SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA SSD1351 Advance Information 128 RGB x 128 Dot Matrix OLED/PLED Segment/Common Driver with Controller This document contains information on a new product. Specifications and information herein are subject to change without notice. http://www.solomon-systech.com SSD1351 Rev 1.5 P 1/57 Jan 2011 Copyright © 2011 Solomon Systech Limited Appendix: IC Revision history of SSD1351 Specification Version 0.10 1. 1.0 1. 2. 3. 4. 5. 6. 1.1 1. 1.2 1 12-Dec-08 Change to Advance Info Revise die thickness tolerance from ±25um to ±15um Revise table 12-1 DC characteristic Revise tables 13 AC characteristic Revise command table Revise VCC voltage range 19-Feb-09 Revised section 8.1 MCU interface 27-Oct-09 5 Added +/- 0.05mm tolerance for Die Size (after sawing) in Section 5 – P.9 Added command C1h in the description of command FDh – P.37 Revised typo error on the description of command C1h – P.46 Updated the ISLP VCI sleep mode current section of Table 12-1 (Max = 50uA when internal VDD is enabled) – P.49 Revised declaimer 1 P.30 Update Power On/OFF sequence 23-Jul-10 1 2 3 4 2 3 1.5 Effective Date 10-Jun-08 31-Aug-09 3 4 1.4 Change Items Change “Gold Bump Die” to “COG” for SSD1351Z in Table 3-1 Ordering information Revise typo in Figure 5 1: SSD1351Z Die Drawing ( position of L, T alignment mark) Revise typo in P.45 : 10.1.9 Set Function selection (ABh) Add Note 2 in application example Fig 14-1 2 1.3 1st release 4 5 1. 2. 3. 4. 5. 6. 7. 8. 9. P.51 Revise Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics P.52 Revise Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics P.53 Revise Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI) P.54 Revise Table 13-5: Serial Interface Timing Characteristics (3-wire SPI) Update the power supply on Section 2 (P.7) and Section 12 (P.48) Updated the pin description of VDD and VCI on Table 7-1 (P.15) Updated Section 8.9 “Power On and Off sequence” (P.30) Updated Section 8.10 “VDD Regulator” and Figure 8-15 (P.31) Updated Figure 8-17 (P.31) Updated command ABh (Function selection) on Table 9-1 (P.33) and Section 10.1.9 (P.44) Revise Table 11-1: Maximum Ratings (P.47) Revise DC CHARACTERISTICS information in Table 12-1 (P.48) Revise the information on the application example Figure 14-1 and revised the diagram (P.54) Solomon Systech Jan 2011 P 2/57 Rev 1.5 02-Feb-11 SSD1351 CONTENTS 1 GENERAL DESCRIPTION ....................................................................................................7 2 FEATURES................................................................................................................................7 3 ORDERING INFORMATION ................................................................................................7 4 BLOCK DIAGRAM..................................................................................................................8 5 DIE PAD FLOOR PLAN..........................................................................................................9 6 PIN ARRANGEMENT...........................................................................................................12 6.1 SSD1351UR1 PIN ASSIGNMENT .......................................................................................................... 12 7 PIN DESCRIPTIONS .............................................................................................................15 8 FUNCTIONAL BLOCK DESCRIPTIONS..........................................................................18 8.1 MCU INTERFACE ................................................................................................................................ 18 8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.3 MCU Parallel 6800-series Interface................................................................................................................18 MCU Parallel 8080-series Interface................................................................................................................19 MCU Serial Interface (4-wire SPI) .................................................................................................................20 MCU Serial Interface (3-wire SPI) .................................................................................................................21 RESET CIRCUIT .................................................................................................................................... 22 GDDRAM........................................................................................................................................... 