SSD1305 - Adafruit

SOLOMON SYSTECH
SEMICONDUCTOR TECHNICAL DATA
SSD1305
Advance Information
132 x 64 Dot Matrix
OLED/PLED Segment/Common Driver with Controller
This document contains information on a new product. Specifications and information herein are subject to change
without notice.
http://www.solomon-systech.com
SSD1305
Rev 1.9
P 1/70
May 2008
Copyright © 2008 Solomon Systech Limited
CONTENTS
1
GENERAL DESCRIPTION .................................................................................................... 7
2
FEATURES ............................................................................................................................... 7
3
ORDERING INFORMATION................................................................................................ 7
4
BLOCK DIAGRAM ................................................................................................................. 8
5
DIE PAD FLOOR PLAN ......................................................................................................... 9
6
PIN ARRANGEMENT .......................................................................................................... 12
6.1
6.2
SSD1305T6R1 PIN ASSIGNMENT .........................................................................................................................12
SSD1305T7R1 PIN ASSIGNMENT .........................................................................................................................14
7
PIN DESCRIPTION............................................................................................................... 16
8
FUNCTIONAL BLOCK DESCRIPTIONS ......................................................................... 18
8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
9
MCU INTERFACE SELECTION...............................................................................................................................18
MCU Parallel 6800-series Interface...............................................................................................................18
MCU Parallel 8080-series Interface...............................................................................................................19
MCU Serial Interface......................................................................................................................................21
MCU I2C Interface..........................................................................................................................................21
COMMAND DECODER ..........................................................................................................................................24
OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ......................................................................................25
FR SYNCHRONIZATION ........................................................................................................................................26
RESET CIRCUIT ....................................................................................................................................................26
SEGMENT DRIVERS / COMMON DRIVERS .............................................................................................................27
GRAPHIC DISPLAY DATA RAM (GDDRAM)......................................................................................................29
AREA COLOR DECODER.......................................................................................................................................30
SEG/COM DRIVING BLOCK ................................................................................................................................31
POWER ON AND OFF SEQUENCE .........................................................................................................................32
COMMAND TABLE.............................................................................................................. 33
9.1
10
DATA READ / WRITE ...........................................................................................................................................39
COMMAND DESCRIPTIONS ............................................................................................. 40
10.1 FUNDAMENTAL COMMAND .................................................................................................................................40
10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh) ......................................................40
10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh) .....................................................40
10.1.3 Set Memory Addressing Mode (20h)...............................................................................................................40
10.1.4 Set Column Address (21h) ..............................................................................................................................41
10.1.5 Set Page Address (22h)...................................................................................................................................42
10.1.6 Set Display Start Line (40h~7Fh) ...................................................................................................................43
10.1.7 Set Contrast Control for BANK0 (81h)...........................................................................................................43
10.1.8 Set Brightness for Area Color Banks (82h).....................................................................................................43
10.1.9 Set Look Up Table (LUT) (91h) .....................................................................................................................43
10.1.10
Set Bank Color of BANK1 to BANK16 (PAGE0) (92h) ..............................................................................44
10.1.11
Set Bank Color of BANK17 to BANK32 (PAGE0) (93h) ............................................................................44
10.1.12
Set Segment Re-map (A0h/A1h) ..................................................................................................................44
10.1.13
Entire Display ON (A4h/A5h) ...................................................................................................................44
10.1.14
Set Normal/Inverse Display (A6h/A7h).......................................................................................................44
10.1.15
Set Multiplex Ratio (A8h)............................................................................................................................44
10.1.16
Reserved (AAh) ...........................................................................................................................................44
10.1.17
Dim Mode setting (ABh) .............................................................................................................................44
10.1.18
Master Configuration (ADh).......................................................................................................................44
Solomon Systech
May 2008
P 2/70
Rev 1.9
SSD1305
10.1.19
Set Display ON/OFF (ACh/AEh/AFh) ........................................................................................................45
10.1.20
Set Page Start Address for Page Addressing Mode (B0h~B7h)..................................................................45
10.1.21
Set COM Output Scan Direction (C0h/C8h)...............................................................................................45
10.1.22
Set Display Offset (D3h) .............................................................................................................................45
10.1.23
Set Display Clock Divide Ratio/ Oscillator Frequency (D5h) ....................................................................48
10.1.24
Set Area Color Mode ON/OFF & Low Power Display Mode (D8h) ..........................................................48
10.1.25
Set Pre-charge Period (D9h) ......................................................................................................................48
10.1.26
Set COM Pins Hardware Configuration (DAh)..........................................................................................49
10.1.27
Set VCOMH Deselect Level (DBh) .................................................................................................................51
10.1.28
Enter Read Modify Write (E0h) ..................................................................................................................51
10.1.29
NOP (E3h) ..................................................................................................................................................52
10.1.30
Exit Read Modify Write (EEh) ....................................................................................................................52
10.1.31
Status register Read ....................................................................................................................................52
10.2 GRAPHIC ACCELERATION COMMAND ..................................................................................................................53
10.2.1 Horizontal Scroll Setup (26h/27h) ..................................................................................................................53
10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)..........................................................................54
10.2.3 Deactivate Scroll (2Eh)...................................................................................................................................55
10.2.4 Activate Scroll (2Fh).......................................................................................................................................55
10.2.5 Set Vertical Scroll Area(A3h) .........................................................................................................................56
11
MAXIMUM RATINGS.......................................................................................................... 57
12
DC CHARACTERISTICS..................................................................................................... 58
13
AC CHARACTERISTICS..................................................................................................... 59
14
APPLICATION EXAMPLE.................................................................................................. 64
15
PACKAGE INFORMATION................................................................................................ 65
15.1
15.2
15.3
15.4
SSD1305
SSD1305Z DIE TRAY INFORMATION ...................................................................................................................65
SSD1305T6R1 DETAIL DIMENSION ....................................................................................................................66
SSD1305T7R1 DETAIL DIMENSION ....................................................................................................................68
SSD1305Z3 DIE TRAY INFORMATION .................................................................................................................69
Rev 1.9
P 3/70
May 2008
Solomon Systech
TABLES
TABLE 3-1 : ORDERING INFORMATION ................................................................................................... 7
TABLE 5-1 : SSD1305Z BUMP DIE PAD COORDINATES ....................................................................... 11
TABLE 6-1 : SSD1305T6R1 PIN ASSIGNMENT TABLE ......................................................................... 13
TABLE 6-2 : SSD1305T7R1 PIN ASSIGNMENT .................................................................................... 15
TABLE 7-1 : PIN DESCRIPTION ............................................................................................................. 16
TABLE 7-2 : MCU BUS INTERFACE PIN SELECTION ............................................................................. 17
TABLE 8-1 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE ........................ 18
TABLE 8-2 : CONTROL PINS OF 6800 INTERFACE .................................................................................. 18
TABLE 8-3 : CONTROL PINS OF 8080 INTERFACE (FORM 1) .................................................................. 20
TABLE 8-4 : CONTROL PINS OF 8080 INTERFACE (FORM 2) .................................................................. 20
TABLE 8-5 : CONTROL PINS OF SERIAL INTERFACE .............................................................................. 21
TABLE 9-1: COMMAND TABLE ............................................................................................................. 33
TABLE 9-2 : READ COMMAND TABLE .................................................................................................. 39
TABLE 9-3 : ADDRESS INCREMENT TABLE (AUTOMATIC)..................................................................... 39
TABLE 10-1 : EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH NO REMAP ........... 46
TABLE 10-2 :EXAMPLE OF SET DISPLAY OFFSET AND DISPLAY START LINE WITH REMAP ................. 47
TABLE 10-3 : COM PINS HARDWARE CONFIGURATION ....................................................................... 49
TABLE 10-4 : EXAMPLE OF READ MODIFY WRITE MODE .................................................................... 52
TABLE 11-1 : MAXIMUM RATINGS (VOLTAGE REFERENCED TO VSS) .................................................. 57
TABLE 12-1 : DC CHARACTERISTICS ................................................................................................... 58
TABLE 13-1 : AC CHARACTERISTICS ................................................................................................... 59
TABLE 13-2 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS .......................... 60
TABLE 13-3 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS .......................... 61
TABLE 13-4 : SERIAL INTERFACE TIMING CHARACTERISTICS .............................................................. 62
TABLE 13-5 :I2C INTERFACE TIMING CHARACTERISTICS ..................................................................... 63
Solomon Systech
May 2008
P 4/70
Rev 1.9
SSD1305
FIGURES
FIGURE 4-1 : SSD1305 BLOCK DIAGRAM .............................................................................................. 8
FIGURE 5-1 : SSD1305Z DIE DRAWING ................................................................................................. 9
FIGURE 5-2 : SSD1305Z ALIGNMENT MARKS DIMENSION .................................................................. 10
FIGURE 6-1 : SSD1305T6R1 PIN ASSIGNMENT ................................................................................... 12
FIGURE 6-2 : SSD1305T7R1 PIN ASSIGNMENT ................................................................................... 14
FIGURE 8-1 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ......................................... 19
FIGURE 8-2 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE .......................... 19
FIGURE 8-3 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE ............................ 19
FIGURE 8-4 : DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ .......................... 20
FIGURE 8-5 : WRITE PROCEDURE IN SPI MODE..................................................................................... 21
FIGURE 8-6 : I2C -BUS DATA FORMAT................................................................................................... 22
FIGURE 8-7 : DEFINITION OF THE START AND STOP CONDITION ........................................................... 23
FIGURE 8-8 : DEFINITION OF THE ACKNOWLEDGEMENT CONDITION ..................................................... 24
FIGURE 8-9 : DEFINITION OF THE DATA TRANSFER CONDITION ........................................................... 24
FIGURE 8-10 : OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................... 25
FIGURE 8-11 : SEGMENT OUTPUT WAVEFORM IN THREE PHASES ......................................................... 27
FIGURE 8-12 : SEGMENT OUTPUT WAVEFORM FOR TWO DIFFERENT COLORS LUT SETTING ................ 27
FIGURE 8-13 : EXAMPLE OF SEGMENT OUTPUT WAVEFORM OF MONOCHROME DISPLAY SECTION
UNDER MONOCHROME MODE ......................................................................................................... 28
FIGURE 8-14 : EXAMPLE OF SEGMENT OUTPUT WAVEFORM OF AREA COLOR DISPLAY SECTION UNDER
AREA COLOR MODE........................................................................................................................ 28
FIGURE 8-15 : GDDRAM PAGES STRUCTURE OF SSD1305 ................................................................. 29
FIGURE 8-16 : ENLARGEMENT OF GDDRAM (NO ROW RE-MAPPING AND COLUMN-REMAPPING) ....... 29
FIGURE 8-17 : EXAMPLE OF AREA COLOR ASSIGNMENT ON A 132X64 OLED PANEL ........................... 30
FIGURE 8-18 : IREF CURRENT SETTING BY RESISTOR VALUE ............................................................... 31
FIGURE 8-19 : THE POWER ON SEQUENCE ........................................................................................... 32
FIGURE 8-20 : THE POWER OFF SEQUENCE ......................................................................................... 32
FIGURE 10-1 : ADDRESS POINTER MOVEMENT OF PAGE ADDRESSING MODE ....................................... 40
FIGURE 10-2 : EXAMPLE OF GDDRAM ACCESS POINTER SETTING IN PAGE ADDRESSING MODE (NO
ROW AND COLUMN-REMAPPING) ................................................................................................... 40
FIGURE 10-3 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESSING MODE ........................... 41
FIGURE 10-4 : ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESSING MODE ............................... 41
FIGURE 10-5 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT ................................ 42
FIGURE 10-6 : SEGMENT CURRENT VS CONTRAST SETTING .................................................................. 43
FIGURE 10-7 :TRANSITION BETWEEN DIFFERENT MODES ..................................................................... 45
FIGURE 10-8 : TYPICAL OSCILLATOR FREQUENCY ADJUSTMENT BY D5 COMMAND (VDD =2.8V)........ 48
FIGURE 10-9 : HORIZONTAL SCROLL EXAMPLE: SCROLL RIGHT BY 4 COLUMNS ................................ 53
FIGURE 10-10 : HORIZONTAL SCROLL EXAMPLE: SCROLL LEFT BY 2 COLUMNS ................................. 53
FIGURE 10-11 : HORIZONTAL SCROLLING SETUP EXAMPLE .................................................................. 53
FIGURE 10-12 : CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING SETUP EXAMPLES .................. 54
FIGURE 10-13 : CONTINUOUS VERTICAL AND HORIZONTAL SCROLLING EXAMPLE: WITH SETTING IN
MUX RATIO .................................................................................................................................. 55
FIGURE 10-14 : VERTICAL SCROLL AREA SETUP EXAMPLES ................................................................. 56
FIGURE 13-1 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS ....................................... 60
FIGURE 13-2 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1) ................................. 61
FIGURE 13-3 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2) ................................. 61
FIGURE 13-4 : SERIAL INTERFACE CHARACTERISTICS .......................................................................... 62
FIGURE 13-5 : I2C INTERFACE TIMING CHARACTERISTICS ................................................................... 63
FIGURE 14-1 : APPLICATION EXAMPLE OF SSD1305T6R1 .................................................................. 64
SSD1305
Rev 1.9
P 5/70
May 2008
Solomon Systech
FIGURE 15-1 SSD1305Z DIE TRAY INFORMATION ............................................................................... 65
FIGURE 15-2 SSD1305T6R1 DETAIL DIMENSION ............................................................................... 66
FIGURE 15-3 SSD1305T7R1 DETAIL DIMENSION ............................................................................... 68
FIGURE 15-4 SSD1305Z3 DIE TRAY INFORMATION ............................................................................. 69
Solomon Systech
May 2008
P 6/70
Rev 1.9
SSD1305
1
GENERAL DESCRIPTION
The SSD1305 is a CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dotmatrix graphic display system. It consists of 132 segments and 64 commons that can support a maximum
display resolution of 132x64. There are 4-color selections to support monochrome or area color OLED/PLED.
This IC is designed for Common Cathode type OLED panel.
The SSD1305 embeds with contrast control, display RAM and oscillator, which reduces the number of
external components and power consumption. It has 256-step brightness control and separate power for I/O
interface logic. It is suitable for many compact portable applications, such as mobile phone sub-display,
calculator and MP3 player, etc.
