000b No horizontal scroll 001b Horizontal scroll by 1 column 010b Horizontal scroll by 2 columns 011b Horizontal scroll by 3 columns 100b Horizontal scroll by 4 columns Other values are invalid. B[2:0] : Define start page address 000b – PAGE0 011b – PAGE3 110b – PAGE6 001b – PAGE1 100b – PAGE4 111b – PAGE7 010b – PAGE2 101b – PAGE5 C[2:0] : Set time interval between each scroll step in terms of frame frequency 000b – 6 frames 100b – 3 frames 001b – 32 frames 101b – 4 frames 010b – 64 frames 110b – 2 frame 011b – 128 frames 111b – Invalid D[2:0] : Define end page address 000b – PAGE0 011b – PAGE3 110b – PAGE6 001b – PAGE1 100b – PAGE4 111b – PAGE7 010b – PAGE2 101b – PAGE5 The value of D[2:0] must be larger or equal to B[2:0] E[5:0] : Vertical scrolling offset e.g. E[5:0]= 01h refer to offset =1 row E[5:0] =3Fh refer to offset =63 rows Solomon Systech Graphic Acceleration Command Table D/C#Hex D7 D6 D5 D4 D3 0 2E 0 0 1 0 1 D2 1 D1 1 D0 0 Command Description Deactivate scroll Stop scrolling that is configured by command 26h/27h/29h/2Ah. Note (1) After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten. 0 2F 0 0 1 0 1 1 1 1 Activate scroll Start scrolling that is configured by the scrolling setup commands :26h/27h/29h/2Ah with the following valid sequences: Valid command sequence 1: 26h ;2Fh. Valid command sequence 2: 27h ;2Fh. Valid command sequence 3: 29h ;2Fh. Valid command sequence 4: 2Ah ;2Fh. For example, if “26h; 2Ah; 2Fh.” commands are issued, the setting in the last scrolling setup command, i.e. 2Ah in this case, will be executed. In other words, setting in the last scrolling setup command overwrites the setting in the previous scrolling setup commands. 0 0 0 A3 A[5:0] B[6:0] 1 * * 0 * B6 1 A5 B5 0 A4 B4 0 A3 B3 0 A2 B2 1 A1 B1 1 Set Vertical Scroll A[5:0] : Set No. of rows in top fixed area. The No. of A0 Area rows in top fixed area is referenced to the B0 top of the GDDRAM (i.e. row 0).[RESET = 0] B[6:0] : Set No. of rows in scroll area. This is the number of rows to be used for vertical scrolling. The scroll area starts in the first row below the top fixed area. [RESET = 64] Note A[5:0]+B[6:0] <= MUX ratio (2) B[6:0] <= MUX ratio (3a) Vertical scrolling offset (E[5:0] in 29h/2Ah) < B[6:0] (3b) Set Display Start Line (X5X4X3X2X1X0 of 40h~7Fh) < B[6:0] (4) The last row of the scroll area shifts to the first row of the scroll area. (5) For 64d MUX display A[5:0] = 0, B[6:0]=64 : whole area scrolls A[5:0]= 0, B[6:0] < 64 : top area scrolls A[5:0] + B[6:0] < 64 : central area scrolls A[5:0] + B[6:0] = 64 : bottom area scrolls Please refer to Figure 10-14 for details. (1) Note (1) “*” stands for “Don’t care”. Solomon Systech May 2008 P 38/70 Rev 1.9 SSD1305 Table 9-2 : Read Command Table Bit Pattern D7D6D5D4D3D2D1D0 Command Status Register Read Description D[7] : Reserve D[6] : “1” for display OFF / “0” for display ON D[5] : Reserve D[4] : Reserve D[3] : Reserve D[2] : Reserve D[1] : Reserve D[0] : Reserve Note (1) Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected results can occur. 9.1 Data Read / Write To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel mode. No data read is provided in serial mode operation. In normal data read mode the GDDRAM column address pointer will be increased automatically by one after each data read. Also, a dummy read is required before the first data read. To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both 6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode. The GDDRAM column address pointer will be increased automatically by one after each data write. Table 9-3 : Address increment table (Automatic) D/C# R/W# (WR#) Comment Address Increment 0 0 1 1 0 1 0 1 Write Command Read Status Write Data Read Data No No Yes Yes (1) Note (1) If read-data command is issued in read-modify-write mode no address increase occurs. SSD1305 Rev 1.9 P 39/70 May 2008 Solomon Systech 10 COMMAND DESCRIPTIONS 10.1 Fundamental Command 10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh) This command specifies the lower nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section Table 9-1 and Section 10.1.3 for details. 10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh) This command specifies the higher nibble of the 8-bit column start address for the display data RAM under Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section Table 9-1 and Section 10.1.3 for details. 10.1.3 Set Memory Addressing Mode (20h) There are 3 different memory addressing mode in SSD1305: page addressing mode, horizontal addressing mode and vertical addressing mode. This command sets the way of memory addressing into one of the above three modes. In there, “COL” means the graphic display data RAM column. Page addressing mode (A[1:0]=10xb) In page addressing mode, after the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is not changed. Users have to set the new page and column addresses in order to access the next page RAM content The sequence of movement of the PAGE and column address point for page addressing mode is shown in Figure 10-1. Figure 10-1 : Address Pointer Movement of Page addressing mode PAGE0 PAGE1 : PAGE6 PAGE7 COL0 COL 1 ….. : : : COL 130 COL 131 : : In normal display data RAM read or write and page addressing mode, the following steps are required to define the starting RAM access pointer location: • Set