22 8.3.1 8.3.2 8.4 8.5 GDDRAM structure........................................................................................................................................22 Data bus to RAM mapping under different input mode..................................................................................23 COMMAND DECODER .......................................................................................................................... 24 OSCILLATOR & TIMING GENERATOR.................................................................................................. 24 8.5.1 8.6 8.7 8.8 8.9 8.10 Oscillator.........................................................................................................................................................24 SEG/COM DRIVING BLOCK ................................................................................................................ 25 SEG / COM DRIVER ............................................................................................................................ 26 GRAY SCALE DECODER ...................................................................................................................... 29 POWER ON AND OFF SEQUENCE ........................................................................................................ 30 VDD REGULATOR ............................................................................................................................. 31 8.10.1 9 VDD Regulator in Sleep Mode.....................................................................................................................31 COMMAND.............................................................................................................................32 9.1 10 BASIC COMMAND LIST........................................................................................................................ 32 COMMAND.............................................................................................................................38 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5 10.1.6 10.1.7 10.1.8 10.1.9 10.1.10 10.1.11 10.1.12 10.1.13 10.1.14 10.1.15 10.1.16 10.1.17 10.1.18 SSD1351 Set Column Address (15h)..........................................................................................................................38 Set Row Address (75h) ...............................................................................................................................38 Write RAM Command (5Ch) .....................................................................................................................39 Read RAM Command (5Dh) ......................................................................................................................39 Set Re-map & Dual COM Line Mode (A0h)..............................................................................................39 Set Display Start Line (A1h).......................................................................................................................41 Set Display Offset (A2h) ............................................................................................................................42 Set Display Mode (A4h ~ A7h) ..................................................................................................................43 Set Function selection (ABh)......................................................................................................................44 Set Sleep mode ON/OFF (AEh / AFh) .......................................................................................................44 Set Phase Length (B1h) ..............................................................................................................................44 Display Enhancement (B2h) .......................................................................................................................44 Set Front Clock Divider / Oscillator Frequency (B3h) ...............................................................................44 Set GPIO (B5h)...........................................................................................................................................44 Set Second Pre-charge period (B6h) ...........................................................................................................45 Look Up Table for Gray Scale Pulse width (B8h) ......................................................................................45 Use Built-in Linear LUT (B9h) ..................................................................................................................45 Set Pre-charge voltage (BBh) .....................................................................................................................45 Rev 1.5 P 3/57 Jan 2011 Solomon Systech 10.1.19 10.1.20 10.1.21 10.1.22 10.1.23 Set VCOMH Voltage (BEh) ...........................................................................................................................45 Set Contrast Current for Color A,B,C (C1h)...............................................................................................46 Master Contrast Current Control (C7h) ......................................................................................................46 Set Multiplex Ratio (CAh)..........................................................................................................................46 Set Command Lock (FDh)..........................................................................................................................46 11 MAXIMUM RATINGS ..........................................................................................................47 12 DC CHARACTERISTICS .....................................................................................................48 13 AC CHARACTERISTICS .....................................................................................................49 14 APPLICATION EXAMPLE ..................................................................................................54 15 PACKAGE INFORMATION ................................................................................................55 15.1 15.2 SSD1351UR1 DETAIL DIMENSION .................................................................................................. 55 SSD1351Z DIE TRAY INFORMATION .............................................................................................. 56 Solomon Systech Jan 2011 P 4/57 Rev 1.5 SSD1351 TABLES Table 3-1 : Ordering Information .........................................................................................................................................7 Table 5-1: SSD1351Z Bump Die Pad Coordinates ............................................................................................................10 Table 6-1: SSD1351UR1 Pin Assignment Table................................................................................................................13 Table 7-1 : SSD1351 Pin Description.................................................................................................................................15 Table 7-2 : Bus Interface selection .....................................................................................................................................16 Table 8-1 : MCU interface assignment under different bus interface mode .......................................................................18 Table 8-2 : Data bus selection modes .................................................................................................................................18 Table 8-3 : Control pins of 6800 interface..........................................................................................................................18 Table 8-4 : Control pins of 8080 interface..........................................................................................................................20 Table 8-5 : Control pins of 4-wire Serial interface .............................................................................................................20 Table 8-6 : Control pins of 3-wire Serial interface .............................................................................................................21 Table 8-7 : 262k Color Depth Graphic Display Data RAM Structure................................................................................22 Table 8-8 : Write Data bus usage under different bus width and color depth mode ...........................................................23 Table 8-9 : Read Data bus usage under different bus width and color depth mode............................................................23 Table 9-1 : Command table ................................................................................................................................................32 Table 9-2: SSD1351 Graphic Acceleration Command List................................................................................................37 Table 10-11: Bus interface