2
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3
Resolution: 132 x 64 dot matrix panel
Area color support with 4 Color Selection and 64 steps per color
Power supply:
o VDD = 2.4V to 3.5V
for IC logic
o VCC = 7.0V to 15.0V
for Panel driving
o VDDIO = 1.6V to VDD
for MCU interface
Segment maximum source current: 320uA
Common maximum sink current: 45mA
Embedded 132 x 64 bit SRAM display buffer
256-step Contrast Control
8-bit 6800-series Parallel Interface, 8-bit 8080-series Parallel Interface, Serial Peripheral Interface,
I2C Interface
Row Re-mapping and Column Re-mapping
Continuous Horizontal, Vertical and Diagonal Scrolling
Dim Mode operations
Programmable Frame Frequency and Multiplexing Ratio
On-Chip Oscillator
Low power consumption
Wide range of operating temperatures: -40 to 85 °C
ORDERING INFORMATION
Table 3-1 : Ordering Information
Ordering Part Number SEG COM Package Form
SSD1305Z
132
SSD1305T6R1
132
SSD1305T7R1
132
SSD1305Z3
SSD1305
132
Rev 1.9
64
64
64
64
P 7/70
Reference
Gold Bump Die Page 9, 65
TAB
TAB
• Min SEG pad pitch: 52um
• Min COM pad pitch: 45um
Page 12 ,66
•
•
•
Page 14, 68
•
•
•
Gold Bump Die Page 69
May 2008
Remark
•
35mm film, 4 sprocket hole
Folding TAB
8-bit 80 / 8-bit 68 / SPI / I2C interface
SEG lead pitch 0.120mm x 0.998 =0.11976mm
COM lead pitch 0.120mm x 0.998 =0.11976mm
35mm film, 4 sprocket hole
Folding TAB
8-bit 80 / 8-bit 68 / SPI / I2C interface
SEG lead pitch 0.120mm x 0.998 =0.11976mm
COM lead pitch 0.120mm x 0.998 =0.11976mm
•
Die Thickness : 300 um ± 25 um
•
•
•
Solomon Systech
4
BLOCK DIAGRAM
Figure 4-1 : SSD1305 Block Diagram
Solomon Systech
May 2008
P 8/70
Rev 1.9
SSD1305
5
DIE PAD FLOOR PLAN
Figure 5-1 : SSD1305Z Die Drawing
Pad 1
Alignment marks
(For details dimension please see p.9)
Position
Size
T shape (-3240, 139) 75um x 75um
+ shape (3240, 139) 75um x 75um
Die Size
Die Thickness
Min I/O pad pitch
Min SEG pad pitch
Min COM pad pitch
Bump Height
8.2mm x 1.2mm
457 um ± 25 um
65 um
52 um
45 um
Nominal 15 um
SSD1305Z
Bump Size
Pad #
1, 126, 148, 293
18-109
2-5, 122-125, 149-151, 290-292
6-17, 110-121,152-289
127-147, 294-314
X [um]
94
42
50
32
94
Y [um]
50
70
50
94
32
Y
SSD1305Z
X
Pad 1,2,3,…->126
Gold Bumps face up
SSD1305
Rev 1.9
P 9/70
May 2008
Solomon Systech
Figure 5-2 : SSD1305Z Alignment Marks Dimension
Solomon Systech
May 2008 P 10/70
Rev 1.9
SSD1305
Table 5-1 : SSD1305Z Bump Die Pad Coordinates
Pad no.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Pad Name
NC
NC
NC
NC
NC
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
NC
NC
VCC
VCC
VCC
VCOMH
VLSS
VLSS
VLSS
VSS
VSS
TR11
TR10
TR9
TR8
TR7
TR6
VSS
TR5
TR4
TR3
TR2
TR1
TR0
VSS
VSSB
GDR
GDR
VDDB
VDDB
VDDB
FB
VBREF
BGGND
VSS
VDDB
VCIR
VCIR
VDD
VDD
VDD
VDD
VDDIO
VDDIO
VDDIO
VCC
VCC
VCC
VDDIO
BS0
VSS
BS1
VDDIO
BS2
VSS
FR
CL
VSS
CS#
RES#
D/C#
VSS
R/W#(WR#)
E(RD#)
SSD1305
X-pos
-3980.5
-3821.5
-3746.5
-3671.5
-3596.5
-3537.5
-3492.5
-3447.5
-3402.5
-3357.5
-3312.5
-3267.5
-3222.5
-3177.5
-3132.5
-3087.5
-3042.5
-2957.5
-2892.5
-2827.5
-2762.5
-2697.5
-2632.5
-2567.5
-2502.5
-2437.5
-2372.5
-2307.5
-2242.5
-2177.5
-2112.5
-2047.5
-1982.5
-1917.5
-1852.5
-1787.5
-1722.5
-1657.5
-1592.5
-1527.5
-1462.5
-1397.5
-1332.5
-1267.5
-1202.5
-1137.5
-1072.5
-1007.5
-942.5
-877.5
-812.5
-747.5
-682.5
-617.5
-552.5
-487.5
-422.5
-357.5
-292.5
-227.5
-162.5
-97.5
-32.5
32.5
97.5
162.5
227.5
292.5
357.5
422.5
487.5
552.5
617.5
682.5
747.5
812.5
877.5
942.5
1007.5
1072.5
Y-pos
-546.0
-546.0
-546.0
-546.0
-546.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
Rev 1.9
Pad no.
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
Pad Name
VDDIO
D0
D1
D2
D3
VSS
D4
D5
D6
D7
VSS
CLS
VDDIO
VDDIO
VDD
VDD
VDD
IREF
VCOMH
VCC
VCC
VCC
VCC
VCC
VCC
VLSS
VLSS
VLSS
NC
NC
COM31
COM30
COM29
COM28
COM27
COM26
COM25
COM24
COM23
COM22
COM21
NC
NC
NC
NC
NC
COM20
COM19
COM18
COM17
COM16
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
NC
NC
NC
NC
NC
NC
NC
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
P 11/70
X-pos
1137.5
1202.5
1267.5
1332.5
1397.5
1462.5
1527.5
1592.5
1657.5
1722.5
1787.5
1852.5
1917.5
1982.5
2047.5
2112.5
2177.5
2242.5
2307.5
2372.5
2437.5
2502.5
2567.5
2632.5
2697.5
2762.5
2827.5
2892.5
2957.5
3042.5
3087.5
3132.5
3177.5
3222.5
3267.5
3312.5
3357.5
3402.5
3447.5
3492.5
3537.5
3596.5
3671.5
3746.5
3821.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3980.5
3856.5
3766.5
3676.5
3585.2
3533.3
3481.3
3429.4
3377.4
3325.5
3273.5
3221.5
3169.6
May 2008
Y-pos
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-536.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-524.0
-546.0
-546.0
-546.0
-546.0
-546.0
-468.4
-423.4
-378.4
-333.4
-288.4
-243.4
-198.4
-153.4
-108.4
-63.4
-18.4
26.6
71.6
116.6
161.6
206.6
251.6
296.6
341.6
386.6
431.6
501.1
501.1
501.1
501.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
Pad no.
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
Pad Name
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
SEG40
SEG41
SEG42
SEG43
SEG44
SEG45
SEG46
SEG47
SEG48
SEG49
SEG50
SEG51
SEG52
SEG53
SEG54
SEG55
SEG56
SEG57
SEG58
SEG59
SEG60
SEG61
SEG62
SEG63
SEG64
SEG65
SEG66
SEG67
SEG68
SEG69
SEG70
SEG71
SEG72
SEG73
SEG74
SEG75
SEG76
SEG77
SEG78
SEG79
SEG80
SEG81
SEG82
SEG83
SEG84
SEG85
X-pos
3117.6
3065.7
3013.7
2961.7
2909.8
2857.8
2805.9
2753.9
2701.9
2650.0
2598.0
2546.1
2494.1
2442.1
2390.2
2338.2
2286.3
2234.3
2182.3
2130.4
2078.4
2026.5
1974.5
1922.5
1870.6
1818.6
1766.7
1714.7
1662.7
1610.8
1558.8
1506.9
1454.9
1402.9
1351.0
1299.0
1247.1
1195.1
1143.1
1091.2
1039.2
987.3
935.3
883.3
831.4
779.4
727.5
675.5
623.5
571.6
519.6
467.7
415.7
363.7
259.8
207.9
155.9
103.9
52.0
0.0
-52.0
-103.9
-155.9
-207.8
-259.8
-311.8
-363.7
-415.7
-467.6
-519.6
-571.6
-623.5
-675.5
-727.4
-779.4
-831.4
-883.3
-935.3
-987.2
-1039.2
Y-pos
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
Pad no.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
Pad Name
SEG86
SEG87
SEG88
SEG89
SEG90
SEG91
SEG92
SEG93
SEG94
SEG95
SEG96
SEG97
SEG98
SEG99
SEG100
SEG101
SEG102
SEG103
SEG104
SEG105
SEG106
SEG107
SEG108
SEG109
SEG110
SEG111
SEG112
SEG113
SEG114
SEG115
SEG116
SEG117
SEG118
SEG119
SEG120
SEG121
SEG122
SEG123
SEG124
SEG125
SEG126
SEG127
SEG128
SEG129
SEG130
SEG131
NC
NC
NC
NC
NC
NC
NC
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
X-pos
-1091.2
-1143.1
-1195.1
-1247.0
-1299.0
-1351.0
-1402.9
-1454.9
-1506.8
-1558.8
-1610.8
-1662.7
-1714.7
-1766.6
-1818.6
-1870.6
-1922.5
-1974.5
-2026.4
-2078.4
-2130.4
-2182.3
-2234.3
-2286.2
-2338.2
-2390.2
-2442.1
-2494.1
-2546.0
-2598.0
-2650.0
-2701.9
-2753.9
-2805.8
-2857.8
-2909.8
-2961.7
-3013.7
-3065.6
-3117.6
-3169.6
-3221.5
-3273.5
-3325.4
-3377.4
-3429.4
-3481.3
-3533.3
-3585.2
-3676.5
-3766.5
-3856.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
-3980.5
Solomon Systech
Y-pos
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
479.1
501.1
501.1
501.1
501.1
431.6
386.6
341.6
296.6
251.6
206.6
161.6
116.6
71.6
26.6
-18.4
-63.4
-108.4
-153.4
-198.4
-243.4
-288.4
-333.4
-378.4
-423.4
-468.4
6
PIN ARRANGEMENT
6.1
SSD1305T6R1 pin assignment
Figure 6-1 : SSD1305T6R1 Pin Assignment
Solomon Systech
May 2008 P 12/70
Rev 1.9
SSD1305
Table 6-1 : SSD1305T6R1 Pin Assignment Table
Pin #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
SSD1305
Rev 1.9
Name
NC
VCC
VCOMH
IREF
D7
D6
D5
D4
D3
D2
D1
D0
E(RD#)
R/W#
D/C#
RES#
CS#
FR
BS2
BS1
VDDIO
VDD
VCIR
BGGND
VBREF
NC
FB
VDDB
GDR
VSS
NC
NC
NC
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
NC
NC
NC
NC
NC
NC
NC
SEG131
SEG130
SEG129
SEG128
SEG127
SEG126
SEG125
SEG124
P 13/70
Pin #
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
May 2008
Name
SEG123
SEG122
SEG121
SEG120
SEG119
SEG118
SEG117
SEG116
SEG115
SEG114
SEG113
SEG112
SEG111
SEG110
SEG109
SEG108
SEG107
SEG106
SEG105
SEG104
SEG103
SEG102
SEG101
SEG100
SEG99
SEG98
SEG97
SEG96
SEG95
SEG94
SEG93
SEG92
SEG91
SEG90
SEG89
SEG88
SEG87
SEG86
SEG85
SEG84
SEG83
SEG82
SEG81
SEG80
SEG79
SEG78
SEG77
SEG76
SEG75
SEG74
SEG73
SEG72
SEG71
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
Pin #
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
Name
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM0
COM2
COM4
COM6
COM8
COM10
COM12
COM14
COM16
COM18
COM20
COM22
COM24
COM26
COM28
COM30
COM32
COM34
COM36
COM38
COM40
COM42
COM44
COM46
COM48
Pin #
241
242
243
244
245
246
247
248
249
Name
COM50
COM52
COM54
COM56
COM58
COM60
COM62
NC
NC
Solomon Systech
6.2
SSD1305T7R1 pin assignment
Figure 6-2 : SSD1305T7R1 Pin Assignment
Solomon Systech
May 2008 P 14/70
Rev 1.9
SSD1305
Table 6-2 : SSD1305T7R1 Pin Assignment
Pin #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
SSD1305
Rev 1.9
Name
NC
VCC
VCOMH
IREF
D7
D6
D5
D4
D3
D2
D1
D0
E/RD#
R/W#
D/C#
RES#
CS#
NC
BS2
BS1
VDD
NC
NC
NC
VBREF
NC
FB
VDDB
GDR
VSS
NC
NC
NC
COM63
COM61
COM59
COM57
COM55
COM53
COM51
COM49
COM47
COM45
COM43
COM41
COM39
COM37
COM35
COM33
COM31
COM29
COM27
COM25
COM23
COM21
COM19
COM17
COM15
COM13
COM11
COM9
COM7
COM5
COM3
COM1
NC
NC
NC
NC
NC
NC
NC
SEG131
SEG130
SEG129
SEG128
SEG127
SEG126
SEG125
SEG124
Pin #
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
P 15/70
May 2008
Name
SEG123
SEG122
SEG121
SEG120
SEG119
SEG118
SEG117
SEG116
SEG115
SEG114
SEG113
SEG112
SEG111
SEG110
SEG109
SEG108
SEG107
SEG106
SEG105
SEG104
SEG103
SEG102
SEG101
SEG100
SEG99
SEG98
SEG97
SEG96
SEG95
SEG94
SEG93
SEG92
SEG91
SEG90
SEG89
SEG88
SEG87
SEG86
SEG85
SEG84
SEG83
SEG82
SEG81
SEG80
SEG79
SEG78
SEG77
SEG76
SEG75
SEG74
SEG73
SEG72
SEG71
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
Pin #
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
Name
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
COM0
COM2
COM4
COM6
COM8
COM10
COM12
COM14
COM16
COM18
COM20
COM22
COM24
COM26
COM28
COM30
COM32
COM34
COM36
COM38
COM40
COM42
COM44
COM46
COM48
Pin #
241
242
243
244
245
246
247
248
249
Name
COM50
COM52
COM54
COM56
COM58
COM60
COM62
NC
NC
Solomon Systech
7
PIN DESCRIPTION
Key: I = Input, O =Output, IO = Bi-directional (input/output), P = Power pin
Table 7-1 : Pin Description
Pin Name
VDD
Pin Type Description
P
Power supply pin for core logic operation.
VDDIO
P
Power supply for interface logic level. It should be match with MCU interface voltage
level. VDDIO must always be equal or lower than VDD.
VCC
P
Power supply for panel driving voltage. This is also the most positive power voltage supply
pin.
VSS
P
This is a ground pin.
VLSS
P
This is an analog ground pin. It should be connected to VSS externally.
VCOMH
O
The pin for COM signal deselected voltage level.
A capacitor should be connected between this pin and VSS.
BGGND
P
This pin must be connected to ground.
VDDB
P
This is a reserved pin. It must be connected to VDD.
VSSB
P
This is a reserved pin. It must be connected to VSS.
GDR
O
This is a reserved pin. It should be kept NC (i.e. Float during normal operation).
FB
I
This is a reserved pin. It should be kept NC (i.e. Float during normal operation).
VBREF
P
This is a reserved pin. It should be kept NC (i.e. Float during normal operation).
VCIR
O
This is a reserved pin. It should be kept NC (i.e. Float during normal operation).
BS[2:0]
I
MCU bus interface selection pins. Please refer to Table 7-2 for the details of setting.
IREF
I
This is segment output current reference pin.
A resistor should be connected between this pin and VSS to maintain the IREF current at
10uA. Please refer to Figure 8-18 for the details of resistor value.
FR
O
This pin outputs RAM write synchronization signal. Proper timing between MCU data
writing and frame display timing can be achieved to prevent tearing effect.
It should be kept NC if it is not used. Please refer to Section 8.4 for details usage.
CL
I
This is external clock input pin.
When internal clock is enabled (i.e. HIGH in CLS pin), this pin is not used and should be
connected to VSS. When internal clock is disabled (i.e. LOW in CLS pin), this pin is the
external clock source input pin.
CLS
I
This is internal clock enable pin. When it is pulled HIGH (i.e. connect to VDDIO), internal
clock is enabled. When it is pulled LOW, the internal clock is disabled; an external clock
source must be connected to the CL pin for normal operation.
RES#
I
This pin is reset signal input. When the pin is LOW, initialization of the chip is executed.
Keep this pin HIGH (i.e. connect to VDDIO) during normal operation.
Solomon Systech
May 2008 P 16/70
Rev 1.9
SSD1305
Pin Name
CS#
Pin Type Description
This pin is the chip select input. (active LOW)
I
D/C#
I
This is Data/Command control pin. When it is pulled HIGH (i.e. connect to VDDIO), the data
at D[7:0] is treated as data. When it is pulled LOW, the data at D[7:0] will be transferred to
the command register.
In I2C mode, this pin acts as SA0 for slave address selection.