the page start address of the target display location by command B0h to B7h. • Set the lower start column address of pointer by command 00h~0Fh. • Set the upper start column address of pointer by command 10h~1Fh. For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h, then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in Figure 10-2. The input data byte will be written into RAM position of column 3. Figure 10-2 : Example of GDDRAM access pointer setting in Page Addressing Mode (No row and columnremapping) SEG0 SEG3 (Starting column) SEG131 RAM access pointer LSB D0 COM16 COM17 : : : : : COM23 Each lattice represents one bit of image data .................... PAGE2 (Starting page) MSB D7 Solomon Systech May 2008 P 40/70 Rev 1.9 SSD1305 Horizontal addressing mode (A[1:0]=00b) In horizontal addressing mode, after the display RAM is read/written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and page address pointer is increased by 1. The sequence of movement of the page and column address point for horizontal addressing mode is shown in Figure 10-3. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 10-3.) Figure 10-3 : Address Pointer Movement of Horizontal addressing mode PAGE0 PAGE1 : PAGE6 PAGE7 COL0 COL 1 ….. : : : COL 130 COL 131 : : Vertical addressing mode: (A[1:0]=01b) In vertical addressing mode, after the display RAM is read/written, the page address pointer is increased automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset to page start address and column address pointer is increased by 1. The sequence of movement of the page and column address point for vertical addressing mode is shown in Figure 10-4. When both column and page address pointers reach the end address, the pointers are reset to column start address and page start address (Dotted line in Figure 10-4.) Figure 10-4 : Address Pointer Movement of Vertical addressing mode COL0 PAGE0 PAGE1 : PAGE6 PAGE7 COL 1 ….. ….. ….. : ….. ….. COL 130 COL 131 In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are required to define the RAM access pointer location: • Set the column start and end address of the target display location by command 21h. • Set the page start and end address of the target display location by command 22h. Example is shown in Figure 10-5. 10.1.4 Set Column Address (21h) This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row. SSD1305 Rev 1.9 P 41/70 May 2008 Solomon Systech 10.1.5 Set Page Address (22h) This triple byte command specifies page start address and end address of the display data RAM. This command also sets the page address pointer to page start address. This pointer is used to define the current read/write page address in graphic display data RAM. If vertical address increment mode is enabled by command 20h, after finishing read/write one page data, it is incremented automatically to the next page address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start page address. The figure below shows the way of column and page address pointer movement through the example: column start address is set to 2 and column end address is set to 129, page start address is set to 1 and page end address is set to 6; Horizontal address increment mode is enabled by command 20h. In this case, the graphic display data RAM column accessible range is from column 2 to column 129 and from page 1 to page 6 only. In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 10-5). Whenever the column address pointer finishes accessing the end column 129, it is reset back to column 2 and page address is automatically increased by 1 (solid line in Figure 10-5). While the end page 6 and end column 129 RAM location is accessed, the page address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure 10-5). . Figure 10-5 : Example of Column and Row Address Pointer Movement Col 0 PAGE0 PAGE1 : PAGE6 PAGE7 Solomon Systech Col 1 Col 2 ….. ……. Col 129 Col 130 Col 131 : : May 2008 P 42/70 Rev 1.9 SSD1305 10.1.6 Set Display Start Line (40h~7Fh) This command sets the Display Start Line register to determine starting address of display RAM, by selecting a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM row 1 is mapped to COM0 and so on. Refer to Table 10-1 for more illustrations. 10.1.7 Set Contrast Control for BANK0 (81h) This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current increases as the contrast step value increases. See Figure 10-6 below. Figure 10-6 : Segment current vs Contrast setting Segment current vs Contrast setting 350 300 250 Current (uA) Segment output current setting: 200 Iseg = Cr/256 x IREF x scale factor 150 Where: Cr is contrast step IREF is reference current equals 10uA Scale factor =32 100 50 0 00 0F 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF Contrast setting 10.1.8 Set Brightness for Area Color Banks (82h) This command sets the Brightness Setting of the display for the area color banks. The chip has 256 brightness steps from 00h to FFh. The segment output current increases as the brightness step value increases. This setting does not affect the contrast of BANK0, which is set by command 81h. 10.1.9 Set Look Up Table (LUT) (91h) The SSD1305 provides 4 color settings - Colors A, B, C and D for the bank color of BANK1 to BANK32 under the area color mode. The color intensity (or grey scale) is defined by the current drive