selection...................................................................................................................................44 Table 11-1 : Maximum Ratings ..........................................................................................................................................47 Table 12-1 : DC Characteristics..........................................................................................................................................48 Table 13-1 : AC Characteristics..........................................................................................................................................49 Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics .........................................................................50 Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics .........................................................................51 Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI) .....................................................................................52 Table 13-5 : Serial Interface Timing Characteristics (3-wire SPI) .....................................................................................53 SSD1351 Rev 1.5 P 5/57 Jan 2011 Solomon Systech FIGURES Figure 4-1 Block Diagram ....................................................................................................................................................8 Figure 5-1: SSD1351Z Die Drawing ....................................................................................................................................9 Figure 6-1: SSD1351UR1 Pin Assignment ........................................................................................................................12 Figure 8-1 : Data read back procedure - insertion of dummy read .....................................................................................19 Figure 8-2 : Example of Write procedure in 8080 parallel interface mode ........................................................................19 Figure 8-3 : Example of Read procedure in 8080 parallel interface mode .........................................................................19 Figure 8-4 : Display data read back procedure - insertion of dummy read.........................................................................20 Figure 8-5 : Write procedure in 4-wire Serial interface mode ............................................................................................21 Figure 8-6 : Write procedure in 3-wire Serial interface mode ............................................................................................21 Figure 8-7 : Oscillator Circuit.............................................................................................................................................24 Figure 8-8 : IREF Current Setting by Resistor Value............................................................................................................25 Figure 8-9 : Segment and Common Driver Block Diagram ...............................................................................................26 Figure 8-10 : Segment and Common Driver Signal Waveform..........................................................................................27 Figure 8-11: Gray Scale Control in Segment......................................................................................................................28 Figure 8-12 : Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode (under command B9h Use Built-in Linear LUT)........................................................................................................29 Figure 8-13 : The Power ON sequence...............................................................................................................................30 Figure 8-14 : The Power OFF sequence .............................................................................................................................30 Figure 8-15 VDD pin connection scheme.............................................................................................................................31 Figure 8-16 : Case 1 - Command sequence for just entering/ exiting sleep mode..............................................................31 Figure 8-17 : Case 2 - Command sequence for disabling internal VDD regulator during sleep mode.................................31 Figure 10-1 : Example of Column and Row Address Pointer Movement ..........................................................................38 Figure 10-2 : Address Pointer Movement of Horizontal Address Increment