For detail relationship to MCU interface signals, please refer to the Timing Characteristics
Diagrams: Figure 13-1 to Figure 13-5.
E (RD#)
I
When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E)
signal. Read/write operation is initiated when this pin is pulled HIGH (i.e. connect to VDDIO)
and the chip is selected.
When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Read
operation is initiated when this pin is pulled LOW and the chip is selected.
When serial interface is selected, this pin must be connected to VSS.
R/W#(WR#) I
This is read / write control input pin connecting to the MCU interface.
When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write
(R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH (i.e.
connect to VDDIO) and write mode when LOW.
When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write
operation is initiated when this pin is pulled LOW and the chip is selected.
When serial interface is selected, this pin must be connected to VSS.
D[7:0]
IO
These are 8-bit bi-directional data bus to be connected to the microprocessor’s data bus.
When serial interface mode is selected, D0 will be the serial clock input: SCLK; D1 will be
the serial data input: SDIN and D2 should be left opened.
When I2C mode is selected, D2, D1 should be tied together and serve as SDAout, SDAin in
application and D0 is the serial clock input, SCL.
TR0-TR11
-
Testing reserved pins. It should be kept NC.
SEG0 ~
SEG131
O
These pins provide Segment switch signals to OLED panel. They are in high impedance
stage when display is OFF.
COM0 ~
COM63
O
These pins provide Common switch signals to OLED panel. They are in high impedance
state when display is OFF.
NC
-
This is dummy pin. Do not group or short NC pins together.
Table 7-2 : MCU Bus Interface Pin Selection
Pin Name I2C
Interface
BS0
BS1
BS2
SSD1305
0
1
0
Rev 1.9
6800parallel
interface
(8 bit)
0
0
1
P 17/70
May 2008
8080parallel
interface
(8 bit)
0
1
1
Serial
interface
0
0
0
Note
(1)
0 is connected to VSS
(2)
1 is connected to VDDIO
Solomon Systech
8
FUNCTIONAL BLOCK DESCRIPTIONS
8.1
MCU Interface selection
SSD1305 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface
mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[2:0] pins
(please refer to Table 7-2 for BS[2:0] setting).
Table 8-1 : MCU interface assignment under different bus interface mode
Pin Name
Bus
Interface
8-bit 8080
8-bit 6800
SPI
I2C
8.1.1
Data/Command Interface
D7
D6
D5
D4
Control Signal
D3
D[7:0]
D[7:0]
Tie LOW
Tie LOW
D2
D1
NC
SDAOUT
D0
E
R/W#
RD#
WR#
E
R/W#
SDIN SCLK Tie LOW
SDAIN SCL Tie LOW
CS#
CS#
CS#
CS#
D/C#
D/C#
D/C#
D/C#
SA0
RES#
RES#
RES#
RES#
RES#
MCU Parallel 6800-series Interface
The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#.
A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation.
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.
The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal.
Table 8-2 : Control pins of 6800 interface
Function
E
R/W#
CS#
D/C#
Write command
↓
L
L
L
Read status
↓
H
L
L
Write data
↓
L
L
H
Read data
↓
H
L
H
Note
(1)
↓ stands for falling edge of signal
H stands for HIGH in signal
L stands for LOW in signal
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual display
data read. This is shown in Figure 8-1.
Solomon Systech
May 2008 P 18/70
Rev 1.9
SSD1305
Figure 8-1 : Data read back procedure - insertion of dummy read
R/W#
E
N
Databus
Write column
address
8.1.2
Dummy read
n
n+1
Read 1st data
Read 2nd data
n+2
Read 3rd data
MCU Parallel 8080-series Interface
The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#.
A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write.
A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW.
A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW.
Figure 8-2 : Example of Write procedure in 8080 parallel interface mode
CS#
WR#
D[7:0]
D/C#
RD#
high
low
Figure 8-3 : Example of Read procedure in 8080 parallel interface mode
CS#
RD#
D[7:0]
D/C#
WR#
high
low
SSD1305
Rev 1.9
P 19/70
May 2008
Solomon Systech
Table 8-3 : Control pins of 8080 interface (Form 1)
Function
Write command
Read status
Write data
Read data
RD#
H
↑
WR#
↑
H
H
↑
↑
H
CS#
L
L
L
L
D/C#
L
L
H
H
Note
(1)
↑ stands for rising edge of signal
(2)
H stands for HIGH in signal
(3)
L stands for LOW in signal
(4)
Refer to Figure 13-2 for Form 1 8080-Series MPU Parallel Interface Timing Characteristics
Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal.
Table 8-4 : Control pins of 8080 interface (Form 2)
Function
Write command
Read status
Write data
Read data
RD#
H
L
H
L
WR#
L
H
L
H
CS#
↑
↑
↑
↑
D/C#
L
L
H
H
Note
↑ stands for rising edge of signal
(2)
H stands for HIGH in signal
(3)
L stands for LOW in signal
(4)
Refer to Figure 13-3 for Form 2 8080-Series MPU Parallel Interface Timing Characteristics
(1)
In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline
processing is internally performed which requires the insertion of a dummy read before the first actual display
data read. This is shown in Figure 8-4.
Figure 8-4 : Display data read back procedure - insertion of dummy read
WR#
RD#
Databus
N
Write column
address
Solomon Systech
Dummy read
n
n+1
Read 1st data
Read 2nd data
May 2008 P 20/70
n+2
Read 3rd data
Rev 1.9
SSD1305
8.1.3
MCU Serial Interface
The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as
SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and
R/W# can be connected to an external ground.
Table 8-5 : Control pins of Serial interface
Function
E(RD#)
R/W#(WR#)
CS#
D/C#
D0
Write command
Tie LOW
Tie LOW
L
L
↑
Write data
Tie LOW
Tie LOW
L
H
↑
Note
(1)
↑ stands for rising edge of signal
(2)
H stands for HIGH in signal
(3)
L stands for LOW in signal
SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C#
is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data
RAM (GDDRAM) or command register in the same clock.
Under serial mode, only write operations are allowed.
Figure 8-5 : Write procedure in SPI mode
CS#
D/C#
SDIN/
SCLK
DB1
DB2
DBn
SCLK(D0)
SDIN(D1)
8.1.4
D7
D6
D5
D4
D3
D2
D1
D0
MCU I2C Interface
The I2C communication interface consists of slave address bit SA0, I2C-bus data signal SDA (SDAOUT/D2 for
output and SDAIN/D1 for input) and I2C-bus clock signal SCL (D0). Both the data and clock signals must be
connected to pull-up resistors. RES# is used for the initialization of device.
a) Slave address bit (SA0)
SSD1305 has to recognize the slave address before transmitting or receiving any information by the
I2C-bus. The device will respond to the slave address following by the slave address bit (“SA0” bit)
and the read/write select bit (“R/W#” bit) with the following byte format,
b7 b6 b5 b4 b3 b2 b1 b0
0 1 1 1 1 0 SA0 R/W#
“SA0” bit provides an extension bit for the slave address. Either “0111100” or “0111101”, can be
selected as the slave address of SSD1305. D/C# pin acts as SA0 for slave address selection.
“R/W#” bit is used to determine the operation mode of the I2C-bus interface. R/W#=1, it is in read
mode. R/W#=0, it is in write mode.
SSD1305
Rev 1.9
P 21/70
May 2008
Solomon Systech
b) I2C-bus data signal (SDA)
SDA acts as a communication channel between the transmitter and the receiver. The data and the
acknowledgement are sent through the SDA.
It should be noticed that the ITO track resistance and the pulled-up resistance at “SDA” pin becomes
a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid
logic 0 level in “SDA”.
“SDAIN” and “SDAOUT” are tied together and serve as SDA. The “SDAIN” pin must be connected to
act as SDA. The “SDAOUT” pin may be disconnected. When “SDAOUT” pin is disconnected, the
acknowledgement signal will be ignored in the I2C-bus.
c) I2C-bus clock signal (SCL)
The transmission of information in the I2C-bus is following a clock signal, SCL. Each transmission of
data bit is taken place during a single clock period of SCL.
8.1.4.1 I2C-bus Write data
The I2C-bus interface gives access to write data and command into the device. Please refer to Figure 8-6 for
the write mode of I2C-bus in chronological order.
Figure 8-6 : I2C -bus data format
Note:
Write mode
P
1 byte
ACK
Control byte
ACK
m ≥ 0 words
Data byte
D/C#
Co
ACK
Slave Address
Control byte
ACK
D/C#
Co
ACK
R/W#
SA0
S
00 11 111 11 01
Co – Continuation bit
D/C# – Data / Command Selection bit
ACK – Acknowledgement
SA0 – Slave address bit
R/W# – Read / Write Selection bit
S – Start Condition / P – Stop Condition
Data byte
n ≥ 0 bytes
MSB ……………….LSB
R/W#
SA0
011110
SSD1305
Slave Address
ACK
D/C
Co
0 0 0 0 0 0
Control byte
Solomon Systech
May 2008 P 22/70
Rev 1.9
SSD1305
8.1.4.2 Write mode for I2C
1) The master device initiates the data communication by a start condition. The definition of the start
condition is shown in Figure 8-7. The start condition is established by pulling the SDA from HIGH to
LOW while the SCL stays HIGH.
2) The slave address is following the start condition for recognition use. For the SSD1305, the slave
address is either “b0111100” or “b0111101” by changing the SA0 to LOW or HIGH (D/C pin acts as
SA0).
3) The write mode is established by setting the R/W# bit to logic “0”.
4) An acknowledgement signal will be generated after receiving one byte of data, including the slave
address and the R/W# bit. Please refer to the Figure 8-8 for the graphical representation of the
acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH
period of the acknowledgement related clock pulse.
5) After the transmission of the slave address, either the control byte or the data byte may be sent across
the SDA. A control byte mainly consists of Co and D/C# bits following by six “0” ‘s.
a. If the Co bit is set as logic “0”, the transmission of the following information will contain
data bytes only.
b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is
set to logic “0”, it defines the following data byte as a command. If the D/C# bit is set to logic
“1”, it defines the following data byte as a data which will be stored at the GDDRAM. The
GDDRAM column address pointer will be increased by one automatically after each data
write.
6) Acknowledge bit will be generated after receiving each control byte or data byte.
7) The write mode will be finished when a stop condition is applied. The stop condition is also defined
in Figure 8-7. The stop condition is established by pulling the “SDA in” from LOW to HIGH while
the “SCL” stays HIGH.
Figure 8-7 : Definition of the Start and Stop Condition
tSSTOP
tHSTART
SDA
SDA
SCL
SSD1305
SCL
S
P
START condition
STOP condition
Rev 1.9
P 23/70
May 2008
Solomon Systech
Figure 8-8 : Definition of the acknowledgement condition
DATA OUTPUT
BY TRANSMITTER
Non-acknowledge
DATA OUTPUT
BY RECEIVER
Acknowledge
SCL FROM
MASTER
1
2
8
9
S
Clock pulse for acknowledgement
START
Condition
Please be noted that the transmission of the data bit has some limitations.
1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the “HIGH”
period of the clock pulse. Please refer to the Figure 8-9 for graphical representations. Except in start or
stop conditions, the data line can be switched only when the SCL is LOW.
2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.
Figure 8-9 : Definition of the data transfer condition
SDA
SCL
Data line is
stable
8.2
Change of data
Command Decoder
This module determines whether the input data is interpreted as data or command. Data is interpreted based
upon the input of the D/C# pin.
If D/C# pin is HIGH, D[7:0] is interpreted as display data written to Graphic Display Data RAM (GDDRAM).
If it is LOW, the input at D[7:0] is interpreted as a command. Then data input will be decoded and written to
the corresponding command register.
Solomon Systech
May 2008 P 24/70
Rev 1.9
SSD1305
8.3
Oscillator Circuit and Display Time Generator
Figure 8-10 : Oscillator Circuit and Display Time Generator
Internal
Oscillator
Fosc
M
U
X
CL
CLK
Divider
DCLK
Display
Clock
CLS
This module is an on-chip LOW power RC oscillator circuitry. The operation clock (CLK) can be generated
either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is
pulled HIGH, internal oscillator is chosen and CL should be connected to VSS. Pulling CLS pin LOW disables
internal oscillator and external clock must be connected to CL pins for proper operation. When the internal
oscillator is selected, its output frequency Fosc can be changed by command D5h A[7:4].
The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D”
can be programmed from 1 to 16 by command D5h
DCLK = FOSC / D
The frame frequency of display is determined by the following formula.
FFRM =
Fosc
D × K × No. of Mux
where
• D stands for clock divide ratio. It is set by command D5h A[3:0]. The divide ratio has the range from 1 to
16.
• K is the number of display clocks per row. The value is derived by
K = Phase 1 period + Phase 2 period + BANK0 pulse width
= 2 + 2 + 50 = 54 at power on reset
(Please refer to Section 8.6 “Segment Drivers / Common Drivers” for the details of the “Phase”)
• Number of multiplex ratio is set by command A8h. The power on reset value is 63 (i.e. 64MUX).
• FOSC is the oscillator frequency. It can be changed by command D5h A[7:4]. The higher the register
setting results in higher frequency.
SSD1305
Rev 1.9
P 25/70
May 2008
Solomon Systech
8.4
FR synchronization
FR synchronization signal can be used to prevent tearing effect.
One frame
FR
100%
Memory
Access
Process
0%
Time
Fast write MCU
Slow write MCU
SSD1305 displaying memory updates to OLED screen
The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can
finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs
longer writing time to complete (more than one frame but within two frames), it is a slow write one.
For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FR pulse and
should be finished well before the rising edge of the next FR pulse.
For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FR pulse
and must be finished before the rising edge of the 3rd FR pulse.
8.5
Reset Circuit
When RES# input is LOW, the chip is initialized with the following status:
1. Display is OFF
2. 132 x 64 Display Mode
3. Normal segment and display data column address and row address mapping (SEG0 mapped to
address 00h and COM0 mapped to address 00h)
4. Shift register data clear in serial interface
5. Display start line is set at display RAM address 0
6. Column address counter is set at 0
7. Normal scan direction of the COM outputs
8. Contrast control register is set at 80h
9. Normal display mode (Equivalent to A4h command)
Solomon Systech
May 2008 P 26/70
Rev 1.9
SSD1305
8.6
Segment Drivers / Common Drivers
Segment drivers deliver 132 current sources to drive the OLED panel. The driving current can be adjusted
from 0 to 320uA with 256 steps. Common drivers generate voltage-scanning pulses.
The segment driving waveform is divided into three phases:
1. In phase 1, the OLED pixel charges of previous image are discharged in order to prepare for next
image content display.
2. In phase 2, the OLED pixel is driven to the targeted voltage. The pixel is driven to attain the
corresponding voltage level from VSS. The period of phase 2 can be programmed in length from 1 to
15 DCLKs. If the capacitance value of the pixel of OLED panel is larger, a longer period is required
to charge up the capacitor to reach the desired voltage.
3. In phase 3, the OLED driver switches to use current source to drive the OLED pixels and this is the
current drive stage. SSD1305 employs PWM (Pulse Width Modulation) method to control the
brightness of area color A, B, C, D color individually. The longer the waveform in current drive
stage is, the brighter is the pixel and vice versa.
Figure 8-11 : Segment Output Waveform in three phases
Longer phase 3 =>
brighter pixel
Segment
VSS
Phase: 1 2
Time
3
After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This threestep cycle is run continuously to refresh image display on OLED panel.
The length of phase 3 for area colors: A,B,C and monochrome BANK0 can be configured by command 91h
“Set Look Up Table”. There are 64 steps available for each color but the one of color D is fixed at 64. The
unit of the step is in DCLK.
For example, the look up table for area color A, B, is set to 20, 40 DCLKs respectively. Color B is set to be
brighter than color A. Then the result segment output waveform of these two colors is shown below.