pulse width. This pulse width setting must be stored in the Look Up Table (LUT). The pulse width of colors A, B, C is programmable from 32 to 64 DCLKs. The color D is fixed at 64 DCLKs pulse width. For the grey scale in BANK0, the pulse width is programmable from 32 to 64 DCLKs. Please refer to 91h command in Table 9-1 for details of the LUT setting. After setting the pulse widths for the color of A, B, C, D and BANK0, the next step is to define the color of each display area. Each bank can be programmable to any one of the 4 colors (A, B, C and D). The user can use 92h and 93h commands for the bank color setting. It should be notice that this is only applicable in area color mode. SSD1305 Rev 1.9 P 43/70 May 2008 Solomon Systech 10.1.10 Set Bank Color of BANK1 to BANK16 (PAGE0) (92h) This command maps the bank color (pulse width) of BANK1~BANK16 to any one of the 4 colors: A, B, C and D. For details of the setting, please refer to 92h command in Table 9-1. 10.1.11 Set Bank Color of BANK17 to BANK32 (PAGE0) (93h) This command maps the bank color (pulse width) of BANK17~BANK32 to any one of the 4 colors: A, B, C and D. For details of the setting, please refer to 93h command in Table 9-1. 10.1.12 Set Segment Re-map (A0h/A1h) This command changes the mapping between the display data column address and the segment driver. It allows flexibility in OLED module design. Please refer to Table 9-1. This command only affects subsequent data input. Data already stored in GDDRAM will have no changes. 10.1.13 Entire Display ON (A4h/A5h) A4h command enable display outputs according to the GDDRAM contents. If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents. In other words, A4h command resumes the display from entire display “ON” stage. A5h command forces the entire display to be “ON”, regardless of the contents of the display data RAM. 10.1.14 Set Normal/Inverse Display (A6h/A7h) This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an “ON” pixel while in inverse display a RAM data of 0 indicates an “ON” pixel. 10.1.15 Set Multiplex Ratio (A8h) This command switches the default 63 multiplex mode to any multiplex ratio, ranging from 16 to 63. The output pads COM0~COM63 will be switched to the corresponding COM signal. 10.1.16 Reserved (AAh) This command is reserved. 10.1.17 Dim Mode setting (ABh) This command contains multiple bits to configure the contrast and brightness of color bank for the display in dim mode. The brightness setting of color bank can be set different to normal mode (AFh). The display can be set in dim mode through command ACh. 10.1.18 Master Configuration (ADh) This command selects the external VCC power supply by default. As external VCC power supply is selected, external VCC power should be connected to the VCC pin. Solomon Systech May 2008 P 44/70 Rev 1.9 SSD1305 10.1.19 Set Display ON/OFF (ACh/AEh/AFh) These single byte commands are used to turn the OLED panel display ON or OFF. When the display is ON, the selected circuits by Set Master Configuration command will be turned ON. When the display is OFF, those circuits will be turned OFF and the segment and common output are in high impedance state. These commands set the display to one of the three states: o ACh : Dim Mode Display ON o AEh : Display OFF o AFh : Normal Brightness Display ON where the dim mode settings are controlled by command ABh. Figure 10-7 :Transition between different modes Normal mode AFh AFh AEh ACh AEh Dim mode Sleep mode ACh 10.1.20 Set Page Start Address for Page Addressing Mode (B0h~B7h) This command positions the page start address from 0 to 7 in GDDRAM under Page Addressing Mode. Please refer to Table 9-1 and Section 10.1.3 for details. 10.1.21 Set COM Output Scan Direction (C0h/C8h) This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module design. Additionally, the display will show once this command is issued. For example, if this command is sent during normal display then the graphic display will be vertically flipped immediately. Please refer to Table 10-3 for details. 10.1.22 Set Display Offset (D3h) This is a double byte command. The second command specifies the mapping of the display start line to one of COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0). For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by 64 – 16, so the second byte would be 100000b. The following two tables (Table 10-1, Table 10-2) show the example of setting the command C0h/C8h and D3h. SSD1305 Rev 1.9 P 45/70 May 2008 Solomon Systech Table 10-1 : Example of Set Display Offset and Display Start Line with no Remap Hardware pin name COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 Display examples 64 Normal 0 0 Row0 RAM0 Row1 RAM1 Row2 RAM2 Row3 RAM3 Row4 RAM4 Row5 RAM5 Row6 RAM6 Row7 RAM7 Row8 RAM8 Row9 RAM9 Row10 RAM10 Row11 RAM11 Row12 RAM12 Row13 RAM13 Row14 RAM14 Row15 RAM15 Row16 RAM16 Row17 RAM17 Row18 RAM18 Row19 RAM19 Row20 RAM20 Row21 RAM21 Row22 RAM22 Row23 RAM23 Row24 RAM24 Row25 RAM25 Row26 RAM26 Row27 RAM27 Row28 RAM28 Row29 RAM29 Row30 RAM30 Row31 RAM31 Row32 RAM32 Row33 RAM33 Row34 RAM34 Row35 RAM35 Row36 RAM36 Row37 RAM37 Row38 RAM38 Row39 RAM39 Row40 RAM40 Row41 RAM41 Row42 RAM42 Row43 RAM43 Row44 RAM44 Row45 RAM45 Row46 RAM46 Row47 RAM47 Row48 RAM48 Row49 RAM49 Row50 RAM50 Row51 RAM51 Row52 RAM52 Row53 RAM53 Row54 RAM54 Row55 RAM55 Row56 RAM56 