Mode ...........................................................39 Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode ................................................................39 Figure 10-4 : COM Pins Hardware Configuration (MUX ratio: 128) ................................................................................40 Figure 10-5 : Example of Set Display Start Line with no Remap.......................................................................................41 Figure 10-6 : Example of Set Display Offset with no Remap ...........................................................................................42 Figure 10-7 : Example of Entire Display OFF....................................................................................................................43 Figure 10-8 : Example of Entire Display ON .....................................................................................................................43 Figure 10-9 : Example of Normal Display..........................................................................................................................43 Figure 10-10 : Example of Inverse Display ........................................................................................................................43 Figure 13-1 : 6800-series MCU parallel interface characteristics.......................................................................................50 Figure 13-2 : 8080-series MCU parallel interface characteristics.......................................................................................51 Figure 13-3 : Serial interface characteristics (4-wire SPI)..................................................................................................52 Figure 13-4 : Serial interface characteristics (3-wire SPI)..................................................................................................53 Figure 14-1 : SSD1351Z application example for 18-bit 6800-parallel interface mode.....................................................54 Figure 15-1: SSD1351UR1 Detail Dimension....................................................................................................................55 Figure 15-2: SSD1351UR1 Die Tray Information..............................................................................................................56 Solomon Systech Jan 2011 P 6/57 Rev 1.5 SSD1351 1 GENERAL DESCRIPTION The SSD1351 is a CMOS OLED/PLED driver with 384 segments and 128 commons output, supporting up to 128RGB x 128 dot matrix display. This chip is designed for Common Cathode type OLED/PLED panel. The SSD1351 has embedded Graphic Display Data RAM (GDDRAM). It supports with 8, 16, 18 bits 8080 / 6800 parallel interface, Serial Peripheral Interface. It has 256-step contrast and 262K color control, giving vivid color display on OLED panels. 2 FEATURES • Resolution: 128 RGB x 128 dot matrix panel • 262k color depth supported by embedded 128x128x18 bit SRAM display buffer Power supply o VDDIO = 1.65V – VCI (MCU interface logic level) o VCI = 2.4V – 3.5V (Low voltage power supply) o VCC = 10.0V – 18.0V (Panel driving power supply) • Segment maximum source current: 200uA • Common maximum sink current: 70mA • 256 step brightness current control for the each color component plus 16 step master current control Pin selectable MCU Interfaces: o 8/16/18 bits 6800-series parallel interface o 8/16/18 bits 8080-series parallel interface o 3 –wire and 4-wire Serial Peripheral Interface • Support various color depths o 262k color (6:6:6) o 65k color (5:6:5) • Gamma Look Up Tables (GLUT) with 8 bit entry • Row re-mapping and Column re-mapping • Vertical and horizontal scrolling • Programmable Frame Rate and Multiplexing Ratio • On-Chip Oscillator • Color Swapping Function (RGB – BGR), arranged in RGB sequence when reset • Slim chip layout for COF • Operating temperature range -40°C to 85°C. 3 ORDERING INFORMATION Table 3-1 : Ordering Information Ordering Part Number SEG COM Package Form Reference SSD1351Z 128RGB 128 COG 9 , 56 SSD1351UR1 128RGB 128 COF 12 , 55 SSD1351 Rev 1.5 P 7/57 Jan 2011 Remark • Min SEG pad pitch: 25um • Min COM pad pitch: 35um • Die thickness : 300 +/- 15um • 48mm film, 4 sprocket hole • Hot bar type COF • 8/16/18-bit 80/68/SPI interface • SEG lead pitch: 0.050x0.999=0.04995mm • COM lead pitch: 0.06x0.999=0.05994mm Solomon Systech 4 BLOCK DIAGRAM Figure 4-1 Block Diagram BGGND VDD VDD Regulator RES# BS[1:0] Common Drivers (odd) Gray Scale Decoder D[17:0] GDDRAM CS# D/C# R/W#(W/R#) E(RD#) MCU Interface VCI Segment Drivers VDDIO VLSS VCC V CI