Figure 8-12 : Segment Output Waveform for two different colors LUT setting
Color A
20 DCLKs
Color B
40 DCLKs
Segment
44 DCLKs
VSS
SSD1305
Rev 1.9
64 DCLKs (fixed)
P 27/70
May 2008
24 DCLKs
64 DCLKs (fixed)
Time
Solomon Systech
In phase 3, the segment output waveforms under the monochrome mode and area color mode are different.
In monochrome mode, if the length of current drive pulse width is set to 50, after finishing 50 DCLKs in
current drive phase, the driver IC will go back to phase 1 for next row display.
Figure 8-13 : Example of Segment Output Waveform of monochrome display section under monochrome mode
Segment
50 DCLKs
VSS
Time
In area color mode, the phase 3 of both BANK0 and area color banks (BANK1 to BANK32) are fixed into 64
DCLKs. For instance, if the length of the pulse width is set to 50, then after the end of 50 DCLKs of current
drive phase, the segment waveform will be gone to VSS level and the driver is still in current drive phase.
This phase will be end after 64 DCLKs from the start of the phase is passed. And then the drive goes back to
phase 1 for next row display. Figure 8-14 shows the example of the segment output waveform of area color
display section when the pulse width of area color is set to 50.
Figure 8-14 : Example of Segment Output Waveform of area color display section under area color mode
Segment
50 DCLKs
VSS
64 DCLKs
(fixed)
Solomon Systech
64 DCLKs
(fixed)
Time
May 2008 P 28/70
Rev 1.9
SSD1305
8.7
Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is
132 x 64 bits and the RAM is divided into eight pages, from PAGE0 to PAGE7, as shown in Figure 8-15. In
GDDRAM, PAGE0 and PAGE1 are belonged to area color section with resolution 132x16. PAGE2 to
PAGE7 are used for monochrome 132x48 dot matrix display.
Figure 8-15 : GDDRAM pages structure of SSD1305
PAGE0, BANK1
PAGE0, BANK16
PAGE1, BANK17
PAGE1, BANK32
Row re-mapping
PAGE0 (COM 63-COM56)
PAGE0 (COM0-COM7)
PAGE1 (COM 55-COM48)
PAGE1 (COM8-COM15)
PAGE2 (COM47-COM40)
PAGE2 (COM16-COM23)
PAGE3 (COM39-COM32)
PAGE3 (COM24-COM31)
PAGE4 (COM31-COM24)
BANK0 (Background)
PAGE2 – PAGE7
PAGE5 (COM23-COM16)
PAGE6 (COM15-COM8)
PAGE4 (COM32-COM39)
PAGE5 (COM40-COM47)
PAGE6 (COM48–COM55)
PAGE7 (COM 7-COM0)
PAGE7 (COM56-COM63)
SEG0 ---------------------------------------------------------------SEG131
Column re-mapping SEG131 ---------------------------------------------------------------SEG0
When one data byte is written into GDDRAM, all the rows image data of the same page of the current column
are filled (i.e. the whole column (8 bits) pointed by the column address pointer is filled.). Data bit D0 is
written into the top row, while data bit D7 is written into bottom row as shown in Figure 8-16.
SEG0
SEG1
SEG2
SEG3
SEG4
....................
LSB D0
....................
PAGE2
MSB D7
SEG127
SEG128
SEG129
SEG130
SEG131
Figure 8-16 : Enlargement of GDDRAM (No row re-mapping and column-remapping)
COM16
COM17
:
:
:
:
:
COM23
Each lattice represents one bit of image data
SSD1305
Rev 1.9
P 29/70
May 2008
Solomon Systech
For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software as
shown in Figure 8-15.
For vertical shifting of the display, an internal register storing the display start line can be set to control the
portion of the RAM data to be mapped to the display (command D3h).
8.8
Area Color Decoder
The 132x64 display matrix is divided into 8 pages. The first two pages, PAGE0 and PAGE1, are divided into
32 banks. BANK16 and BANK32 consist of a display area of 12x8 pixels. Other banks (BANK0 to BANK15
& BANK17 to BANK31) have matrices of 8x8 pixels. Each bank can be programmed to any one of the four
colors (color A, B, C and D) as the example shown in Figure 8-17. Detailed operation can be referred to
command 92h in Table 9-1.
Figure 8-17 : Example of area color assignment on a 132x64 OLED panel
8
8
BANK17
Solomon Systech
BANK1
BANK16
8
12
A B C D A A A A A A A A A A D C
C A B C D B B B B B B B B D A B
8
BANK32
May 2008 P 30/70
Rev 1.9
SSD1305
8.9
SEG/COM Driving block
This block is used to derive the incoming power sources into the different levels of internal use voltage and
current.
• VCC is the most positive voltage supply.
• VCOMH is the Common deselected level. It is internally regulated.
• VLSS is the ground path of the analog and panel current.
• IREF is a reference current source for segment current drivers ISEG. The relationship between reference
current and segment current of a color is:
ISEG = Contrast / 256 x IREF x scale factor
in which
the contrast (0~255) is set by Set Contrast command 81h; and
the scale factor is 32 by default.
The magnitude of IREF is controlled by the value of resistor, which is connected between IREF pin and
Vss as shown in Figure 8-18. It is recommended to set IREF to 10uA+/- 2uA so as to achieve ISEG =
320uA at maximum contrast 255.
Figure 8-18 : IREF Current Setting by Resistor Value
SSD1305
IREF (voltage at
this pin =
VCC – 3)
IREF ~ 10uA
R1
VSS
Since the voltage at IREF pin is VCC – 3V, the value of resistor R1 can be found as below.
R1 = (Voltage at IREF – VSS) / IREF = (VCC – 3) / 10uA ≈ 910kΩ for VCC = 12V.
SSD1305
Rev 1.9
P 31/70
May 2008
Solomon Systech
8.10 Power ON and OFF sequence
The following figures illustrate the recommended power ON and power OFF sequence of SSD1305 (assume
VDD and VDDIO are at the same voltage level).
Power ON sequence:
1. Power ON VDD, VDDIO.
2. After VDD, VDDIO become stable, set RES# pin LOW (logic low) for at least 3us (t1) (4) and then HIGH
(logic high).
3. After set RES# pin LOW (logic low), wait for at least 3us (t2). Then Power ON VCC.(1)
4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms
(tAF).
Figure 8-19 : The Power ON sequence
ON VDD, VDDIO
RES#
ON VCC
Send AFh command for Display ON
VDD, VDDIO
GND
t1
RES#
GND
t2
VCC
GND
tAF
ON
SEG/COM
OFF
Power OFF sequence:
1. Send command AEh for display OFF.
2. Power OFF VCC.(1), (2), (3)
3. Wait for tOFF. Power OFF VDD, VDDIO. .(where Minimum tOFF=0ms (5) , Typical tOFF=100ms)
Figure 8-20 : The Power OFF sequence
Send command AEh for display OFF
VCC
OFF VCC
OFF VDD ,VDDIO
GND
tOFF
VDD ,VDDIO
GND
Note:
(1)
Since an ESD protection circuit is connected between VDD, VDDIO and VCC, VCC becomes lower than VDD whenever
VDD, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in Figure 8-19 and Figure 8-20.
(2)
VCC should be kept float (disable) when it is OFF.
(3)
Power Pins (VDD , VCC) can never be pulled to ground under any circumstance.
(4)
The register values are reset after t1.
(5)
VDD should not be Power OFF before VCC Power OFF.
Solomon Systech
May 2008 P 32/70
Rev 1.9
SSD1305
9
COMMAND TABLE
Table 9-1: Command Table
(D/C#=0, R/W#(WR#) = 0, E(RD#=1) unless specific setting is stated)
Fundamental Command Table
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command
0
00~0F 0
0
0
0
X3 X2 X1 X0 Set Lower Column
Start Address for
Page Addressing
Mode
Description
Set the lower nibble of the column start address
register for Page Addressing Mode using X[3:0] as
data bits. The initial display line register is reset to
0000b after RESET.
0
10~1F
0
0
0
1
X3
X2
X1
X0 Set Higher Column
Start Address for
Page Addressing
Mode
Set the higher nibble of the column start address
register for Page Addressing Mode using X[3:0] as
data bits. The initial display line register is reset to
0000b after RESET.
0
0
20
A[1:0]
0
*
0
*
1
*
0
*
0
*
0
*
0
A1
0 Set Memory
A0 Addressing Mode
A[1:0] = 00b, Horizontal Addressing Mode
A[1:0] = 01b, Vertical Addressing Mode
A[1:0] = 10b, Page Addressing Mode (RESET)
A[1:0] = 11b, Invalid
0
0
0
21
A[7:0]
B[7:0]
0
A7
B7
0
A6
B6
1
A5
B5
0
A4
B4
0
A3
B3
0
A2
B2
0
A1
B1
1 Set Column Address Setup column start and end address
A[7:0] : Column start address, range : 0-131d,
A0
(RESET=0d)
B0
B[7:0]: Column end address, range : 0-131d,
(RESET =131d)
0
0
0
22
A[2:0]
B[2:0]
0
*
*
0
*
*
1
*
*
0
*
*
0
*
*
0
A2
B2
1
A1
B1
0 Set Page Address
A0
B0
Setup page start and end address
A[2:0] : Page start Address, range : 0-7d, (RESET =
0d)
B[2:0] : Page end Address, range : 0-7d, (RESET =
7d)
0
40~7F
0
1
X5
X4
X3
X2
X1
X0 Set Display Start Line Set display RAM display start line register from 0-63
using X5X3X2X1X0.
Display start line register is reset to 000000b during
RESET.
0
0
81
A[7:0]
1
A7
0
A6
0
A5
0
A4
0
A3
0
A2
0
A1
1 Set Contrast Control Double byte command to select 1 out of 256 contrast
steps. Contrast increases as the value increases.
A0 For BANK0
(RESET = 80h)
0
0
82
A[7:0]
1
A7
0
A6
0
A5
0
A4
0
A3
0
A2
1
A1
0 Set Brightness For
A0 Area Color Banks
Double byte command to select 1 out of 256
brightness steps. Brightness increases as the value
increases. (RESET = 80h)
0
0
0
0
0
91
X[5:0]
A[5:0]
B[5:0]
C[5:0]
1
*
*
*
*
0
*
*
*
*
0
X5
A5
B5
C5
1
X4
A4
B4
C4
0
X3
A3
B3
C3
0
X2
A2
B2
C2
0
X1
A1
B1
C1
1 Set Look Up Table
X0 (LUT)
A0
B0
C0
Set current drive pulse width of BANK0, Color A, B
and C.
BANK0: X[5:0] = 31… 63; for pulse width set to
32 ~ 64 clocks (RESET = 110001b)
Color A: A[5:0] same as above (RESET = 111111b)
Color B: B[5:0] same as above (RESET = 111111b)
Color C: C[5:0] same as above (RESET = 111111b)
Note
Color D pulse width is fixed at 64 clocks pulse.
(1)
SSD1305
Rev 1.9
P 33/70
May 2008
Solomon Systech
Fundamental Command Table
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0
0
92
1
0
0
1
0
0
1
0
0
A[7:0] A7 A6 A5 A4 A3 A2 A1 A0
0
B[7:0] B7 B6 B5 B4 B3 B2 B1 B0
0
C[7:0] C7 C6 C5 C4 C3 C2 C1 C0
0
D[7:0] D7 D6 D5 D4 D3 D2 D1 D0
Command
Description
Set Bank Color of
Set the bank color of BANK1~BANK16 to any one of
BANK1 to BANK16 the 4 colors : A, B, C and D .
(PAGE0)
A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C or
D of BANK1
A[3:2] : 00b, 01b, 10b, or 11b for Color = A, B, C or
D of BANK2
:
:
D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B, C or D
of BANK15
D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B, C or D
of BANK16
0
0
0
0
0
93
A[7:0]
B[7:0]
C[7:0]
D[7:0]
1
A7
B7
C7
D7
0
A6
B6
C6
D6
0
A5
B5
C5
D5
1
A4
B4
C4
D4
0
A3
B3
C3
D3
0
A2
B2
C2
D2
1
A1
B1
C1
D1
1 Set Bank Color of
Set the bank color of BANK17~BANK32 to any one
A0 BANK17~BANK32 of the 4 colors: A, B, C and D.
B0 (PAGE1)
A[1:0] : 00b, 01b, 10b, or 11b for Color = A, B, C or
C0
D of BANK17
D0
A[3:2] : 00b, 01b, 10b, or 1b1 for Color = A, B, C or
D of BANK18
:
:
D[5:4]: 00b, 01b, 10b, or 11b for Color = A, B, C or D
of BANK31
D[7:6]: 00b, 01b, 10b, or 11b for Color = A, B, C or D
of BANK32
0
A0/A1
1
0
1
0
0
0
0
X0 Set Segment Re-map X[0]=0b: column address 0 is mapped to SEG0
(RESET)
X[0]=1b: column address 131 is mapped to SEG0
0
A4/A5
1
0
1
0
0
1
0
X0 Entire Display ON
X0=0b: Resume to RAM content display (RESET)
Output follows RAM content
X0=1b: Entire display ON
Output ignores RAM content
0
A6/A7
1
0
1
0
0
1
1
X0 Set Normal/Inverse
Display
X[0]=0b: Normal display (RESET)
0 in RAM: OFF in display panel
1 in RAM: ON in display panel
X[0]=1b: inverse display
0 in RAM: ON in display panel
1 in RAM: OFF in display panel
0
0
A8
A[5:0]
1
*
0
*
1
A5
0
A4
1
A3
0
A2
0
A1
0 Set Multiplex Ratio
A0
Set MUX ratio to N+1 MUX
N=A[5:0] : from 16MUX to 64MUX, RESET=
111111b (i.e. 64MUX)
A[5:0] from 0 to 14 are invalid entry.
0
AA
1
0
1
0
1
0
1
0 Reserved
Reserved
0
0
0
0
AB
A[3:0]
B[7:0]
C[7:0]
1
*
B7
C7
0
*
B6
C6
1
*
B5
C5
0
*
B4
C4
1
A3
B3
C3
0
A2
B2
C2
1
A1
B1
C1
1 Dim mode setting
A0
B0
C0
A[3:0] : Reserved (set as 0000b)
B [7:0] : Set contrast for BANK0, valid range 0-255d,
please refer to command 81h
C [7:0] : Set brightness for color bank, valid range 0255d, please refer to command 82h
Solomon Systech
May 2008 P 34/70
Rev 1.9
SSD1305
Fundamental Command Table
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command
Description
0
AD
1
0
1
0
1
1
0
1 Master Configuration A[0]=0b, Select external VCC supply (RESET)
A[0]=1b, Reserved
0
A[7:0] 1
0
0
0
1
1
1
A0
0
AC
AE
AF
1
0
1
0
1
1
A1
A0 Set Display ON/OFF ACh = Display ON in dim mode
AEh = Display OFF (sleep mode) (RESET)
AFh = Display ON in normal mode
0
B0~B7
1
0
1
1
0
X2
X1
X0 Set Page Start
Address for Page
Addressing Mode
Set GDDRAM Page Start Address (PAGE0~PAGE7)
for Page Addressing Mode using X[2:0].
0
C0/C8
1
1
0
0
X3
0
0
0 Set COM Output
Scan Direction
X[3]=0b: normal mode (RESET) Scan from COM0 to
COM[N –1]
X[3]=1b: remapped mode. Scan from COM[N~1] to
COM0
Where N is the Multiplex ratio.
0
0
D3
A[5:0]
1
*
1
*
0
A5
1
A4
0
A3
0
A2
1
A1
1 Set Display Offset
A0
Set vertical shift by COM from 0~63.
The value is reset to 00h after RESET.