Row57 RAM57 Row58 RAM58 Row59 RAM59 Row60 RAM60 Row61 RAM61 Row62 RAM62 Row63 RAM63 64 Normal 8 0 Row8 RAM8 Row9 RAM9 Row10 RAM10 Row11 RAM11 Row12 RAM12 Row13 RAM13 Row14 RAM14 Row15 RAM15 Row16 RAM16 Row17 RAM17 Row18 RAM18 Row19 RAM19 Row20 RAM20 Row21 RAM21 Row22 RAM22 Row23 RAM23 Row24 RAM24 Row25 RAM25 Row26 RAM26 Row27 RAM27 Row28 RAM28 Row29 RAM29 Row30 RAM30 Row31 RAM31 Row32 RAM32 Row33 RAM33 Row34 RAM34 Row35 RAM35 Row36 RAM36 Row37 RAM37 Row38 RAM38 Row39 RAM39 Row40 RAM40 Row41 RAM41 Row42 RAM42 Row43 RAM43 Row44 RAM44 Row45 RAM45 Row46 RAM46 Row47 RAM47 Row48 RAM48 Row49 RAM49 Row50 RAM50 Row51 RAM51 Row52 RAM52 Row53 RAM53 Row54 RAM54 Row55 RAM55 Row56 RAM56 Row57 RAM57 Row58 RAM58 Row59 RAM59 Row60 RAM60 Row61 RAM61 Row62 RAM62 Row63 RAM63 Row0 RAM0 Row1 RAM1 Row2 RAM2 Row3 RAM3 Row4 RAM4 Row5 RAM5 Row6 RAM6 Row7 RAM7 (a) (b) Output 64 56 Normal Normal 0 0 8 0 Row0 RAM8 Row0 RAM0 Row1 RAM9 Row1 RAM1 Row2 RAM10 Row2 RAM2 Row3 RAM11 Row3 RAM3 Row4 RAM12 Row4 RAM4 Row5 RAM13 Row5 RAM5 Row6 RAM14 Row6 RAM6 Row7 RAM15 Row7 RAM7 Row8 RAM16 Row8 RAM8 Row9 RAM17 Row9 RAM9 Row10 RAM18 Row10 RAM10 Row11 RAM19 Row11 RAM11 Row12 RAM20 Row12 RAM12 Row13 RAM21 Row13 RAM13 Row14 RAM22 Row14 RAM14 Row15 RAM23 Row15 RAM15 Row16 RAM24 Row16 RAM16 Row17 RAM25 Row17 RAM17 Row18 RAM26 Row18 RAM18 Row19 RAM27 Row19 RAM19 Row20 RAM28 Row20 RAM20 Row21 RAM29 Row21 RAM21 Row22 RAM30 Row22 RAM22 Row23 RAM31 Row23 RAM23 Row24 RAM32 Row24 RAM24 Row25 RAM33 Row25 RAM25 Row26 RAM34 Row26 RAM26 Row27 RAM35 Row27 RAM27 Row28 RAM36 Row28 RAM28 Row29 RAM37 Row29 RAM29 Row30 RAM38 Row30 RAM30 Row31 RAM39 Row31 RAM31 Row32 RAM40 Row32 RAM32 Row33 RAM41 Row33 RAM33 Row34 RAM42 Row34 RAM34 Row35 RAM43 Row35 RAM35 Row36 RAM44 Row36 RAM36 Row37 RAM45 Row37 RAM37 Row38 RAM46 Row38 RAM38 Row39 RAM47 Row39 RAM39 Row40 RAM48 Row40 RAM40 Row41 RAM49 Row41 RAM41 Row42 RAM50 Row42 RAM42 Row43 RAM51 Row43 RAM43 Row44 RAM52 Row44 RAM44 Row45 RAM53 Row45 RAM45 Row46 RAM54 Row46 RAM46 Row47 RAM55 Row47 RAM47 Row48 RAM56 Row48 RAM48 Row49 RAM57 Row49 RAM49 Row50 RAM58 Row50 RAM50 Row51 RAM59 Row51 RAM51 Row52 RAM60 Row52 RAM52 Row53 RAM61 Row53 RAM53 Row54 RAM62 Row54 RAM54 Row55 RAM63 Row55 RAM55 Row56 RAM0 Row57 RAM1 Row58 RAM2 Row59 RAM3 Row60 RAM4 Row61 RAM5 Row62 RAM6 Row63 RAM7 (c) (a) (b) (e) (f) Solomon Systech (d) 56 Normal 8 0 Row8 RAM8 Row9 RAM9 Row10 RAM10 Row11 RAM11 Row12 RAM12 Row13 RAM13 Row14 RAM14 Row15 RAM15 Row16 RAM16 Row17 RAM17 Row18 RAM18 Row19 RAM19 Row20 RAM20 Row21 RAM21 Row22 RAM22 Row23 RAM23 Row24 RAM24 Row25 RAM25 Row26 RAM26 Row27 RAM27 Row28 RAM28 Row29 RAM29 Row30 RAM30 Row31 RAM31 Row32 RAM32 Row33 RAM33 Row34 RAM34 Row35 RAM35 Row36 RAM36 Row37 RAM37 Row38 RAM38 Row39 RAM39 Row40 RAM40 Row41 RAM41 Row42 RAM42 Row43 RAM43 Row44 RAM44 Row45 RAM45 Row46 RAM46 Row47 RAM47 Row48 RAM48 Row49 RAM49 Row50 RAM50 Row51 RAM51 Row52 RAM52 Row53 RAM53 Row54 RAM54 Row55 RAM55 Row0 RAM0 Row1 RAM1 Row2 RAM2 Row3 RAM3 Row4 RAM4 Row5 RAM5 Row6 RAM6 Row7 RAM7 56 Normal 0 8 Row0 RAM8 Row1 RAM9 Row2 RAM10 Row3 RAM11 Row4 RAM12 Row5 RAM13 Row6 RAM14 Row7 RAM15 Row8 RAM16 Row9 RAM17 Row10 RAM18 Row11 RAM19 Row12 RAM20 Row13 RAM21 Row14 RAM22 Row15 RAM23 Row16 RAM24 Row17 RAM25 Row18 RAM26 Row19 RAM27 Row20 RAM28 Row21 RAM29 Row22 RAM30 Row23 RAM31 Row24 RAM32 Row25 RAM33 Row26 RAM34 Row27 RAM35 Row28 RAM36 Row29 RAM37 Row30 RAM38 Row31 RAM39 Row32 RAM40 Row33 RAM41 Row34 RAM42 Row35 RAM43 Row36 RAM44 Row37 RAM45 Row38 RAM46 Row39 RAM47 Row40 RAM48 Row41 RAM49 Row42 RAM50 Row43 RAM51 Row44 RAM52 Row45 RAM53 Row46 RAM54 Row47 RAM55 Row48 RAM56 Row49 RAM57 Row50 RAM58 Row51 RAM59 Row52 RAM60 Row53 RAM61 Row54 RAM62 Row55 RAM63 - (e) (f) (c) Set MUX ratio(A8h) COM Normal / Remapped (C0h / C8h) Display offset (D3h) Display start line (40h - 7Fh) (d) (RAM) May 2008 P 46/70 Rev 1.9 SSD1305 Table 10-2 :Example of Set Display Offset and Display Start Line with Remap Hardw are pin name COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 Display examples 64 Remap 0 0 Row 63 RAM63 Row 62 RAM62 Row 61 RAM61 Row 60 RAM60 Row 59 RAM59 Row 58 RAM58 Row 57 RAM57 Row 56 RAM56 Row 55 RAM55 Row 54 RAM54 Row 53 RAM53 Row 52 RAM52 Row 51 RAM51 Row 50 RAM50 Row 49 RAM49 Row 48 RAM48 Row 47 RAM47 Row 46 RAM46 Row 45 RAM45 Row 44 RAM44 Row 43 RAM43 Row 42 RAM42 Row 41 RAM41 Row 40 RAM40 Row 39 RAM39 Row 38 RAM38 Row 37 RAM37 Row 36 RAM36 Row 35 RAM35 Row 34 RAM34 Row 33 RAM33 Row 32 RAM32 Row 31 RAM31 Row 30 RAM30 Row 29 RAM29 Row 28 RAM28 Row 27 RAM27 Row 26 RAM26 Row 25 RAM25 Row 24 RAM24 Row 23 RAM23 Row 22 RAM22 Row 21 RAM21 Row 20 RAM20 Row 19 RAM19 Row 18 RAM18 Row 17 RAM17 Row 16 RAM16 Row 15 RAM15 Row 14 RAM14 Row 13 RAM13 Row 12 RAM12 Row 11 RAM11 Row 10 RAM10 Row 9 RAM9 Row 8 RAM8 Row 7 RAM7 Row 6 RAM6 Row 5 RAM5 Row 4 RAM4 Row 3 RAM3 Row 2 RAM2 Row 1 RAM1 Row 0 RAM0 64 Remap 8 0 Row 7 RAM7 Row 6 RAM6 Row 5 RAM5 Row 4 RAM4 Row 3 RAM3 Row 2 RAM2 Row 1 RAM1 Row 0 RAM0 Row 63 RAM63 Row 62 RAM62 Row 61 RAM61 Row 60 RAM60 Row 59 RAM59 Row 58 RAM58 Row 57 RAM57 Row 56 RAM56 Row 55 RAM55 Row 54 RAM54 Row 53 RAM53 Row 52 RAM52 Row 51 RAM51 Row 50 RAM50 Row 49 RAM49 Row 48 RAM48 Row 47 RAM47 Row 46 RAM46 Row 45 RAM45 Row 44 RAM44 Row 43 RAM43 Row 42 RAM42 Row 41 RAM41 Row 40 RAM40 Row 39 RAM39 Row 38 RAM38 Row 37 RAM37 Row 36 RAM36 Row 35 RAM35 Row 34 RAM34 Row 33 RAM33 Row 32 RAM32 Row 31 RAM31 Row 30 