VSS Solomon Systech Common Drivers (even) SEG/COM Driving Block Jan 2011 SC127 SB127 SA127 SC126 SB126 SA126 SC125 SB125 SA125 . . . SC2 SB2 SA2 SC1 SB1 SA1 SC0 SB0 SA0 COM0 COM2 COM4 . . . COM122 COM124 COM126 IREF FR CLS CL V PP VCOMH Display Timing Generator GPIO 1 Oscillator GPIO 0 Command Decoder VSL COM127 COM125 COM123 . . . COM5 COM3 COM1 P 8/57 Rev 1.5 SSD1351 5 DIE PAD FLOOR PLAN Figure 5-1: SSD1351Z Die Drawing Y X SSD1351 Pad 1,2,3,->613 Gold Bumps face up Die size (after sawing) 10.7mm ± 0.05mm x 1.5mm ± 0.05mm Die Thickness 300 +/- 15um Min I/O pad pitch 70um Min SEG pad pitch 25um Min COM pad pitch 35um Bump height Nominal 15um Bump size Pad 1, 157 49um x 70um Pad 2-37, 121-156 23um x 70um Pad 38-120 45um x 90um Pad 158-189, 582-613 70um x 23um Pad 192-579 13um x 96um Pad 190,581 70um x 49um Pad 191,580 50um x 96um Alignment mark SSD1351 Rev 1.5 P 9/57 L shape (-4736.35, 126.58) 75um x 75um T shape (4736.35, 126.58) 75um x 75um + shape (-4736.35, -284.77) 75um x 75um Jan 2011 Solomon Systech Table 5-1: SSD1351Z Bump Die Pad Coordinates Pad # Pad Name NC 1 COM94 2 COM95 3 COM96 4 COM97 5 COM98 6 COM99 7 COM100 8 COM101 9 COM102 10 COM103 11 COM104 12 COM105 13 COM106 14 COM107 15 COM108 16 COM109 17 COM110 18 COM111 19 COM112 20 COM113 21 COM114 22 COM115 23 COM116 24 COM117 25 COM118 26 COM119 27 COM120 28 COM121 29 COM122 30 COM123 31 COM124 32 COM125 33 COM126 34 COM127 35 VLSS 36 VLSS 37 VLSS 38 VSS 39 VCC 40 VCC 41 VCOMH 42 VLSS 43 VLSS 44 VSS 45 VSS 46 VSL 47 VCI 48 VCI 49 VDD 50 VDD 51 VDD 52 VDD 53 VDD 54 VDDIO 55 VDDIO 56 VLSS 57 GPIO0 58 GPIO1 59 IREF 60 FR 61 CL 62 VSS 63 64 RES# 65 D/C# 66 CS# VSS 67 BS1 68 VDDIO 69 BS0 70 VSS 71 72 R/W# (WR# E(RD#) 73 VDDIO 74 VCI 75 VDD 76 VPP 77 VPP 78 D0 79 D1 80 Solomon Systech X-Axis -5245.12 -5197.62 -5162.62 -5127.62 -5092.62 -5057.62 -5022.62 -4987.62 -4952.62 -4917.62 -4882.62 -4847.62 -4812.62 -4777.62 -4742.62 -4707.62 -4672.62 -4637.62 -4602.62 -4567.62 -4532.62 -4497.62 -4462.62 -4427.62 -4392.62 -4357.62 -4322.62 -4287.62 -4252.62 -4217.62 -4182.62 -4147.62 -4112.62 -4077.62 -4042.62 -4007.62 -3972.62 -3786.30 -3716.30 -3619.30 -3549.30 -3442.30 -3372.30 -3302.30 -3232.30 -3162.30 -3092.30 -3022.30 -2952.30 -2799.30 -2729.30 -2659.30 -2589.30 -2519.30 -2366.30 -2296.30 -2226.30 -2134.30 -2048.30 -1956.30 -1864.30 -1778.30 -1686.30 -1616.30 -1546.30 -1476.30 -1406.30 -1336.30 -1266.30 -1196.30 -1126.30 -1056.30 -986.30 -916.30 -763.30 -693.30 -579.30 -509.30 -389.30 -303.30 Y-Axis -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 Pad # Pad Name D2 81 D3 82 D4 83 D5 84 D6 85 D7 86 D8 87 D9 88 D10 89 D11 90 D12 91 D13 92 D14 93 D15 94 D16 95 D17 96 VSS 97 BGGND 98 VSL 99 VSL 100 CLS 101 VDDIO 102 VDDIO 103 VSS 104 VLSS 105 106 VCOMH 107 VCOMH VCC 108 VCC 109 TR0 110 VCI1 111 TR1 112 TR2 113 TR3 114 TR4 115 VSS1 116 VLSS 117 VLSS 118 VSS 119 VSS 120 VLSS 121 VLSS 122 123 COM63 124 COM62 125 COM61 126 COM60 127 COM59 128 COM58 129 COM57 130 COM56 131 COM55 132 COM54 133 COM53 134 COM52 135 COM51 136 COM50 137 COM49 138 COM48 139 COM47 140 COM46 141 COM45 142 COM44 143 COM43 144 COM42 145 COM41 146 COM40 147 COM39 148 COM38 149 COM37 150 COM36 151 COM35 152 COM34 153 COM33 154 COM32 155 COM31 156 COM30 NC 157 VLSS 158 VLSS 159 160 COM29 X-Axis -193.30 -107.30 2.70 88.70 198.70 284.70 394.70 480.70 590.70 676.70 786.70 872.70 982.70 1068.70 1178.70 1264.70 1356.70 1426.70 1496.70 1566.70 1636.70 1706.70 1776.70 1890.70 1960.70 2030.70 2100.70 2207.70 2277.70 2395.70 2535.70 2699.70 2949.70 3144.70 3409.70 3479.70 3549.70 3619.70 3689.70 3759.70 3972.62 4007.62 4042.62 4077.62 4112.62 4147.62 4182.62 4217.62 4252.62 4287.62 4322.62 4357.62 4392.62 4427.62 4462.62 4497.62 4532.62 4567.62 4602.62 4637.62 4672.62 4707.62 4742.62 4777.62 4812.62 4847.62 4882.62 4917.62 4952.62 4987.62 5022.62 5057.62 5092.62 5127.62 5162.62 5197.62 5245.12 5234.62 5234.62 5234.62 Y-Axis -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -651.82 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -662.08 -440.04 -405.04 -370.04 Pad # Pad Name COM28 161 COM27 162 COM26 163 COM25 164 COM24 165 COM23 166 COM22 167 COM21 168 COM20 169 COM19 170 COM18 171 COM17 172 COM16 173 COM15 174 COM14 175 COM13 176 COM12 177 COM11 178 COM10 179 COM9 180 COM8 181 COM7 182 COM6 183 COM5 184 COM4 185 COM3 186 COM2 187 COM1 188 COM0 189 NC 190 VLSS 191 SA0 192 SB0 193 SC0 194 SA1 195 SB1 196 SC1 197 SA2 198 SB2 199 SC2 200 SA3 201 SB3 202 SC3 203 SA4 204 SB4 205 SC4 206 SA5 207 SB5 208 SC5 209 SA6 210 SB6 211 SC6 212 SA7 213 SB7 214 SC7 215 SA8 216 SB8 217 SC8 218 SA9 219 SB9 220 SC9 221 SA10 222 SB10 223 SC10 