0
D5
A[7:0]
1
A7
1
A6
0
A5
1
A4
0
A3
1
A2
0
A1
1 Set Display Clock
A0 Divide
Ratio/Oscillator
Frequency
A[3:0] : Define the divide ratio (D) of the display
clocks (DCLK):
Divide ratio= A[3:0] + 1, RESET is 0000b
(divide ratio = 1)
A[7:4] : Set the Oscillator Frequency, FOSC. Oscillator
Frequency increases with the value of
A[7:4] and vice versa. RESET is 0111b
Range:0000b~1111b
Frequency increases as setting value increases.
Refer to section 10.1.23 for details.
0
0
D8
1
0
1
0
0
X5
1
X4
1
0
0
X2
0
0
0 Set Area Color Mode X[5:4]= 00b (RESET) : monochrome mode
X[5:4]= 11b Area Color enable
X0 ON/OFF & Low
Power Display Mode
X[2]=0b and X[0]=0b: Normal power mode(RESET)
X[2]=1b and X[0]=1b: Set low power display mode
0
0
D9
A[7:0]
1
A7
1
A6
0
A5
1
A4
1
A3
0
A2
0
A1
1 Set Pre-charge Period A[3:0] : Phase 1 period of up to 15 DCLK clocks
(RESET=2h); 0 is invalid entry
A0
A[7:4] : Phase 2 period of up to 15 DCLK clocks
(RESET=2h); 0 is invalid entry
0
0
DA
1
0
1
0
0
X5
1
X4
1
0
0
0
1
1
0 Set COM Pins
0 Hardware
Configuration
X[4]=0b, Sequential COM pin configuration
X[4]=1b(RESET), Alternative COM pin configuration
X[5]=0b(RESET), Disable COM Left/Right remap
X[5]=1b, Enable COM Left/Right remap
Please refer to Table 10-3 for details.
SSD1305
Rev 1.9
P 35/70
May 2008
Solomon Systech
Fundamental Command Table
D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command
0
DB
1
1
0
1
1
0
1
1 Set VCOMH Deselect
0
A[5:2] 0
0
A5 A4 A3 A2
0
0 Level
Description
A[5:2]
0000b
1101b
1111b
Hex
code
00h
34h
3Ch
V COMH deselect level
~ 0.43 x VCC
~ 0.77 x VCC (RESET)
~ 0.83 x VCC
0
E0
1
1
1
0
0
0
0
0 Enter Read Modify
Write
0
E3
1
1
1
0
0
0
1
1 NOP
Details please refer to section 10.1.28.
Command for no operation
0
EE
1
1
1
0
1
1
1
0 Exit Read Modify
Write
Exit the Read Modify Write mode (Please refer to
command E0h)
Solomon Systech
Enter the Read Modify Write mode.
May 2008 P 36/70
Rev 1.9
SSD1305
Graphic Acceleration Command Table
D/C#Hex
D7 D6 D5 D4 D3
0
26/27
0
0
1
0
0
0
A[2:0]
*
*
*
*
*
0
B[2:0]
*
*
*
*
*
0
C[2:0]
*
*
*
*
*
0
D[2:0]
*
*
*
*
*
0
0
0
0
0
0
29/2A
A[2:0]
B[2:0]
C[2:0]
D[2:0]
E[5:0]
SSD1305
0
*
*
*
*
*
0
*
*
*
*
*
1
*
*
*
*
E5
0
*
*
*
*
E4
Rev 1.9
D2 D1 D0 Command
Description
1
1
X0 Horizontal Scroll X[0]=0, Right Horizontal Scroll
X[0]=1, Left Horizontal Scroll
A2
A1
A0 Setup
B2
B1
B0
A[2:0] : Set number of column scroll offset
C2
C1
C0
000b No horizontal scroll
D2
D1
D0
001b Horizontal scroll by 1 column
010b Horizontal scroll by 2 columns
011b Horizontal scroll by 3 columns
100b Horizontal scroll by 4 columns
Other values are invalid.
B[2:0] : Define start page address
000b – PAGE0 011b – PAGE3 110b – PAGE6
001b – PAGE1 100b – PAGE4 111b – PAGE7
010b – PAGE2 101b – PAGE5
C[2:0] : Set time interval between each scroll step in
terms of frame frequency
000b – 6 frames
100b – 3 frames
001b – 32 frames
101b – 4 frames
010b – 64 frames
110b – 2 frame
011b – 128 frames
111b – Invalid
D[2:0] : Define end page address
000b – PAGE0 011b – PAGE3 110b – PAGE6
001b – PAGE1 100b – PAGE4 111b – PAGE7
010b – PAGE2 101b – PAGE5
The value of D[2:0] must be larger or equal
to B[2:0]
1
*
*
*
*
E3
P 37/70
0
A2
B2
C2
D2
E2
X1
A1
B1
C1
D1
E1
May 2008
X0
A0
B0
C0
D0
E0
Continuous
X1X0=01b : Vertical and Right Horizontal Scroll
Vertical and
X1X0=10b : Vertical and Left Horizontal Scroll
Horizontal Scroll
A[2:0] : Set number of column scroll offset
Setup
000b No horizontal scroll
001b Horizontal scroll by 1 column
010b Horizontal scroll by 2 columns
011b Horizontal scroll by 3 columns
100b Horizontal scroll by 4 columns
Other values are invalid.
B[2:0] : Define start page address
000b – PAGE0 011b – PAGE3 110b – PAGE6
001b – PAGE1 100b – PAGE4 111b – PAGE7
010b – PAGE2 101b – PAGE5
C[2:0] : Set time interval between each scroll step in
terms of frame frequency
000b – 6 frames
100b – 3 frames
001b – 32 frames
101b – 4 frames
010b – 64 frames
110b – 2 frame
011b – 128 frames
111b – Invalid
D[2:0] : Define end page address
000b – PAGE0 011b – PAGE3 110b – PAGE6
001b – PAGE1 100b – PAGE4 111b – PAGE7
010b – PAGE2 101b – PAGE5
The value of D[2:0] must be larger or equal
to B[2:0]
E[5:0] : Vertical scrolling offset
e.g. E[5:0]= 01h refer to offset =1 row
E[5:0] =3Fh refer to offset =63 rows
Solomon Systech
Graphic Acceleration Command Table
D/C#Hex
D7 D6 D5 D4 D3
0
2E
0
0
1
0
1
D2
1
D1
1
D0
0
Command
Description
Deactivate scroll Stop scrolling that is configured by command
26h/27h/29h/2Ah.
Note
(1)
After sending 2Eh command to deactivate the scrolling
action, the ram data needs to be rewritten.
0
2F
0
0
1
0
1
1
1
1
Activate scroll
Start scrolling that is configured by the scrolling setup
commands :26h/27h/29h/2Ah with the following valid
sequences:
Valid command sequence 1: 26h ;2Fh.
Valid command sequence 2: 27h ;2Fh.
Valid command sequence 3: 29h ;2Fh.
Valid command sequence 4: 2Ah ;2Fh.
For example, if “26h; 2Ah; 2Fh.” commands are
issued, the setting in the last scrolling setup command,
i.e. 2Ah in this case, will be executed. In other words,
setting in the last scrolling setup command overwrites
the setting in the previous scrolling setup commands.
0
0
0
A3
A[5:0]
B[6:0]
1
*
*
0
*
B6
1
A5
B5
0
A4
B4
0
A3
B3
0
A2
B2
1
A1
B1
1 Set Vertical Scroll A[5:0] : Set No. of rows in top fixed area. The No. of
A0 Area
rows in top fixed area is referenced to the
B0
top of the GDDRAM (i.e. row 0).[RESET =
0]
B[6:0] : Set No. of rows in scroll area. This is the
number of rows to be used for vertical
scrolling. The scroll area starts in the first
row below the top fixed area. [RESET = 64]
Note
A[5:0]+B[6:0] <= MUX ratio
(2)
B[6:0] <= MUX ratio
(3a)
Vertical scrolling offset (E[5:0] in 29h/2Ah) <
B[6:0]
(3b)
Set Display Start Line (X5X4X3X2X1X0 of
40h~7Fh) < B[6:0]
(4)
The last row of the scroll area shifts to the first row
of the scroll area.
(5)
For 64d MUX display
A[5:0] = 0, B[6:0]=64 : whole area scrolls
A[5:0]= 0, B[6:0] < 64 : top area scrolls
A[5:0] + B[6:0] < 64 : central area scrolls
A[5:0] + B[6:0] = 64 : bottom area scrolls
Please refer to Figure 10-14 for details.
(1)
Note
(1)
“*” stands for “Don’t care”.
Solomon Systech
May 2008 P 38/70
Rev 1.9
SSD1305
Table 9-2 : Read Command Table
Bit Pattern
D7D6D5D4D3D2D1D0
Command
Status Register Read
Description
D[7] : Reserve
D[6] : “1” for display OFF / “0” for display ON
D[5] : Reserve
D[4] : Reserve
D[3] : Reserve
D[2] : Reserve
D[1] : Reserve
D[0] : Reserve
Note
(1)
Patterns other than those given in the Command Table are prohibited to enter the chip as a command; as unexpected
results can occur.
9.1
Data Read / Write
To read data from the GDDRAM, select HIGH for both the R/W# (WR#) pin and the D/C# pin for 6800series parallel mode and select LOW for the E (RD#) pin and HIGH for the D/C# pin for 8080-series parallel
mode. No data read is provided in serial mode operation.
In normal data read mode the GDDRAM column address pointer will be increased automatically by one after
each data read.
Also, a dummy read is required before the first data read.
To write data to the GDDRAM, select LOW for the R/W# (WR#) pin and HIGH for the D/C# pin for both
6800-series parallel mode and 8080-series parallel mode. The serial interface mode is always in write mode.
The GDDRAM column address pointer will be increased automatically by one after each data write.
Table 9-3 : Address increment table (Automatic)
D/C#
R/W# (WR#)
Comment
Address Increment
0
0
1
1
0
1
0
1
Write Command
Read Status
Write Data
Read Data
No
No
Yes
Yes (1)
Note
(1)
If read-data command is issued in read-modify-write mode no address increase occurs.
SSD1305
Rev 1.9
P 39/70
May 2008
Solomon Systech
10 COMMAND DESCRIPTIONS
10.1 Fundamental Command
10.1.1 Set Lower Column Start Address for Page Addressing Mode (00h~0Fh)
This command specifies the lower nibble of the 8-bit column start address for the display data RAM under
Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section
Table 9-1 and Section 10.1.3 for details.
10.1.2 Set Higher Column Start Address for Page Addressing Mode (10h~1Fh)
This command specifies the higher nibble of the 8-bit column start address for the display data RAM under
Page Addressing Mode. The column address will be incremented by each data access. Please refer to Section
Table 9-1 and Section 10.1.3 for details.
10.1.3 Set Memory Addressing Mode (20h)
There are 3 different memory addressing mode in SSD1305: page addressing mode, horizontal addressing
mode and vertical addressing mode. This command sets the way of memory addressing into one of the above
three modes. In there, “COL” means the graphic display data RAM column.
Page addressing mode (A[1:0]=10xb)
In page addressing mode, after the display RAM is read/written, the column address pointer is increased
automatically by 1. If the column address pointer reaches column end address, the column address pointer is
reset to column start address and page address pointer is not changed. Users have to set the new page and
column addresses in order to access the next page RAM content The sequence of movement of the PAGE and
column address point for page addressing mode is shown in Figure 10-1.
Figure 10-1 : Address Pointer Movement of Page addressing mode
PAGE0
PAGE1
:
PAGE6
PAGE7
COL0
COL 1
…..
:
:
:
COL 130 COL 131
:
:
In normal display data RAM read or write and page addressing mode, the following steps are required to
define the starting RAM access pointer location:
• Set the page start address of the target display location by command B0h to B7h.
• Set the lower start column address of pointer by command 00h~0Fh.
• Set the upper start column address of pointer by command 10h~1Fh.
For example, if the page address is set to B2h, lower column address is 03h and upper column address is 10h,
then that means the starting column is SEG3 of PAGE2. The RAM access pointer is located as shown in
Figure 10-2. The input data byte will be written into RAM position of column 3.
Figure 10-2 : Example of GDDRAM access pointer setting in Page Addressing Mode (No row and columnremapping)
SEG0
SEG3 (Starting column)
SEG131
RAM access pointer
LSB D0
COM16
COM17
:
:
:
:
:
COM23
Each lattice represents
one bit of image data
....................
PAGE2
(Starting page)
MSB D7
Solomon Systech
May 2008 P 40/70
Rev 1.9
SSD1305
Horizontal addressing mode (A[1:0]=00b)
In horizontal addressing mode, after the display RAM is read/written, the column address pointer is increased
automatically by 1. If the column address pointer reaches column end address, the column address pointer is
reset to column start address and page address pointer is increased by 1. The sequence of movement of the
page and column address point for horizontal addressing mode is shown in Figure 10-3. When both column
and page address pointers reach the end address, the pointers are reset to column start address and page start
address (Dotted line in Figure 10-3.)
Figure 10-3 : Address Pointer Movement of Horizontal addressing mode
PAGE0
PAGE1
:
PAGE6
PAGE7
COL0
COL 1
…..
:
:
:
COL 130 COL 131
:
:
Vertical addressing mode: (A[1:0]=01b)
In vertical addressing mode, after the display RAM is read/written, the page address pointer is increased
automatically by 1. If the page address pointer reaches the page end address, the page address pointer is reset
to page start address and column address pointer is increased by 1. The sequence of movement of the page
and column address point for vertical addressing mode is shown in Figure 10-4. When both column and page
address pointers reach the end address, the pointers are reset to column start address and page start address
(Dotted line in Figure 10-4.)
Figure 10-4 : Address Pointer Movement of Vertical addressing mode
COL0
PAGE0
PAGE1
:
PAGE6
PAGE7
COL 1
…..
…..
…..
:
…..
…..
COL 130 COL 131
In normal display data RAM read or write and horizontal / vertical addressing mode, the following steps are
required to define the RAM access pointer location:
• Set the column start and end address of the target display location by command 21h.
• Set the page start and end address of the target display location by command 22h.
Example is shown in Figure 10-5.
10.1.4 Set Column Address (21h)
This triple byte command specifies column start address and end address of the display data RAM. This
command also sets the column address pointer to column start address. This pointer is used to define the
current read/write column address in graphic display data RAM. If horizontal address increment mode is
enabled by command 20h, after finishing read/write one column data, it is incremented automatically to the
next column address. Whenever the column address pointer finishes accessing the end column address, it is
reset back to start column address and the row address is incremented to the next row.
SSD1305
Rev 1.9
P 41/70
May 2008
Solomon Systech
10.1.5 Set Page Address (22h)
This triple byte command specifies page start address and end address of the display data RAM. This
command also sets the page address pointer to page start address. This pointer is used to define the current
read/write page address in graphic display data RAM. If vertical address increment mode is enabled by
command 20h, after finishing read/write one page data, it is incremented automatically to the next page
address. Whenever the page address pointer finishes accessing the end page address, it is reset back to start
page address.
The figure below shows the way of column and page address pointer movement through the example: column
start address is set to 2 and column end address is set to 129, page start address is set to 1 and page end
address is set to 6; Horizontal address increment mode is enabled by command 20h. In this case, the graphic
display data RAM column accessible range is from column 2 to column 129 and from page 1 to page 6 only.
In addition, the column address pointer is set to 2 and page address pointer is set to 1. After finishing
read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM
location for next read/write operation (solid line in Figure 10-5). Whenever the column address pointer
finishes accessing the end column 129, it is reset back to column 2 and page address is automatically
increased by 1 (solid line in Figure 10-5). While the end page 6 and end column 129 RAM location is
accessed, the page address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure
10-5). .
Figure 10-5 : Example of Column and Row Address Pointer Movement
Col 0
PAGE0
PAGE1
:
PAGE6
PAGE7
Solomon Systech
Col 1
Col 2
…..