RAM30 Row 29 RAM29 Row 28 RAM28 Row 27 RAM27 Row 26 RAM26 Row 25 RAM25 Row 24 RAM24 Row 23 RAM23 Row 22 RAM22 Row 21 RAM21 Row 20 RAM20 Row 19 RAM19 Row 18 RAM18 Row 17 RAM17 Row 16 RAM16 Row 15 RAM15 Row 14 RAM14 Row 13 RAM13 Row 12 RAM12 Row 11 RAM11 Row 10 RAM10 Row 9 RAM9 Row 8 RAM8 64 Remap 0 8 Row 63 RAM7 Row 62 RAM6 Row 61 RAM5 Row 60 RAM4 Row 59 RAM3 Row 58 RAM2 Row 57 RAM1 Row 56 RAM0 Row 55 RAM63 Row 54 RAM62 Row 53 RAM61 Row 52 RAM60 Row 51 RAM59 Row 50 RAM58 Row 49 RAM57 Row 48 RAM56 Row 47 RAM55 Row 46 RAM54 Row 45 RAM53 Row 44 RAM52 Row 43 RAM51 Row 42 RAM50 Row 41 RAM49 Row 40 RAM48 Row 39 RAM47 Row 38 RAM46 Row 37 RAM45 Row 36 RAM44 Row 35 RAM43 Row 34 RAM42 Row 33 RAM41 Row 32 RAM40 Row 31 RAM39 Row 30 RAM38 Row 29 RAM37 Row 28 RAM36 Row 27 RAM35 Row 26 RAM34 Row 25 RAM33 Row 24 RAM32 Row 23 RAM31 Row 22 RAM30 Row 21 RAM29 Row 20 RAM28 Row 19 RAM27 Row 18 RAM26 Row 17 RAM25 Row 16 RAM24 Row 15 RAM23 Row 14 RAM22 Row 13 RAM21 Row 12 RAM20 Row 11 RAM19 Row 10 RAM18 Row 9 RAM17 Row 8 RAM16 Row 7 RAM15 Row 6 RAM14 Row 5 RAM13 Row 4 RAM12 Row 3 RAM11 Row 2 RAM10 Row 1 RAM9 Row 0 RAM8 Output 48 Remap 0 0 Row 47 RAM47 Row 46 RAM46 Row 45 RAM45 Row 44 RAM44 Row 43 RAM43 Row 42 RAM42 Row 41 RAM41 Row 40 RAM40 Row 39 RAM39 Row 38 RAM38 Row 37 RAM37 Row 36 RAM36 Row 35 RAM35 Row 34 RAM34 Row 33 RAM33 Row 32 RAM32 Row 31 RAM31 Row 30 RAM30 Row 29 RAM29 Row 28 RAM28 Row 27 RAM27 Row 26 RAM26 Row 25 RAM25 Row 24 RAM24 Row 23 RAM23 Row 22 RAM22 Row 21 RAM21 Row 20 RAM20 Row 19 RAM19 Row 18 RAM18 Row 17 RAM17 Row 16 RAM16 Row 15 RAM15 Row 14 RAM14 Row 13 RAM13 Row 12 RAM12 Row 11 RAM11 Row 10 RAM10 Row 9 RAM9 Row 8 RAM8 Row 7 RAM7 Row 6 RAM6 Row 5 RAM5 Row 4 RAM4 Row 3 RAM3 Row 2 RAM2 Row 1 RAM1 Row 0 RAM0 - (a) (b) (c) (d) (a) (e) SSD1305 Rev 1.9 P 47/70 48 Remap 8 0 Row 47 Row 46 Row 45 Row 44 Row 43 Row 42 Row 41 Row 40 Row 39 Row 38 Row 37 Row 36 Row 35 Row 34 Row 33 Row 32 Row 31 Row 30 Row 29 Row 28 Row 27 Row 26 Row 25 Row 24 Row 23 Row 22 Row 21 Row 20 Row 19 Row 18 Row 17 Row 16 Row 15 Row 14 Row 13 Row 12 Row 11 Row 10 Row 9 Row 8 Row 7 Row 6 Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 - (e) (b) (c) (f) (g) May 2008 RAM47 RAM46 RAM45 RAM44 RAM43 RAM42 RAM41 RAM40 RAM39 RAM38 RAM37 RAM36 RAM35 RAM34 RAM33 RAM32 RAM31 RAM30 RAM29 RAM28 RAM27 RAM26 RAM25 RAM24 RAM23 RAM22 RAM21 RAM20 RAM19 RAM18 RAM17 RAM16 RAM15 RAM14 RAM13 RAM12 RAM11 RAM10 RAM9 RAM8 RAM7 RAM6 RAM5 RAM4 RAM3 RAM2 RAM1 RAM0 - 48 Remap 0 8 Row 47 RAM55 Row 46 RAM54 Row 45 RAM53 Row 44 RAM52 Row 43 RAM51 Row 42 RAM50 Row 41 RAM49 Row 40 RAM48 Row 39 RAM47 Row 38 RAM46 Row 37 RAM45 Row 36 RAM44 Row 35 RAM43 Row 34 RAM42 Row 33 RAM41 Row 32 RAM40 Row 31 RAM39 Row 30 RAM38 Row 29 RAM37 Row 28 RAM36 Row 27 RAM35 Row 26 RAM34 Row 25 RAM33 Row 24 RAM32 Row 23 RAM31 Row 22 RAM30 Row 21 RAM29 Row 20 RAM28 Row 19 RAM27 Row 18 RAM26 Row 17 RAM25 Row 16 RAM24 Row 15 RAM23 Row 14 RAM22 Row 13 RAM21 Row 12 RAM20 Row 11 RAM19 Row 10 RAM18 Row 9 RAM17 Row 8 RAM16 Row 7 RAM15 Row 6 RAM14 Row 5 RAM13 Row 4 RAM12 Row 3 RAM11 Row 2 RAM10 Row 1 RAM9 Row 0 RAM8 - (f) 48 Remap 8 16 Row 47 Row 46 Row 45 Row 44 Row 43 Row 42 Row 41 Row 40 Row 39 Row 38 Row 37 Row 36 Row 35 Row 34 Row 33 Row 32 Row 31 Row 30 Row 29 Row 28 Row 27 Row 26 Row 25 Row 24 Row 23 Row 22 Row 21 Row 20 Row 19 Row 18 Row 17 Row 16 Row 15 Row 14 Row 13 Row 12 Row 11 Row 10 Row 9 Row 8 Row 7 Row 6 Row 5 Row 4 Row 3 Row 2 Row 1 Row 0 - Set MUX ratio(A8h) COM Normal / Remapped (C0h / C8h) Display offset (D3h) Display start line (40h - 7Fh) RAM63 RAM62 RAM61 RAM60 RAM59 RAM58 RAM57 RAM56 RAM55 RAM54 RAM53 RAM52 RAM51 RAM50 RAM49 RAM48 RAM47 RAM46 RAM45 RAM44 RAM43 RAM42 RAM41 RAM40 RAM39 RAM38 RAM37 RAM36 RAM35 RAM34 RAM33 RAM32 RAM31 RAM30 RAM29 RAM28 RAM27 RAM26 RAM25 RAM24 RAM23 RAM22 RAM21 RAM20 RAM19 RAM18 RAM17 RAM16 - (g) (d) (RAM) Solomon Systech 10.1.23 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) This command consists of two functions: • Display Clock Divide Ratio (D)(A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to section 8.3 for the details relationship of DCLK and CLK. • Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit value results in 16 different frequency settings available as shown below. The default setting is 0111b. Figure 10-8 : Typical Oscillator frequency adjustment by D5 command (VDD =2.8V) Oscillator Frequency vs D5h command setting Frequency (kHz) 600 500 400 300 200 100 0 0 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0 D5h setting in hex Note (1) There is 10% tolerance in the above frequency values 10.1.24 Set Area Color Mode ON/OFF & Low Power Display Mode (D8h) This command is used to enable area color mode. RESET is monochrome mode. The low power display mode can reduce power consumption during IC operation. 10.1.25 Set Pre-charge Period (D9h) This command is used to set the duration of the pre-charge period. The interval is counted in number of DCLK, where RESET equals 2 DCLKs. Solomon Systech May 2008 P 48/70 Rev 1.9 SSD1305 10.1.26 Set COM Pins Hardware Configuration (DAh) This command sets the COM signals pin configuration to match the OLED panel hardware layout. The table below shows the COM pin configuration under different conditions (for MUX ratio =64): Table 10-3 : COM Pins Hardware Configuration Conditions COM pins Configurations ROW63 1 Sequential COM pin configuration (DAh X[4] =0) COM output Scan direction: from COM0 to COM63 (C0h) Disable COM Left/Right remap (DAh X[5] =0) ROW32 ROW31 132 x 64 ROW0 COM32 COM0 SSD1305Z COM31 COM63 Pad 1,2,3,…->126 Gold Bumps face up 2 Sequential COM pin configuration (DAh X[4] =0) COM output Scan direction: from COM0 to COM63 (C0h) Enable COM Left/Right remap (DAh X[5] =1) ROW63 ROW31 ROW32 132 x 64 ROW0 COM0 COM32 SSD1305Z COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up 3 Sequential COM pin configuration (DAh X[4] =0) COM output Scan direction: from COM63 to COM0 (C8h) Disable COM Left/Right remap (DAh X[5] =0) ROW0 ROW31 ROW32 132 x 64 ROW63 COM32 COM0 SSD1305Z COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up SSD1305 Rev 1.9 P 49/70 May 2008 Solomon Systech Conditions COM pins Configurations 4 Sequential COM pin configuration (DAh X[4] =0) COM output Scan direction: from COM63 to COM0 (C8h) Enable COM Left/Right remap (DAh X[5] =1) ROW0 ROW32 ROW31 132 x 64 ROW63 COM0 COM32 SSD1305Z COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up 5 Alternative COM pin configuration (DAh X[4] =1) COM output Scan direction: from COM0 to COM63 (C0h) Disable COM Left/Right remap (DAh X[5] =0) ROW63 ROW62 ROW61 132 x 64 ROW2 ROW1 ROW0 COM32 COM0 SSD1305Z COM1 COM62 COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up 6 Alternative COM pin configuration (DAh X[4] =1) COM output Scan direction: from COM0 to COM63 (C0h) Enable COM Left/Right remap (DAh X[5] =1) ROW63 ROW62 ROW61 132 x 64 ROW2 ROW1 ROW0 COM32 COM33 COM0 SSD1305Z COM30 COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up Solomon Systech May 2008 P 50/70 Rev 1.9 SSD1305 Conditions 7 Alternative COM pin configuration (DAh X[4] =1) COM output Scan direction: from COM63 to COM0(C8h) Disable COM Left/Right remap (DAh X[5] =0) COM pins Configurations ROW0 ROW1 ROW2 132 x 64 ROW61 ROW62 ROW63 COM32 COM0 SSD1305Z COM1 COM62 COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up 8 Alternative COM pin configuration (DAh X[4] =1) COM output Scan direction: from COM63 to COM0(C8h) Enable COM Left/Right remap (DAh X[5] =1) ROW0 ROW1 ROW2 132 x 64 ROW61 ROW62 ROW63 COM32 COM33 COM0 SSD1305Z COM30 COM63 COM31 Pad 1,2,3,…->126 Gold Bumps face up 10.1.27 Set VCOMH Deselect Level (DBh) This command adjusts the VCOMH regulator output. 10.1.28 Enter Read Modify Write (E0h) This single byte command is used to enter the Read Modify Write mode. During the Read Modify Write mode: The RAM address pointer will not be incremented when there is data read. The RAM address pointer will be increased by one automatically after each data write. After exit the Read Modify Write Mode by command EEh, the RAM address pointer returns back to the original location before enter the Read Modify Write mode. For instance, when reading the data from the RAM and re-writing a new data to the same location, there is no need to re-enter the column and page addresses again under this mode. SSD1305 Rev 1.9 P 51/70 May 2008 Solomon Systech Table 10-4 : Example of Read Modify Write Mode Condition Originally, Address Pointer point to address A RAM & address pointer (under Horizontal addressing mode) Enter Read Modify Write Mode by command E0h Data read : address pointer does not change Data Write: address pointer increases by one automatically after each data write Data Write: address pointer increases by one automatically after each data write Data read : address pointer does not change Data Write: address pointer increases by one automatically after each data write Exit Read Modify Write Mode by command EEh Address Pointer point to address A after exit Read Modify Write Mode 10.1.29 NOP (E3h) No Operation Command 10.1.30 Exit Read Modify Write (EEh) This single byte command is used to exit the Read Modify Write mode (Please refer to Section 10.1.28. for details of the Read Modify Write Mode). 10.1.31 Status register Read This command is issued by setting D/C# ON LOW during a data read (See Figure 13-1 to Figure 13-3 for parallel interface waveform). It allows the MCU to monitor the internal status of the chip. No status read is provided for serial mode. Solomon Systech May 2008 P 52/70 Rev 1.9 SSD1305 10.2 Graphic Acceleration Command 10.2.1 Horizontal Scroll Setup (26h/27h) This command consists of 5 consecutive bytes to set up the horizontal scroll parameters and determines the scrolling start page, end page and scrolling speed. Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted. The SSD1305 horizontal scroll is designed for 132 columns scrolling. The following three figures (Figure 10-9, Figure 10-10, Figure 10-11) show the examples of using the horizontal scroll: SEG127 SEG128 SEG129 SEG130 SEG131 SEG123 SEG124 SEG125 SEG126 SEG127 … … SEG126 … … SEG122 … … SEG5 SEG1 SEG4 SEG0 SEG3 SEG131 SEG2 SEG130 SEG1 SEG129 After one scroll step SEG128 Original Setting SEG0 Figure 10-9 : Horizontal scroll example: Scroll RIGHT by 4 columns SEG126 SEG127 SEG128 SEG129 SEG130 SEG131 SEG129 SEG130 SEG131 SEG0 SEG1 … … SEG128 … SEG5 SEG7 … SEG4 SEG6 … SEG3 SEG5 … SEG2 SEG4 SEG1 SEG3 After one scroll step SEG0 Original Setting SEG2 Figure 10-10 : Horizontal scroll example: Scroll LEFT by 2 columns Figure 10-11 : Horizontal scrolling setup example SSD1305 Rev 1.9 P 53/70 May 2008 Solomon Systech 10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah) This