……. Col 129 Col 130 Col 131
:
:
May 2008 P 42/70
Rev 1.9
SSD1305
10.1.6 Set Display Start Line (40h~7Fh)
This command sets the Display Start Line register to determine starting address of display RAM, by selecting
a value from 0 to 63. With value equal to 0, RAM row 0 is mapped to COM0. With value equal to 1, RAM
row 1 is mapped to COM0 and so on.
Refer to Table 10-1 for more illustrations.
10.1.7 Set Contrast Control for BANK0 (81h)
This command sets the Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The
segment output current increases as the contrast step value increases. See Figure 10-6 below.
Figure 10-6 : Segment current vs Contrast setting
Segment current vs Contrast setting
350
300
250
Current (uA)
Segment output current setting:
200
Iseg = Cr/256 x IREF x scale factor
150
Where:
Cr is contrast step
IREF is reference current equals 10uA
Scale factor =32
100
50
0
00
0F 1F 2F
3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF
Contrast setting
10.1.8 Set Brightness for Area Color Banks (82h)
This command sets the Brightness Setting of the display for the area color banks. The chip has 256 brightness
steps from 00h to FFh. The segment output current increases as the brightness step value increases.
This setting does not affect the contrast of BANK0, which is set by command 81h.
10.1.9
Set Look Up Table (LUT) (91h)
The SSD1305 provides 4 color settings - Colors A, B, C and D for the bank color of BANK1 to BANK32
under the area color mode. The color intensity (or grey scale) is defined by the current drive pulse width. This
pulse width setting must be stored in the Look Up Table (LUT). The pulse width of colors A, B, C is
programmable from 32 to 64 DCLKs. The color D is fixed at 64 DCLKs pulse width. For the grey scale in
BANK0, the pulse width is programmable from 32 to 64 DCLKs. Please refer to 91h command in Table 9-1
for details of the LUT setting.
After setting the pulse widths for the color of A, B, C, D and BANK0, the next step is to define the color of
each display area. Each bank can be programmable to any one of the 4 colors (A, B, C and D). The user can
use 92h and 93h commands for the bank color setting. It should be notice that this is only applicable in area
color mode.
SSD1305
Rev 1.9
P 43/70
May 2008
Solomon Systech
10.1.10 Set Bank Color of BANK1 to BANK16 (PAGE0) (92h)
This command maps the bank color (pulse width) of BANK1~BANK16 to any one of the 4 colors: A, B, C
and D. For details of the setting, please refer to 92h command in Table 9-1.
10.1.11 Set Bank Color of BANK17 to BANK32 (PAGE0) (93h)
This command maps the bank color (pulse width) of BANK17~BANK32 to any one of the 4 colors: A, B, C
and D. For details of the setting, please refer to 93h command in Table 9-1.
10.1.12 Set Segment Re-map (A0h/A1h)
This command changes the mapping between the display data column address and the segment driver. It
allows flexibility in OLED module design. Please refer to Table 9-1.
This command only affects subsequent data input. Data already stored in GDDRAM will have no changes.
10.1.13 Entire Display ON (A4h/A5h)
A4h command enable display outputs according to the GDDRAM contents.
If A5h command is issued, then by using A4h command, the display will resume to the GDDRAM contents.
In other words, A4h command resumes the display from entire display “ON” stage.
A5h command forces the entire display to be “ON”, regardless of the contents of the display data RAM.
10.1.14 Set Normal/Inverse Display (A6h/A7h)
This command sets the display to be either normal or inverse. In normal display a RAM data of 1 indicates an
“ON” pixel while in inverse display a RAM data of 0 indicates an “ON” pixel.
10.1.15 Set Multiplex Ratio (A8h)
This command switches the default 63 multiplex mode to any multiplex ratio, ranging from 16 to 63. The
output pads COM0~COM63 will be switched to the corresponding COM signal.
10.1.16 Reserved (AAh)
This command is reserved.
10.1.17 Dim Mode setting (ABh)
This command contains multiple bits to configure the contrast and brightness of color bank for the display in
dim mode. The brightness setting of color bank can be set different to normal mode (AFh). The display can be
set in dim mode through command ACh.
10.1.18 Master Configuration (ADh)
This command selects the external VCC power supply by default. As external VCC power supply is selected,
external VCC power should be connected to the VCC pin.
Solomon Systech
May 2008 P 44/70
Rev 1.9
SSD1305
10.1.19 Set Display ON/OFF (ACh/AEh/AFh)
These single byte commands are used to turn the OLED panel display ON or OFF.
When the display is ON, the selected circuits by Set Master Configuration command will be turned ON.
When the display is OFF, those circuits will be turned OFF and the segment and common output are in high
impedance state.
These commands set the display to one of the three states:
o ACh : Dim Mode Display ON
o AEh : Display OFF
o AFh : Normal Brightness Display ON
where the dim mode settings are controlled by command ABh.
Figure 10-7 :Transition between different modes
Normal mode
AFh
AFh
AEh
ACh
AEh
Dim mode
Sleep mode
ACh
10.1.20 Set Page Start Address for Page Addressing Mode (B0h~B7h)
This command positions the page start address from 0 to 7 in GDDRAM under Page Addressing Mode.
Please refer to Table 9-1 and Section 10.1.3 for details.
10.1.21 Set COM Output Scan Direction (C0h/C8h)
This command sets the scan direction of the COM output, allowing layout flexibility in the OLED module
design. Additionally, the display will show once this command is issued. For example, if this command is
sent during normal display then the graphic display will be vertically flipped immediately. Please refer to
Table 10-3 for details.
10.1.22 Set Display Offset (D3h)
This is a double byte command. The second command specifies the mapping of the display start line to one of
COM0~COM63 (assuming that COM0 is the display start line then the display start line register is equal to 0).
For example, to move the COM16 towards the COM0 direction by 16 lines the 6-bit data in the second byte
should be given as 010000b. To move in the opposite direction by 16 lines the 6-bit data should be given by
64 – 16, so the second byte would be 100000b.
The following two tables (Table 10-1, Table 10-2) show the example of setting the command C0h/C8h and
D3h.
SSD1305
Rev 1.9
P 45/70
May 2008
Solomon Systech
Table 10-1 : Example of Set Display Offset and Display Start Line with no Remap
Hardware
pin name
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
Display
examples
64
Normal
0
0
Row0
RAM0
Row1
RAM1
Row2
RAM2
Row3
RAM3
Row4
RAM4
Row5
RAM5
Row6
RAM6
Row7
RAM7
Row8
RAM8
Row9
RAM9
Row10 RAM10
Row11 RAM11
Row12 RAM12
Row13 RAM13
Row14 RAM14
Row15 RAM15
Row16 RAM16
Row17 RAM17
Row18 RAM18
Row19 RAM19
Row20 RAM20
Row21 RAM21
Row22 RAM22
Row23 RAM23
Row24 RAM24
Row25 RAM25
Row26 RAM26
Row27 RAM27
Row28 RAM28
Row29 RAM29
Row30 RAM30
Row31 RAM31
Row32 RAM32
Row33 RAM33
Row34 RAM34
Row35 RAM35
Row36 RAM36
Row37 RAM37
Row38 RAM38
Row39 RAM39
Row40 RAM40
Row41 RAM41
Row42 RAM42
Row43 RAM43
Row44 RAM44
Row45 RAM45
Row46 RAM46
Row47 RAM47
Row48 RAM48
Row49 RAM49
Row50 RAM50
Row51 RAM51
Row52 RAM52
Row53 RAM53
Row54 RAM54
Row55 RAM55
Row56 RAM56
Row57 RAM57
Row58 RAM58
Row59 RAM59
Row60 RAM60
Row61 RAM61
Row62 RAM62
Row63 RAM63
64
Normal
8
0
Row8
RAM8
Row9
RAM9
Row10 RAM10
Row11 RAM11
Row12 RAM12
Row13 RAM13
Row14 RAM14
Row15 RAM15
Row16 RAM16
Row17 RAM17
Row18 RAM18
Row19 RAM19
Row20 RAM20
Row21 RAM21
Row22 RAM22
Row23 RAM23
Row24 RAM24
Row25 RAM25
Row26 RAM26
Row27 RAM27
Row28 RAM28
Row29 RAM29
Row30 RAM30
Row31 RAM31
Row32 RAM32
Row33 RAM33
Row34 RAM34
Row35 RAM35
Row36 RAM36
Row37 RAM37
Row38 RAM38
Row39 RAM39
Row40 RAM40
Row41 RAM41
Row42 RAM42
Row43 RAM43
Row44 RAM44
Row45 RAM45
Row46 RAM46
Row47 RAM47
Row48 RAM48
Row49 RAM49
Row50 RAM50
Row51 RAM51
Row52 RAM52
Row53 RAM53
Row54 RAM54
Row55 RAM55
Row56 RAM56
Row57 RAM57
Row58 RAM58
Row59 RAM59
Row60 RAM60
Row61 RAM61
Row62 RAM62
Row63 RAM63
Row0
RAM0
Row1
RAM1
Row2
RAM2
Row3
RAM3
Row4
RAM4
Row5
RAM5
Row6
RAM6
Row7
RAM7
(a)
(b)
Output
64
56
Normal
Normal
0
0
8
0
Row0
RAM8
Row0
RAM0
Row1
RAM9
Row1
RAM1
Row2
RAM10
Row2
RAM2
Row3
RAM11
Row3
RAM3
Row4
RAM12
Row4
RAM4
Row5
RAM13
Row5
RAM5
Row6
RAM14
Row6
RAM6
Row7
RAM15
Row7
RAM7
Row8
RAM16
Row8
RAM8
Row9
RAM17
Row9
RAM9
Row10 RAM18 Row10 RAM10
Row11 RAM19 Row11 RAM11
Row12 RAM20 Row12 RAM12
Row13 RAM21 Row13 RAM13
Row14 RAM22 Row14 RAM14
Row15 RAM23 Row15 RAM15
Row16 RAM24 Row16 RAM16
Row17 RAM25 Row17 RAM17
Row18 RAM26 Row18 RAM18
Row19 RAM27 Row19 RAM19
Row20 RAM28 Row20 RAM20
Row21 RAM29 Row21 RAM21
Row22 RAM30 Row22 RAM22
Row23 RAM31 Row23 RAM23
Row24 RAM32 Row24 RAM24
Row25 RAM33 Row25 RAM25
Row26 RAM34 Row26 RAM26
Row27 RAM35 Row27 RAM27
Row28 RAM36 Row28 RAM28
Row29 RAM37 Row29 RAM29
Row30 RAM38 Row30 RAM30
Row31 RAM39 Row31 RAM31
Row32 RAM40 Row32 RAM32
Row33 RAM41 Row33 RAM33
Row34 RAM42 Row34 RAM34
Row35 RAM43 Row35 RAM35
Row36 RAM44 Row36 RAM36
Row37 RAM45 Row37 RAM37
Row38 RAM46 Row38 RAM38
Row39 RAM47 Row39 RAM39
Row40 RAM48 Row40 RAM40
Row41 RAM49 Row41 RAM41
Row42 RAM50 Row42 RAM42
Row43 RAM51 Row43 RAM43
Row44 RAM52 Row44 RAM44
Row45 RAM53 Row45 RAM45
Row46 RAM54 Row46 RAM46
Row47 RAM55 Row47 RAM47
Row48 RAM56 Row48 RAM48
Row49 RAM57 Row49 RAM49
Row50 RAM58 Row50 RAM50
Row51 RAM59 Row51 RAM51
Row52 RAM60 Row52 RAM52
Row53 RAM61 Row53 RAM53
Row54 RAM62 Row54 RAM54
Row55 RAM63 Row55 RAM55
Row56
RAM0
Row57
RAM1
Row58
RAM2
Row59
RAM3
Row60
RAM4
Row61
RAM5
Row62
RAM6
Row63
RAM7
(c)
(a)
(b)
(e)
(f)
Solomon Systech
(d)
56
Normal
8
0
Row8
RAM8
Row9
RAM9
Row10 RAM10
Row11 RAM11
Row12 RAM12
Row13 RAM13
Row14 RAM14
Row15 RAM15
Row16 RAM16
Row17 RAM17
Row18 RAM18
Row19 RAM19
Row20 RAM20
Row21 RAM21
Row22 RAM22
Row23 RAM23
Row24 RAM24
Row25 RAM25
Row26 RAM26
Row27 RAM27
Row28 RAM28
Row29 RAM29
Row30 RAM30
Row31 RAM31
Row32 RAM32
Row33 RAM33
Row34 RAM34
Row35 RAM35
Row36 RAM36
Row37 RAM37
Row38 RAM38
Row39 RAM39
Row40 RAM40
Row41 RAM41
Row42 RAM42
Row43 RAM43
Row44 RAM44
Row45 RAM45
Row46 RAM46
Row47 RAM47
Row48 RAM48
Row49 RAM49
Row50 RAM50
Row51 RAM51
Row52 RAM52
Row53 RAM53
Row54 RAM54
Row55 RAM55
Row0
RAM0
Row1
RAM1
Row2
RAM2
Row3
RAM3
Row4
RAM4
Row5
RAM5
Row6
RAM6
Row7
RAM7
56
Normal
0
8
Row0
RAM8
Row1
RAM9
Row2
RAM10
Row3
RAM11
Row4
RAM12
Row5
RAM13
Row6
RAM14
Row7
RAM15
Row8
RAM16
Row9
RAM17
Row10 RAM18
Row11 RAM19
Row12 RAM20
Row13 RAM21
Row14 RAM22
Row15 RAM23
Row16 RAM24
Row17 RAM25
Row18 RAM26
Row19 RAM27
Row20 RAM28
Row21 RAM29
Row22 RAM30
Row23 RAM31
Row24 RAM32
Row25 RAM33
Row26 RAM34
Row27 RAM35
Row28 RAM36
Row29 RAM37
Row30 RAM38
Row31 RAM39
Row32 RAM40
Row33 RAM41
Row34 RAM42
Row35 RAM43
Row36 RAM44
Row37 RAM45
Row38 RAM46
Row39 RAM47
Row40 RAM48
Row41 RAM49
Row42 RAM50
Row43 RAM51
Row44 RAM52
Row45 RAM53
Row46 RAM54
Row47 RAM55
Row48 RAM56
Row49 RAM57
Row50 RAM58
Row51 RAM59
Row52 RAM60
Row53 RAM61
Row54 RAM62
Row55 RAM63
-
(e)
(f)
(c)
Set MUX ratio(A8h)
COM Normal / Remapped (C0h / C8h)
Display offset (D3h)
Display start line (40h - 7Fh)
(d)
(RAM)
May 2008 P 46/70
Rev 1.9
SSD1305
Table 10-2 :Example of Set Display Offset and Display Start Line with Remap
Hardw are
pin name
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
Display
examples
64
Remap
0
0
Row 63
RAM63
Row 62
RAM62
Row 61
RAM61