command consists of 6 consecutive bytes to set up the continuous vertical and horizontal scroll parameters and determines the scrolling start page, end page, scrolling speed and vertical scrolling offset. The bytes A[2:0], B[2:0], C[2:0] and D[2:0] of command 29h/2Ah are for the setting of the continuous horizontal scrolling. The byte E[5:0] is for the setting of the continuous vertical scrolling offset. All these bytes together are for the setting of continuous diagonal (horizontal + vertical) scrolling. If the vertical scrolling offset byte E[5:0] is set to zero, then only horizontal scrolling is performed (like command 26/27h). Alternatively, if the byte A[2:0] is set to zero and E[5:0] is not set to zero, then only vertical scrolling is performed. Before issuing this command the scroll must be deactivated (2Eh). Otherwise, RAM content may be corrupted. The following two figures (Figure 10-12 , Figure 10-13) show the examples of using the continuous vertical and horizontal scroll: Figure 10-12 : Continuous Vertical and Horizontal scrolling setup examples Solomon Systech May 2008 P 54/70 Rev 1.9 SSD1305 Figure 10-13 : Continuous Vertical and Horizontal scrolling example: With setting in MUX ratio As shown in Figure 10-13, the whole RAM content is displayed during scrolling regardless of the MUX ratio. 10.2.3 Deactivate Scroll (2Eh) This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten. 10.2.4 Activate Scroll (2Fh) This command starts the motion of scrolling and should only be issued after the scroll setup parameters have been defined by the scrolling setup commands :26h/27h/29h/2Ah . The setting in the last scrolling setup command overwrites the setting in the previous scrolling setup commands. The following actions are prohibited after the scrolling is activated 1. RAM access (Data write or read) 2. Changing the horizontal scroll setup parameters SSD1305 Rev 1.9 P 55/70 May 2008 Solomon Systech 10.2.5 Set Vertical Scroll Area(A3h) This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical scroll function (command 29/2Ah), the number of rows that in vertical scrolling can be set smaller or equal to the MUX ratio. Figure 10-14 shows some vertical scrolling example with different settings in vertical scroll area. Figure 10-14 : Vertical scroll area setup examples Solomon Systech May 2008 P 56/70 Rev 1.9 SSD1305 11 MAXIMUM RATINGS Table 11-1 : Maximum Ratings (Voltage Referenced to VSS) Symbol VDD VDDIO VCC VSEG VCOM Vin TA Tstg Parameter Supply Voltage SEG output voltage COM output voltage Input voltage Operating Temperature Storage Temperature Range Value -0.3 to +4 -0.3 to VDD+0.5 0 to 16 0 to VCC 0 to 0.9*VCC VSS-0.3 to VDD+0.3 -40 to +85 -65 to +150 Unit V V V V V V ºC ºC Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected. SSD1305 Rev 1.9 P 57/70 May 2008 Solomon Systech 12 DC CHARACTERISTICS Condition (Unless otherwise specified): Voltage referenced to VSS VDD = 2.4 to 3.5V TA = 25°C Table 12-1 : DC Characteristics Symbol VCC VDD ICC, SLEEP Parameter Test Condition Operating Voltage Logic Supply Voltage Logic Supply Voltage for MCU interface High Logic Output Level IOUT = 100uA, 3.3MHz Low Logic Output Level IOUT = 100uA, 3.3MHz High Logic Input Level Low Logic Input Level VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V, ICC Sleep mode Current IDD, SLEEP IDD Sleep mode Current VDDIO VOH VOL VIH VIL IDDIO, SLEEP IDDIO Sleep mode Current VCC Supply Current VDD = 2.7V, VCC = 12V, IREF = 10uA No loading, Display ON, All ON VDD Supply Current VDD = 2.7V, VCC = 12V, IREF = 10uA No loading, Display ON, All ON ICC IDD Segment Output Current ISEG Dev Adj. Dev VDD=2.7V, VCC=12V, IREF=10uA, Display ON. Min 7 2.4 Typ - Max 15 3.5 Unit V V 1.6 - VDD V 0.1 x VDDIO 0.2 x VDDIO V V V V - 10 uA - 10 uA - 10 uA - 550 1000 uA - 100 300 uA Contrast=FFh 294 320 346 Contrast=AFh - 220 - Contrast=7Fh - 159 - Contrast=3Fh - 79 - - 19 - -3 - +3 % -2 - +2 % VCC = 7V~15V Display OFF, No panel attached VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V, VCC = 7V~15V Display OFF, No panel attached VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V, VCC = 7V~15V Display OFF, No panel attached Contrast = FFh Contrast=0Fh Dev = (ISEG – IMID)/IMID Segment output current IMID = (IMAX + IMIN)/2 uniformity ISEG[0:131] = Segment current at contrast = FFh Adjacent pin output current Adj Dev = (I[n]-I[n+1]) / uniformity (contrast = FF) (I[n]+I[n+1]) Solomon Systech 0.9 x VDDIO 0.8 x VDDIO - May 2008 P 58/70 Rev 1.9 uA SSD1305 13 AC CHARACTERISTICS Conditions: Voltage referenced to VSS VDD=2.4 to3.5V TA = 25°C Table 13-1 : AC Characteristics Symbol Parameter Test Condition FOSC (1) Oscillation Frequency of Display VDD = 2.8V FFRM RES# Timing Generator Frame Frequency for 64 MUX Mode Reset low pulse width Min Typ 324 360 132x64 Graphic Display Mode, Display ON, Internal Oscillator Enabled 3 Max 396 Unit FOSC x 1/(DxKx64) - Hz - - us (2) kHz Note (1) FOSC stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is in default value. (2) D: divide ratio (default value = 1) K: number of display clocks (default value = 54) Please refer to Table 9-1 (Set Display Clock Divide Ratio/Oscillator Frequency, D5h) for detailed description SSD1305 Rev 1.9 P 59/70 May 2008 Solomon Systech Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics (VDD - VSS = 2.4V to 