Row 60
RAM60
Row 59
RAM59
Row 58
RAM58
Row 57
RAM57
Row 56
RAM56
Row 55
RAM55
Row 54
RAM54
Row 53
RAM53
Row 52
RAM52
Row 51
RAM51
Row 50
RAM50
Row 49
RAM49
Row 48
RAM48
Row 47
RAM47
Row 46
RAM46
Row 45
RAM45
Row 44
RAM44
Row 43
RAM43
Row 42
RAM42
Row 41
RAM41
Row 40
RAM40
Row 39
RAM39
Row 38
RAM38
Row 37
RAM37
Row 36
RAM36
Row 35
RAM35
Row 34
RAM34
Row 33
RAM33
Row 32
RAM32
Row 31
RAM31
Row 30
RAM30
Row 29
RAM29
Row 28
RAM28
Row 27
RAM27
Row 26
RAM26
Row 25
RAM25
Row 24
RAM24
Row 23
RAM23
Row 22
RAM22
Row 21
RAM21
Row 20
RAM20
Row 19
RAM19
Row 18
RAM18
Row 17
RAM17
Row 16
RAM16
Row 15
RAM15
Row 14
RAM14
Row 13
RAM13
Row 12
RAM12
Row 11
RAM11
Row 10
RAM10
Row 9
RAM9
Row 8
RAM8
Row 7
RAM7
Row 6
RAM6
Row 5
RAM5
Row 4
RAM4
Row 3
RAM3
Row 2
RAM2
Row 1
RAM1
Row 0
RAM0
64
Remap
8
0
Row 7
RAM7
Row 6
RAM6
Row 5
RAM5
Row 4
RAM4
Row 3
RAM3
Row 2
RAM2
Row 1
RAM1
Row 0
RAM0
Row 63
RAM63
Row 62
RAM62
Row 61
RAM61
Row 60
RAM60
Row 59
RAM59
Row 58
RAM58
Row 57
RAM57
Row 56
RAM56
Row 55
RAM55
Row 54
RAM54
Row 53
RAM53
Row 52
RAM52
Row 51
RAM51
Row 50
RAM50
Row 49
RAM49
Row 48
RAM48
Row 47
RAM47
Row 46
RAM46
Row 45
RAM45
Row 44
RAM44
Row 43
RAM43
Row 42
RAM42
Row 41
RAM41
Row 40
RAM40
Row 39
RAM39
Row 38
RAM38
Row 37
RAM37
Row 36
RAM36
Row 35
RAM35
Row 34
RAM34
Row 33
RAM33
Row 32
RAM32
Row 31
RAM31
Row 30
RAM30
Row 29
RAM29
Row 28
RAM28
Row 27
RAM27
Row 26
RAM26
Row 25
RAM25
Row 24
RAM24
Row 23
RAM23
Row 22
RAM22
Row 21
RAM21
Row 20
RAM20
Row 19
RAM19
Row 18
RAM18
Row 17
RAM17
Row 16
RAM16
Row 15
RAM15
Row 14
RAM14
Row 13
RAM13
Row 12
RAM12
Row 11
RAM11
Row 10
RAM10
Row 9
RAM9
Row 8
RAM8
64
Remap
0
8
Row 63
RAM7
Row 62
RAM6
Row 61
RAM5
Row 60
RAM4
Row 59
RAM3
Row 58
RAM2
Row 57
RAM1
Row 56
RAM0
Row 55
RAM63
Row 54
RAM62
Row 53
RAM61
Row 52
RAM60
Row 51
RAM59
Row 50
RAM58
Row 49
RAM57
Row 48
RAM56
Row 47
RAM55
Row 46
RAM54
Row 45
RAM53
Row 44
RAM52
Row 43
RAM51
Row 42
RAM50
Row 41
RAM49
Row 40
RAM48
Row 39
RAM47
Row 38
RAM46
Row 37
RAM45
Row 36
RAM44
Row 35
RAM43
Row 34
RAM42
Row 33
RAM41
Row 32
RAM40
Row 31
RAM39
Row 30
RAM38
Row 29
RAM37
Row 28
RAM36
Row 27
RAM35
Row 26
RAM34
Row 25
RAM33
Row 24
RAM32
Row 23
RAM31
Row 22
RAM30
Row 21
RAM29
Row 20
RAM28
Row 19
RAM27
Row 18
RAM26
Row 17
RAM25
Row 16
RAM24
Row 15
RAM23
Row 14
RAM22
Row 13
RAM21
Row 12
RAM20
Row 11
RAM19
Row 10
RAM18
Row 9
RAM17
Row 8
RAM16
Row 7
RAM15
Row 6
RAM14
Row 5
RAM13
Row 4
RAM12
Row 3
RAM11
Row 2
RAM10
Row 1
RAM9
Row 0
RAM8
Output
48
Remap
0
0
Row 47
RAM47
Row 46
RAM46
Row 45
RAM45
Row 44
RAM44
Row 43
RAM43
Row 42
RAM42
Row 41
RAM41
Row 40
RAM40
Row 39
RAM39
Row 38
RAM38
Row 37
RAM37
Row 36
RAM36
Row 35
RAM35
Row 34
RAM34
Row 33
RAM33
Row 32
RAM32
Row 31
RAM31
Row 30
RAM30
Row 29
RAM29
Row 28
RAM28
Row 27
RAM27
Row 26
RAM26
Row 25
RAM25
Row 24
RAM24
Row 23
RAM23
Row 22
RAM22
Row 21
RAM21
Row 20
RAM20
Row 19
RAM19
Row 18
RAM18
Row 17
RAM17
Row 16
RAM16
Row 15
RAM15
Row 14
RAM14
Row 13
RAM13
Row 12
RAM12
Row 11
RAM11
Row 10
RAM10
Row 9
RAM9
Row 8
RAM8
Row 7
RAM7
Row 6
RAM6
Row 5
RAM5
Row 4
RAM4
Row 3
RAM3
Row 2
RAM2
Row 1
RAM1
Row 0
RAM0
-
(a)
(b)
(c)
(d)
(a)
(e)
SSD1305
Rev 1.9
P 47/70
48
Remap
8
0
Row 47
Row 46
Row 45
Row 44
Row 43
Row 42
Row 41
Row 40
Row 39
Row 38
Row 37
Row 36
Row 35
Row 34
Row 33
Row 32
Row 31
Row 30
Row 29
Row 28
Row 27
Row 26
Row 25
Row 24
Row 23
Row 22
Row 21
Row 20
Row 19
Row 18
Row 17
Row 16
Row 15
Row 14
Row 13
Row 12
Row 11
Row 10
Row 9
Row 8
Row 7
Row 6
Row 5
Row 4
Row 3
Row 2
Row 1
Row 0
-
(e)
(b)
(c)
(f)
(g)
May 2008
RAM47
RAM46
RAM45
RAM44
RAM43
RAM42
RAM41
RAM40
RAM39
RAM38
RAM37
RAM36
RAM35
RAM34
RAM33
RAM32
RAM31
RAM30
RAM29
RAM28
RAM27
RAM26
RAM25
RAM24
RAM23
RAM22
RAM21
RAM20
RAM19
RAM18
RAM17
RAM16
RAM15
RAM14
RAM13
RAM12
RAM11
RAM10
RAM9
RAM8
RAM7
RAM6
RAM5
RAM4
RAM3
RAM2
RAM1
RAM0
-
48
Remap
0
8
Row 47
RAM55
Row 46
RAM54
Row 45
RAM53
Row 44
RAM52
Row 43
RAM51
Row 42
RAM50
Row 41
RAM49
Row 40
RAM48
Row 39
RAM47
Row 38
RAM46
Row 37
RAM45
Row 36
RAM44
Row 35
RAM43
Row 34
RAM42
Row 33
RAM41
Row 32
RAM40
Row 31
RAM39
Row 30
RAM38
Row 29
RAM37
Row 28
RAM36
Row 27
RAM35
Row 26
RAM34
Row 25
RAM33
Row 24
RAM32
Row 23
RAM31
Row 22
RAM30
Row 21
RAM29
Row 20
RAM28
Row 19
RAM27
Row 18
RAM26
Row 17
RAM25
Row 16
RAM24
Row 15
RAM23
Row 14
RAM22
Row 13
RAM21
Row 12
RAM20
Row 11
RAM19
Row 10
RAM18
Row 9
RAM17
Row 8
RAM16
Row 7
RAM15
Row 6
RAM14
Row 5
RAM13
Row 4
RAM12
Row 3
RAM11
Row 2
RAM10
Row 1
RAM9
Row 0
RAM8
-
(f)
48
Remap
8
16
Row 47
Row 46
Row 45
Row 44
Row 43
Row 42
Row 41
Row 40
Row 39
Row 38
Row 37
Row 36
Row 35
Row 34
Row 33
Row 32
Row 31
Row 30
Row 29
Row 28
Row 27
Row 26
Row 25
Row 24
Row 23
Row 22
Row 21
Row 20
Row 19
Row 18
Row 17
Row 16
Row 15
Row 14
Row 13
Row 12
Row 11
Row 10
Row 9
Row 8
Row 7
Row 6
Row 5
Row 4
Row 3
Row 2
Row 1
Row 0
-
Set MUX ratio(A8h)
COM Normal / Remapped (C0h / C8h)
Display offset (D3h)
Display start line (40h - 7Fh)
RAM63
RAM62
RAM61
RAM60
RAM59
RAM58
RAM57
RAM56
RAM55
RAM54
RAM53
RAM52
RAM51
RAM50
RAM49
RAM48
RAM47
RAM46
RAM45
RAM44
RAM43
RAM42
RAM41
RAM40
RAM39
RAM38
RAM37
RAM36
RAM35
RAM34
RAM33
RAM32
RAM31
RAM30
RAM29
RAM28
RAM27
RAM26
RAM25
RAM24
RAM23
RAM22
RAM21
RAM20
RAM19
RAM18
RAM17
RAM16
-
(g)
(d)
(RAM)
Solomon Systech
10.1.23 Set Display Clock Divide Ratio/ Oscillator Frequency (D5h)
This command consists of two functions:
•
Display Clock Divide Ratio (D)(A[3:0])
Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16,
with reset value = 1. Please refer to section 8.3 for the details relationship of DCLK and CLK.
•
Oscillator Frequency (A[7:4])
Program the oscillator frequency Fosc that is the source of CLK if CLS pin is pulled high. The 4-bit
value results in 16 different frequency settings available as shown below. The default setting is
0111b.
Figure 10-8 : Typical Oscillator frequency adjustment by D5 command (VDD =2.8V)
Oscillator Frequency vs D5h command setting
Frequency (kHz)
600
500
400
300
200
100
0
0
10
20
30
40
50
60 70 80 90 A0 B0 C0 D0 E0 F0
D5h setting in hex
Note
(1)
There is 10% tolerance in the above frequency values
10.1.24 Set Area Color Mode ON/OFF & Low Power Display Mode (D8h)
This command is used to enable area color mode. RESET is monochrome mode. The low power display
mode can reduce power consumption during IC operation.
10.1.25 Set Pre-charge Period (D9h)
This command is used to set the duration of the pre-charge period. The interval is counted in number of
DCLK, where RESET equals 2 DCLKs.
Solomon Systech
May 2008 P 48/70
Rev 1.9
SSD1305
10.1.26 Set COM Pins Hardware Configuration (DAh)
This command sets the COM signals pin configuration to match the OLED panel hardware layout. The table
below shows the COM pin configuration under different conditions (for MUX ratio =64):
Table 10-3 : COM Pins Hardware Configuration
Conditions
COM pins Configurations
ROW63
1 Sequential COM pin configuration (DAh X[4] =0)
COM output Scan direction: from COM0 to COM63 (C0h)
Disable COM Left/Right remap (DAh X[5] =0)
ROW32
ROW31
132 x 64
ROW0
COM32
COM0
SSD1305Z
COM31
COM63
Pad 1,2,3,…->126
Gold Bumps face up
2 Sequential COM pin configuration (DAh X[4] =0)
COM output Scan direction: from COM0 to COM63 (C0h)
Enable COM Left/Right remap (DAh X[5] =1)
ROW63
ROW31
ROW32
132 x 64
ROW0
COM0
COM32
SSD1305Z
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
3 Sequential COM pin configuration (DAh X[4] =0)
COM output Scan direction: from COM63 to COM0 (C8h)
Disable COM Left/Right remap (DAh X[5] =0)
ROW0
ROW31
ROW32
132 x 64
ROW63
COM32
COM0
SSD1305Z
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
SSD1305
Rev 1.9
P 49/70
May 2008
Solomon Systech
Conditions
COM pins Configurations
4 Sequential COM pin configuration (DAh X[4] =0)
COM output Scan direction: from COM63 to COM0 (C8h)
Enable COM Left/Right remap (DAh X[5] =1)
ROW0
ROW32
ROW31
132 x 64
ROW63
COM0
COM32
SSD1305Z
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
5 Alternative COM pin configuration (DAh X[4] =1)
COM output Scan direction: from COM0 to COM63 (C0h)
Disable COM Left/Right remap (DAh X[5] =0)
ROW63
ROW62
ROW61
132 x 64
ROW2
ROW1
ROW0
COM32
COM0
SSD1305Z
COM1
COM62
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
6 Alternative COM pin configuration (DAh X[4] =1)
COM output Scan direction: from COM0 to COM63 (C0h)
Enable COM Left/Right remap (DAh X[5] =1)
ROW63
ROW62
ROW61
132 x 64
ROW2
ROW1
ROW0
COM32
COM33
COM0
SSD1305Z
COM30
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
Solomon Systech
May 2008 P 50/70
Rev 1.9
SSD1305
Conditions
7 Alternative COM pin configuration (DAh X[4] =1)
COM output Scan direction: from COM63 to COM0(C8h)
Disable COM Left/Right remap (DAh X[5] =0)
COM pins Configurations
ROW0
ROW1
ROW2
132 x 64
ROW61
ROW62
ROW63
COM32
COM0
SSD1305Z
COM1
COM62
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
8 Alternative COM pin configuration (DAh X[4] =1)
COM output Scan direction: from COM63 to COM0(C8h)
Enable COM Left/Right remap (DAh X[5] =1)
ROW0
ROW1
ROW2
132 x 64
ROW61
ROW62
ROW63
COM32
COM33
COM0
SSD1305Z
COM30
COM63
COM31
Pad 1,2,3,…->126
Gold Bumps face up
10.1.27 Set VCOMH Deselect Level (DBh)
This command adjusts the VCOMH regulator output.
10.1.28 Enter Read Modify Write (E0h)
This single byte command is used to enter the Read Modify Write mode.
During the Read Modify Write mode:
The RAM address pointer will not be incremented when there is data read.
The RAM address pointer will be increased by one automatically after each data write.
After exit the Read Modify Write Mode by command EEh, the RAM address pointer returns back to the
original location before enter the Read Modify Write mode.
For instance, when reading the data from the RAM and re-writing a new data to the same location, there is no
need to re-enter the column and page addresses again under this mode.
SSD1305
Rev 1.9
P 51/70
May 2008
Solomon Systech
Table 10-4 : Example of Read Modify Write Mode
Condition
Originally, Address Pointer point to address A
RAM & address pointer (under Horizontal addressing mode)
Enter Read Modify Write Mode by command E0h
Data read : address pointer does not change
Data Write: address pointer increases by one
automatically after each data write
Data Write: address pointer increases by one
automatically after each data write
Data read : address pointer does not change
Data Write: address pointer increases by one
automatically after each data write
Exit Read Modify Write Mode by command EEh
Address Pointer point to address A after exit Read
Modify Write Mode
10.1.29 NOP (E3h)
No Operation Command
10.1.30 Exit Read Modify Write (EEh)
This single byte command is used to exit the Read Modify Write mode (Please refer to Section 10.1.28. for
details of the Read Modify Write Mode).
10.1.31 Status register Read
This command is issued by setting D/C# ON LOW during a data read (See Figure 13-1 to Figure 13-3 for
parallel interface waveform). It allows the MCU to monitor the internal status of the chip. No status read is
provided for serial mode.
Solomon Systech
May 2008 P 52/70
Rev 1.9
SSD1305
10.2 Graphic Acceleration Command
10.2.1 Horizontal Scroll Setup (26h/27h)
This command consists of 5 consecutive bytes to set up the horizontal scroll parameters and determines the
scrolling start page, end page and scrolling speed.
Before issuing this command the horizontal scroll must be deactivated (2Eh). Otherwise, RAM content may
be corrupted.