3.5V, VDDIO = VDD, TA = 25°C) Symbol Parameter Min Typ Max Unit tcycle Clock Cycle Time 300 - - ns tAS Address Setup Time 0 - - ns tAH Address Hold Time 0 - - ns tDSW Write Data Setup Time 40 - - ns tDHW Write Data Hold Time 7 - - ns tDHR Read Data Hold Time 20 - - ns tOH Output Disable Time - - 70 ns tACC Access Time - - 140 ns 120 60 60 60 - - ns PWCSH Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write) Chip Select High Pulse Width (read) Chip Select High Pulse Width (write) - - ns tR Rise Time - - 40 ns tF Fall Time - - 40 ns PWCSL Figure 13-1 : 6800-series MCU parallel interface characteristics D/C# tAS tAH R/W# E tcycle PWCSL CS# PWCSH tR tF tDHW tDSW D[7:0](WRITE) Valid Data tACC D[7:0](READ) tDHR Valid Data tOH Solomon Systech May 2008 P 60/70 Rev 1.9 SSD1305 Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics (VDD - VSS = 2.4V to 3.5V, VDDIO = VDD, TA = 25°C) Symbol tcycle tAS tAH tDSW tDHW tDHR tOH tACC tPWLR tPWLW tPWHR tPWHW tR tF tCS tCSH tCSF Parameter Min Typ Max Unit 300 10 0 40 7 20 120 60 60 60 0 0 20 - 70 140 40 40 - ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Clock Cycle Time Address Setup Time Address Hold Time Write Data Setup Time Write Data Hold Time Read Data Hold Time Output Disable Time Access Time Read Low Time Write Low Time Read High Time Write High Time Rise Time Fall Time Chip select setup time Chip select hold time to read signal Chip select hold time Figure 13-2 : 8080-series parallel interface characteristics (Form 1) Write cycle (Form 1) Read cycle (Form 1) CS# CS# tCSH tCSF tCS tCS D/C# D/C# tAH tAS WR# tAS tR tF tcycle tPWLW tDSW tPWHW RD# tcycle tPWLR tDHW tPWHR tACC D[7:0] tAH tR tF tDHR D[7:0] tOH Figure 13-3 : 8080-series parallel interface characteristics (Form 2) Write cycle (Form 2) Read cycle (Form 2) tcycle tcycle tR CS# tR tF CS# tPWLW tF tPWLR tPWHR tPWHW tCS tCS D/C# D/C# tAS tAH tAS tCSF WR# tAH RD# tDSW tDHW D[7:0] tCSH tACC tDHR D[7:0] tOH SSD1305 Rev 1.9 P 61/70 May 2008 Solomon Systech Table 13-4 : Serial Interface Timing Characteristics (VDD - VSS = 2.4V to 3.5V , VDDIO = VDD ,TA = 25°C) Symbol Parameter tcycle Clock Cycle Time tAS Address Setup Time tAH Address Hold Time tCSS Chip Select Setup Time tCSH Chip Select Hold Time tDSW Write Data Setup Time tDHW Write Data Hold Time tCLKL Clock Low Time tCLKH Clock High Time tR Rise Time tF Fall Time Min 250 150 150 120 60 50 15 100 100 - Typ - Max 40 40 Unit ns ns ns ns ns ns ns ns ns ns ns Figure 13-4 : Serial interface characteristics D/C# t AS t AH t CSS CS# t CSH t cycle tCLKL tCLKH SCLK(D 0 ) tF tR t DSW SDIN(D 1 ) t DHW Valid Data CS# SCLK(D0 ) SDIN(D1) Solomon Systech D7 D6 D5 D4 D3 D2 May 2008 P 62/70 D1 Rev 1.9 D0 SSD1305 Conditions: VDD - VSS = 2.4 to 3.5V VDDIO = VDD TA = 25°C Table 13-5 :I2C Interface Timing Characteristics Symbol Parameter Max Unit tcycle Clock Cycle Time 2.5 - - us tHSTART Start condition Hold Time 0.6 - - us tHD Data Hold Time (for “SDAOUT” pin) 0 - - ns Data Hold Time (for “SDAIN” pin) 300 - - ns 100 - - ns 0.6 - - us tSSTOP Data Setup Time Start condition Setup Time (Only relevant for a repeated Start condition) Stop condition Setup Time 0.6 - - us tR Rise Time for data and clock pin - - 300 ns tF Fall Time for data and clock pin - - 300 ns tIDLE Idle Time before a new transmission can start 1.3 - - us tSD tSSTART Min Typ Figure 13-5 : I2C interface Timing characteristics // SDA tHD tHSTART tIDLE tF tSD tR // tSSTART tSSTOP SCL tCYCLE SSD1305 Rev 1.9 P 63/70 May 2008 Solomon Systech 14 APPLICATION EXAMPLE Figure 14-1 : Application Example of SSD1305T6R1 The configuration for 6800-parallel interface mode, external VCC is shown in the following diagram: (VDD=2.7V, VCC =12V, IREF=10uA) COM1 COM3 . . COM61 COM63 SEG0 . . . . . . . . . . . . SEG131 COM62 COM60 . . COM2 COM0 DISPLAY PANEL 132 x 64 SSD1305T6R1 BGGND VCC VCOMH IREF D[7:0] E (RD#) R/W#(W/R#) D/C# RES# CS# BS1 BS2 C3 VDD VDDB GDR VDDIO FB VBREF VSS VCIR FR R1 C1 C2 C4 VCC D[7:0] E (RD#) R/W# (W/R#) D/C# RES# CS# VDD VDDIO VSS VSS [GND] Pin connected to MCU interface: D[7:0], E, R/W#, D/C#, CS#, RES# Pin internally connected to VSS: BS0, VSSB GDR, VBREF, FB should be left open. C1: 4.7uF (1) C2: 4.7uF (1) C3: 4.7uF (1) C4: 4.7uF (1) R1: 910kΩ, R1= (Voltage at IREF pin-VSS)/IREF Voltage at IREF pin = VCC-3V Note (1) The capacitor value is recommended value. Select appropriate value against module application. Solomon Systech May 2008 P 64/70 Rev 1.9 SSD1305 15 PACKAGE INFORMATION 15.1 SSD1305Z Die Tray Information Figure 15-1 SSD1305Z die tray information SSD1305 Rev 1.9 P 65/70 May 2008 Solomon Systech 15.2 SSD1305T6R1 Detail Dimension SS D1 30 5T 6 Figure 15-2 SSD1305T6R1 Detail Dimension Solomon Systech May 2008 P 66/70 Rev 1.9 SSD1305 SSD1305 Rev 1.9 P 67/70 May 2008 Solomon Systech 15.3 SSD1305T7R1 Detail Dimension Figure 15-3 SSD1305T7R1 Detail Dimension Solomon Systech May 2008 P 68/70 Rev 1.9 SSD1305 15.4 SSD1305Z3 Die Tray Information Figure 15-4 SSD1305Z3 die tray information SSD1305 Rev 1.9 P 69/70 May 2008 Solomon Systech Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) “Restriction of Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “电子信息产品污染控制标识要求 (SJ/T11364-2006)” with control Marking Symbol .. Hazardous Substances test report is available upon requested. http://www.solomon-systech.com Solomon Systech May 2008 P 70/70 Rev 1.9 SSD1305