The SSD1305 horizontal scroll is designed for 132 columns scrolling. The following three figures (Figure
10-9, Figure 10-10, Figure 10-11) show the examples of using the horizontal scroll:
SEG127
SEG128
SEG129
SEG130
SEG131
SEG123
SEG124
SEG125
SEG126
SEG127
…
…
SEG126
…
…
SEG122
…
…
SEG5
SEG1
SEG4
SEG0
SEG3
SEG131
SEG2
SEG130
SEG1
SEG129
After one scroll
step
SEG128
Original Setting
SEG0
Figure 10-9 : Horizontal scroll example: Scroll RIGHT by 4 columns
SEG126
SEG127
SEG128
SEG129
SEG130
SEG131
SEG129
SEG130
SEG131
SEG0
SEG1
…
…
SEG128
…
SEG5
SEG7
…
SEG4
SEG6
…
SEG3
SEG5
…
SEG2
SEG4
SEG1
SEG3
After one
scroll step
SEG0
Original
Setting
SEG2
Figure 10-10 : Horizontal scroll example: Scroll LEFT by 2 columns
Figure 10-11 : Horizontal scrolling setup example
SSD1305
Rev 1.9
P 53/70
May 2008
Solomon Systech
10.2.2 Continuous Vertical and Horizontal Scroll Setup (29h/2Ah)
This command consists of 6 consecutive bytes to set up the continuous vertical and horizontal scroll
parameters and determines the scrolling start page, end page, scrolling speed and vertical scrolling offset.
The bytes A[2:0], B[2:0], C[2:0] and D[2:0] of command 29h/2Ah are for the setting of the continuous
horizontal scrolling. The byte E[5:0] is for the setting of the continuous vertical scrolling offset. All these
bytes together are for the setting of continuous diagonal (horizontal + vertical) scrolling. If the vertical
scrolling offset byte E[5:0] is set to zero, then only horizontal scrolling is performed (like command 26/27h).
Alternatively, if the byte A[2:0] is set to zero and E[5:0] is not set to zero, then only vertical scrolling is
performed.
Before issuing this command the scroll must be deactivated (2Eh). Otherwise, RAM content may be
corrupted. The following two figures (Figure 10-12 , Figure 10-13) show the examples of using the
continuous vertical and horizontal scroll:
Figure 10-12 : Continuous Vertical and Horizontal scrolling setup examples
Solomon Systech
May 2008 P 54/70
Rev 1.9
SSD1305
Figure 10-13 : Continuous Vertical and Horizontal scrolling example: With setting in MUX ratio
As shown in Figure 10-13, the whole RAM content is displayed during scrolling regardless of the MUX ratio.
10.2.3 Deactivate Scroll (2Eh)
This command stops the motion of scrolling. After sending 2Eh command to deactivate the scrolling action,
the ram data needs to be rewritten.
10.2.4 Activate Scroll (2Fh)
This command starts the motion of scrolling and should only be issued after the scroll setup parameters have
been defined by the scrolling setup commands :26h/27h/29h/2Ah . The setting in the last scrolling setup
command overwrites the setting in the previous scrolling setup commands.
The following actions are prohibited after the scrolling is activated
1.
RAM access (Data write or read)
2.
Changing the horizontal scroll setup parameters
SSD1305
Rev 1.9
P 55/70
May 2008
Solomon Systech
10.2.5 Set Vertical Scroll Area(A3h)
This command consists of 3 consecutive bytes to set up the vertical scroll area. For the continuous vertical
scroll function (command 29/2Ah), the number of rows that in vertical scrolling can be set smaller or equal to
the MUX ratio. Figure 10-14 shows some vertical scrolling example with different settings in vertical scroll
area.
Figure 10-14 : Vertical scroll area setup examples
Solomon Systech
May 2008 P 56/70
Rev 1.9
SSD1305
11 MAXIMUM RATINGS
Table 11-1 : Maximum Ratings (Voltage Referenced to VSS)
Symbol
VDD
VDDIO
VCC
VSEG
VCOM
Vin
TA
Tstg
Parameter
Supply Voltage
SEG output voltage
COM output voltage
Input voltage
Operating Temperature
Storage Temperature Range
Value
-0.3 to +4
-0.3 to VDD+0.5
0 to 16
0 to VCC
0 to 0.9*VCC
VSS-0.3 to VDD+0.3
-40 to +85
-65 to +150
Unit
V
V
V
V
V
V
ºC
ºC
Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the
limits in the Electrical Characteristics tables or Pin Description section
This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal
operation. This device is not radiation protected.
SSD1305
Rev 1.9
P 57/70
May 2008
Solomon Systech
12
DC CHARACTERISTICS
Condition (Unless otherwise specified):
Voltage referenced to VSS
VDD = 2.4 to 3.5V
TA = 25°C
Table 12-1 : DC Characteristics
Symbol
VCC
VDD
ICC, SLEEP
Parameter
Test Condition
Operating Voltage
Logic Supply Voltage
Logic Supply Voltage for MCU
interface
High Logic Output Level
IOUT = 100uA, 3.3MHz
Low Logic Output Level
IOUT = 100uA, 3.3MHz
High Logic Input Level
Low Logic Input Level
VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V,
ICC Sleep mode Current
IDD, SLEEP
IDD Sleep mode Current
VDDIO
VOH
VOL
VIH
VIL
IDDIO, SLEEP
IDDIO Sleep mode Current
VCC Supply Current
VDD = 2.7V, VCC = 12V,
IREF = 10uA
No loading, Display ON, All
ON
VDD Supply Current
VDD = 2.7V, VCC = 12V,
IREF = 10uA
No loading, Display ON, All
ON
ICC
IDD
Segment Output Current
ISEG
Dev
Adj. Dev
VDD=2.7V, VCC=12V,
IREF=10uA, Display ON.
Min
7
2.4
Typ
-
Max
15
3.5
Unit
V
V
1.6
-
VDD
V
0.1 x VDDIO
0.2 x VDDIO
V
V
V
V
-
10
uA
-
10
uA
-
10
uA
-
550
1000
uA
-
100
300
uA
Contrast=FFh
294
320
346
Contrast=AFh
-
220
-
Contrast=7Fh
-
159
-
Contrast=3Fh
-
79
-
-
19
-
-3
-
+3
%
-2
-
+2
%
VCC = 7V~15V
Display OFF, No panel attached
VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V,
VCC = 7V~15V
Display OFF, No panel attached
VDDIO =1.6V~3.3V, VDD = 2.4V ~3.5V,
VCC = 7V~15V
Display OFF, No panel attached
Contrast = FFh
Contrast=0Fh
Dev = (ISEG – IMID)/IMID
Segment
output
current IMID = (IMAX + IMIN)/2
uniformity
ISEG[0:131] = Segment current at
contrast = FFh
Adjacent pin output current Adj Dev = (I[n]-I[n+1]) /
uniformity (contrast = FF)
(I[n]+I[n+1])
Solomon Systech
0.9 x VDDIO 0.8 x VDDIO -
May 2008 P 58/70
Rev 1.9
uA
SSD1305
13 AC CHARACTERISTICS
Conditions:
Voltage referenced to VSS
VDD=2.4 to3.5V
TA = 25°C
Table 13-1 : AC Characteristics
Symbol Parameter
Test Condition
FOSC (1) Oscillation Frequency of Display VDD = 2.8V
FFRM
RES#
Timing Generator
Frame Frequency for 64 MUX
Mode
Reset low pulse width
Min Typ
324 360
132x64 Graphic Display Mode, Display ON, Internal Oscillator Enabled
3
Max
396
Unit
FOSC x 1/(DxKx64)
-
Hz
-
-
us
(2)
kHz
Note
(1)
FOSC stands for the frequency value of the internal oscillator and the value is measured when command D5h A[7:4] is
in default value.
(2)
D: divide ratio (default value = 1)
K: number of display clocks (default value = 54)
Please refer to Table 9-1 (Set Display Clock Divide Ratio/Oscillator Frequency, D5h) for detailed description
SSD1305
Rev 1.9
P 59/70
May 2008
Solomon Systech
Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, VDDIO = VDD, TA = 25°C)
Symbol
Parameter
Min
Typ
Max
Unit
tcycle
Clock Cycle Time
300
-
-
ns
tAS
Address Setup Time
0
-
-
ns
tAH
Address Hold Time
0
-
-
ns
tDSW
Write Data Setup Time
40
-
-
ns
tDHW
Write Data Hold Time
7
-
-
ns
tDHR
Read Data Hold Time
20
-
-
ns
tOH
Output Disable Time
-
-
70
ns
tACC
Access Time
-
-
140
ns
120
60
60
60
-
-
ns
PWCSH
Chip Select Low Pulse Width (read)
Chip Select Low Pulse Width (write)
Chip Select High Pulse Width (read)
Chip Select High Pulse Width (write)
-
-
ns
tR
Rise Time
-
-
40
ns
tF
Fall Time
-
-
40
ns
PWCSL
Figure 13-1 : 6800-series MCU parallel interface characteristics
D/C#
tAS
tAH
R/W#
E
tcycle
PWCSL
CS#
PWCSH
tR
tF
tDHW
tDSW
D[7:0](WRITE)
Valid Data
tACC
D[7:0](READ)
tDHR
Valid Data
tOH
Solomon Systech
May 2008 P 60/70
Rev 1.9
SSD1305
Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V, VDDIO = VDD, TA = 25°C)
Symbol
tcycle
tAS
tAH
tDSW
tDHW
tDHR
tOH
tACC
tPWLR
tPWLW
tPWHR
tPWHW
tR
tF
tCS
tCSH
tCSF
Parameter
Min
Typ
Max
Unit
300
10
0
40
7
20
120
60
60
60
0
0
20
-
70
140
40
40
-
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Clock Cycle Time
Address Setup Time
Address Hold Time
Write Data Setup Time
Write Data Hold Time
Read Data Hold Time
Output Disable Time
Access Time
Read Low Time
Write Low Time
Read High Time
Write High Time
Rise Time
Fall Time
Chip select setup time
Chip select hold time to read signal
Chip select hold time
Figure 13-2 : 8080-series parallel interface characteristics (Form 1)
Write cycle (Form 1)
Read cycle (Form 1)
CS#
CS#
tCSH
tCSF
tCS
tCS
D/C#
D/C#
tAH
tAS
WR#
tAS
tR
tF
tcycle
tPWLW
tDSW
tPWHW
RD#
tcycle
tPWLR
tDHW
tPWHR
tACC
D[7:0]
tAH
tR
tF
tDHR
D[7:0]
tOH
Figure 13-3 : 8080-series parallel interface characteristics (Form 2)
Write cycle (Form 2)
Read cycle (Form 2)
tcycle
tcycle
tR
CS#
tR
tF
CS#
tPWLW
tF
tPWLR
tPWHR
tPWHW
tCS
tCS
D/C#
D/C#
tAS
tAH
tAS
tCSF
WR#
tAH
RD#
tDSW
tDHW
D[7:0]
tCSH
tACC
tDHR
D[7:0]
tOH
SSD1305
Rev 1.9
P 61/70
May 2008
Solomon Systech
Table 13-4 : Serial Interface Timing Characteristics
(VDD - VSS = 2.4V to 3.5V , VDDIO = VDD ,TA = 25°C)
Symbol
Parameter
tcycle
Clock Cycle Time
tAS
Address Setup Time
tAH
Address Hold Time
tCSS
Chip Select Setup Time
tCSH
Chip Select Hold Time
tDSW
Write Data Setup Time
tDHW
Write Data Hold Time
tCLKL
Clock Low Time
tCLKH
Clock High Time
tR
Rise Time
tF
Fall Time
Min
250
150
150
120
60
50
15
100
100
-
Typ
-
Max
40
40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Figure 13-4 : Serial interface characteristics
D/C#
t AS
t AH
t CSS
CS#
t CSH
t cycle
tCLKL
tCLKH
SCLK(D 0 )
tF
tR
t DSW
SDIN(D 1 )
t DHW
Valid Data
CS#
SCLK(D0 )
SDIN(D1)
Solomon Systech
D7
D6
D5
D4
D3
D2
May 2008 P 62/70
D1
Rev 1.9
D0
SSD1305
Conditions:
VDD - VSS = 2.4 to 3.5V
VDDIO = VDD
TA = 25°C
Table 13-5 :I2C Interface Timing Characteristics
Symbol
Parameter
Max
Unit
tcycle
Clock Cycle Time
2.5
-
-
us
tHSTART
Start condition Hold Time
0.6
-
-
us
tHD
Data Hold Time (for “SDAOUT” pin)
0
-
-
ns
Data Hold Time (for “SDAIN” pin)
300
-
-
ns
100
-
-
ns
0.6
-
-
us
tSSTOP
Data Setup Time
Start condition Setup Time (Only relevant for a repeated
Start condition)
Stop condition Setup Time
0.6
-
-
us
tR
Rise Time for data and clock pin
-
-
300
ns
tF
Fall Time for data and clock pin
-
-
300
ns
tIDLE
Idle Time before a new transmission can start
1.3
-
-
us
tSD
tSSTART
Min
Typ
Figure 13-5 : I2C interface Timing characteristics
//
SDA
tHD
tHSTART
tIDLE
tF
tSD
tR
//
tSSTART
tSSTOP
SCL
tCYCLE
SSD1305
Rev 1.9
P 63/70
May 2008
Solomon Systech
14 APPLICATION EXAMPLE
Figure 14-1 : Application Example of SSD1305T6R1
The configuration for 6800-parallel interface mode, external VCC is shown in the following diagram:
(VDD=2.7V, VCC =12V, IREF=10uA)
COM1
COM3
.
.
COM61
COM63
SEG0
.
.
.
.
.
.
.
.
.
.
.
.
SEG131
COM62
COM60
.
.
COM2
COM0
DISPLAY PANEL
132 x 64
SSD1305T6R1
BGGND
VCC VCOMH IREF D[7:0] E (RD#) R/W#(W/R#) D/C# RES# CS# BS1 BS2
C3
VDD
VDDB GDR VDDIO FB VBREF VSS
VCIR
FR
R1
C1
C2
C4
VCC
D[7:0] E (RD#) R/W# (W/R#) D/C#
RES# CS#
VDD
VDDIO
VSS
VSS
[GND]
Pin connected to MCU interface: D[7:0], E, R/W#, D/C#, CS#, RES#
Pin internally connected to VSS: BS0, VSSB
GDR, VBREF, FB should be left open.
C1: 4.7uF (1)
C2: 4.7uF (1)
C3: 4.7uF (1)
C4: 4.7uF (1)
R1: 910kΩ, R1= (Voltage at IREF pin-VSS)/IREF
Voltage at IREF pin = VCC-3V
Note
(1)
The capacitor value is recommended value. Select appropriate value against module application.
Solomon Systech
May 2008 P 64/70
Rev 1.9
SSD1305
15 PACKAGE INFORMATION
15.1 SSD1305Z Die Tray Information
Figure 15-1 SSD1305Z die tray information
SSD1305
Rev 1.9
P 65/70
May 2008
Solomon Systech
15.2 SSD1305T6R1 Detail Dimension
SS
D1
30
5T
6
Figure 15-2 SSD1305T6R1 Detail Dimension
Solomon Systech
May 2008 P 66/70
Rev 1.9
SSD1305
SSD1305
Rev 1.9
P 67/70
May 2008
Solomon Systech
15.3 SSD1305T7R1 Detail Dimension
Figure 15-3 SSD1305T7R1 Detail Dimension
Solomon Systech
May 2008 P 68/70
Rev 1.9
SSD1305
15.4 SSD1305Z3 Die Tray Information
Figure 15-4 SSD1305Z3 die tray information
SSD1305
Rev 1.9
P 69/70
May 2008
Solomon Systech
Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without
limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters,
including “Typical” must be validated for each customer application by the customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the
part.
All Solomon Systech Products complied with six (6) hazardous substances limitation requirement per European Union (EU) “Restriction of
Hazardous Substance (RoHS) Directive (2002/95/EC)” and China standard “电子信息产品污染控制标识要求 (SJ/T11364-2006)” with
control Marking Symbol
.. Hazardous Substances test report is available upon requested.
http://www.solomon-systech.com
Solomon Systech
May 2008 P 70/70
Rev 1.9
SSD1305