224 SA11 225 SB11 226 SC11 227 SA12 228 SB12 229 SC12 230 SA13 231 SB13 232 SC13 233 SA14 234 SB14 235 SC14 236 SA15 237 SB15 238 SC15 239 SA16 240 X-Axis 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 5234.62 4890.00 4843.00 4818.00 4793.00 4768.00 4743.00 4718.00 4693.00 4668.00 4643.00 4618.00 4593.00 4568.00 4543.00 4518.00 4493.00 4468.00 4443.00 4418.00 4393.00 4368.00 4343.00 4318.00 4293.00 4268.00 4243.00 4218.00 4193.00 4168.00 4143.00 4118.00 4093.00 4068.00 4043.00 4018.00 3993.00 3968.00 3943.00 3918.00 3893.00 3868.00 3843.00 3818.00 3793.00 3768.00 3743.00 3718.00 3693.00 3668.00 3643.00 Jan 2011 Y-Axis -335.04 -300.04 -265.04 -230.04 -195.04 -160.04 -125.04 -90.04 -55.04 -20.04 14.96 49.96 84.96 119.96 154.96 189.96 224.96 259.96 294.96 329.96 364.96 399.96 434.96 469.96 504.96 539.96 574.96 609.96 644.96 692.96 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 Pad # Pad Name SB16 241 SC16 242 SA17 243 SB17 244 SC17 245 SA18 246 SB18 247 SC18 248 SA19 249 SB19 250 SC19 251 SA20 252 SB20 253 SC20 254 SA21 255 SB21 256 SC21 257 SA22 258 SB22 259 SC22 260 SA23 261 SB23 262 SC23 263 SA24 264 SB24 265 SC24 266 SA25 267 SB25 268 SC25 269 SA26 270 SB26 271 SC26 272 SA27 273 SB27 274 SC27 275 SA28 276 SB28 277 SC28 278 SA29 279 SB29 280 SC29 281 SA30 282 SB30 283 SC30 284 SA31 285 SB31 286 SC31 287 SA32 288 SB32 289 SC32 290 SA33 291 SB33 292 SC33 293 SA34 294 SB34 295 SC34 296 SA35 297 SB35 298 SC35 299 SA36 300 SB36 301 SC36 302 SA37 303 SB37 304 SC37 305 SA38 306 SB38 307 SC38 308 SA39 309 SB39 310 SC39 311 SA40 312 SB40 313 SC40 314 SA41 315 SB41 316 SC41 317 SA42 318 SB42 319 SC42 320 P 10/57 X-Axis 3618.00 3593.00 3568.00 3543.00 3518.00 3493.00 3468.00 3443.00 3418.00 3393.00 3368.00 3343.00 3318.00 3293.00 3268.00 3243.00 3218.00 3193.00 3168.00 3143.00 3118.00 3093.00 3068.00 3043.00 3018.00 2993.00 2968.00 2943.00 2918.00 2893.00 2868.00 2843.00 2818.00 2793.00 2768.00 2743.00 2718.00 2693.00 2668.00 2643.00 2618.00 2593.00 2568.00 2543.00 2518.00 2493.00 2468.00 2443.00 2418.00 2393.00 2368.00 2343.00 2318.00 2293.00 2268.00 2243.00 2218.00 2193.00 2168.00 2143.00 2118.00 2093.00 2068.00 2043.00 2018.00 1993.00 1968.00 1943.00 1918.00 1893.00 1868.00 1843.00 1818.00 1793.00 1768.00 1743.00 1718.00 1693.00 1668.00 1643.00 Rev 1.5 Y-Axis 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 SSD1351 Pad # Pad Name SA43 321 SB43 322 SC43 323 SA44 324 SB44 325 SC44 326 SA45 327 SB45 328 SC45 329 SA46 330 SB46 331 SC46 332 SA47 333 SB47 334 SC47 335 SA48 336 SB48 337 SC48 338 SA49 339 SB49 340 SC49 341 SA50 342 SB50 343 SC50 344 SA51 345 SB51 346 SC51 347 SA52 348 SB52 349 SC52 350 SA53 351 SB53 352 SC53 353 SA54 354 SB54 355 SC54 356 SA55 357 SB55 358 SC55 359 SA56 360 SB56 361 SC56 362 SA57 363 SB57 364 SC57 365 SA58 366 SB58 367 SC58 368 SA59 369 SB59 370 SC59 371 SA60 372 SB60 373 SC60 374 SA61 375 SB61 376 SC61 377 SA62 378 SB62 379 SC62 380 SA63 381 SB63 382 SC63 383 SA64 384 SB64 385 SC64 386 SA65 387 SB65 388 SC65 389 SA66 390 SB66 391 SC66 392 SA67 393 SB67 394 SC67 395 SA68 396 SB68 397 SC68 398 SA69 399 SB69 400 SSD1351 X-Axis 1618.00 1593.00 1568.00 1543.00 1518.00 1493.00 1468.00 1443.00 1418.00 1393.00 1368.00 1343.00 1318.00 1293.00 1268.00 1243.00 1218.00 1193.00 1168.00 1143.00 1118.00 1093.00 1068.00 1043.00 1018.00 993.00 968.00 943.00 918.00 893.00 868.00 843.00 818.00 793.00 768.00 743.00 718.00 693.00 668.00 643.00 618.00 593.00 568.00 543.00 518.00 493.00 468.00 443.00 418.00 393.00 368.00 343.00 318.00 293.00 268.00 243.00 218.00 193.00 168.00 143.00 118.00 93.00 68.00 43.00 18.00 -7.00 -32.00 -57.00 -82.00 -107.00 -132.00 -157.00 -182.00 -207.00 -232.00 -257.00 -282.00 -307.00 -332.00 -357.00 Rev 1.5 Y-Axis 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 Pad # Pad Name SC69 401 SA70 402 SB70 403 SC70 404 SA71 405 SB71 406 SC71 407 SA72 408 SB72 409 SC72 410 SA73 411 SB73 412 SC73 413 SA74 414 SB74 415 SC74 416 SA75 417 SB75 418 SC75 419 SA76 420 SB76 421 SC76 422 SA77 423 SB77 424 SC77 425 SA78 426 SB78 427 SC78 428 SA79 429 SB79 430 SC79 431 VCC 432 VCC 433 VCC 434 VCC 435 SA80 436 SB80 437 SC80 438 SA81 439 SB81 440 SC81 441 SA82 442 SB82 443 SC82 444 SA83 445 SB83 446 SC83 447 SA84 448 SB84 449 SC84 450 SA85 451 SB85 452 SC85 453 SA86 454 SB86 455 SC86 456 SA87 457 SB87 458 SC87 459 SA88 460 SB88 461 SC88 462 SA89 463 SB89 464 SC89 465 SA90 466 SB90 467 SC90 468 SA91 469 SB91 470 SC91 471 SA92 472 SB92 473 SC92 474 SA93 475 SB93 476 SC93 477 SA94 478 SB94 479 SC94 480 P 11/57 X-Axis -382.00 -407.00 -432.00 -457.00 -482.00 -507.00 -532.00 -557.00 -582.00 -607.00 -632.00 -657.00 -682.00 -707.00 -732.00 -757.00 -782.00 -807.00 -832.00 -857.00 -882.00 -907.00 -932.00 -957.00 -982.00 -1007.00 -1032.00 -1057.00 -1082.00 -1107.00 -1132.00 -1158.00 -1186.00 -1214.00 -1242.00 -1268.00 -1293.00 -1318.00 -1343.00 -1368.00 -1393.00 -1418.00 -1443.00 -1468.00 -1493.00 -1518.00 -1543.00 -1568.00 -1593.00 -1618.00 -1643.00 -1668.00 -1693.00 -1718.00 -1743.00 -1768.00 -1793.00 -1818.00 -1843.00 -1868.00 -1893.00 -1918.00 -1943.00 -1968.00 -1993.00 -2018.00 -2043.00 -2068.00 -2093.00 -2118.00 -2143.00 -2168.00 -2193.00 -2218.00 -2243.00 -2268.00 -2293.00 -2318.00 -2343.00 -2368.00 Jan 2011 Y-Axis 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 Pad # Pad Name SA95 481 SB95 482 SC95 483 SA96 484 SB96 485 SC96 486 SA97 487 SB97 488 SC97 489 SA98 490 SB98 491 SC98 492 SA99 493 SB99 494 SC99 495 SA100 496 SB100 497 SC100 498 SA101 499 SB101 500 SC101 501 SA102 502 SB102 503 SC102 504 SA103 505 SB103 506 SC103 507 SA104 508 SB104 509 SC104 510 SA105 511 SB105 512 SC105 513 SA106 514 SB106 515 SC106 516 SA107 517 SB107 518 SC107 519 SA108 520 SB108 521 SC108 522 SA109 523 SB109 524 SC109 525 SA110 526 SB110 527 SC110 528 SA111 529 SB111 530 SC111 531 SA112 532 SB112 533 SC112 534 SA113 535 SB113 536 SC113 537 SA114 538 SB114 539 SC114 540 SA115 541 SB115 542 SC115 543 SA116 544 SB116 545 SC116 546 SA117 547 SB117 548 SC117 549 SA118 550 SB118 551 SC118 552 SA119 553 SB119 554 SC119 555 SA120 556 SB120 557 SC120 558 SA121 559 SB121 560 X-Axis -2393.00 -2418.00 -2443.00 -2468.00 -2493.00 -2518.00 -2543.00 -2568.00 -2593.00 -2618.00 -2643.00 -2668.00 -2693.00 -2718.00 -2743.00 -2768.00 -2793.00 -2818.00 -2843.00 -2868.00 -2893.00 -2918.00 -2943.00 -2968.00 -2993.00 -3018.00 -3043.00 -3068.00 -3093.00 -3118.00 -3143.00 -3168.00 -3193.00 -3218.00 -3243.00 -3268.00 -3293.00 -3318.00 -3343.00 -3368.00 -3393.00 -3418.00 -3443.00 -3468.00 -3493.00 -3518.00 -3543.00 -3568.00 -3593.00 -3618.00 -3643.00 -3668.00 -3693.00 -3718.00 -3743.00 -3768.00 -3793.00 -3818.00 -3843.00 -3868.00 -3893.00 -3918.00 -3943.00 -3968.00 -3993.00 -4018.00 -4043.00 -4068.00 -4093.00 -4118.00 -4143.00 -4168.00 -4193.00 -4218.00 -4243.00 -4268.00 -4293.00 -4318.00 -4343.00 -4368.00 Y-Axis 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 Pad # Pad Name SC121 561 SA122 562 SB122 563 SC122 564 SA123 565 SB123 566 SC123 567 SA124 568 SB124 569 SC124 570 SA125 571 SB125 572 SC125 573 SA126 574 SB126 575 SC126 576 SA127 577 SB127 578 SC127 579 VLSS 580 NC 581 582 COM64 583 COM65 584 COM66 585 COM67 586 COM68 587 COM69 588 COM70 589 COM71 590 COM72 591 COM73 592 COM74 593 COM75 594 COM76 595 COM77 596 COM78 597 COM79 598 COM80 599 COM81 600 COM82 601 COM83 602 COM84 603 COM85 604 COM86 605 COM87 606 COM88 607 COM89 608 COM90 609 COM91 610 COM92 611 COM93 VLSS 612 VLSS 613 X-Axis -4393.00 -4418.00 -4443.00 -4468.00 -4493.00 -4518.00 -4543.00 -4568.00 -4593.00 -4618.00 -4643.00 -4668.00 -4693.00 -4718.00 -4743.00 -4768.00 -4793.00 -4818.00 -4843.00 -4890.00 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 -5234.62 Y-Axis 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 681.25 692.96 644.96 609.96 574.96 539.96 504.96 469.96 434.96 399.96 364.96 329.96 294.96 259.96 224.96 189.96 154.96 119.96 84.96 49.96 14.96 -20.04 -55.04 -90.04 -125.04 -160.04 -195.04 -230.04 -265.04 -300.04 -335.04 -370.04 -405.04 -440.04 Solomon Systech 6 PIN ARRANGEMENT 6.1 SSD1351UR1 pin assignment Solomon Systech COM12 5 COM12 7 NC NC NC NC V CI NC V SS 4 NC NC COM1 COM3 SA12 7 SB12 7 SC12 7 NC NC 11 NC 10 NC SA0 SB0 SC0 V COMH 31 COM0 NC NC NC 3 COM12 6 2 COM12 4 Figure 6-1: SSD1351UR1 Pin Assignment Jan 2011 P 12/57 Rev 1.5 SSD1351 Table 6-1: SSD1351UR1 Pin Assignment Table Pad# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 SSD1351 Rev 1.5 Pad Name NC VCC VCOMH VDDIO VSL D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 E (RD#) R/W# (WR#) BS0 BS1 NC CS# D/C# RES# IREF VDD NC NC VCI NC VSS NC NC NC COM127 COM126 COM125 COM124 COM123 COM122 COM121 COM120 COM119 COM118 COM117 COM116 COM115 COM114 COM113 COM112 COM111 COM110 COM109 COM108 COM107 COM106 COM105 COM104 COM103 COM102 COM101 COM100 COM99 COM98 COM97 COM96 COM95 COM94 COM93 COM92 COM91 COM90 COM89 P 13/57 Pad# 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 Jan 2011 Pad Name COM88 COM87 COM86 COM85 COM84 COM83 COM82 COM81 COM80 COM79 COM78 COM77 COM76 COM75 COM74 COM73 COM72 COM71 COM70 COM69 COM68 COM67 COM66 COM65 COM64 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC SC127 SB127 SA127 SC126 SB126 SA126 SC125 SB125 SA125 SC124 SB124 SA124 SC123 SB123 SA123 SC122 SB122 SA122 SC121 SB121 SA121 SC120 SB120 SA120 SC119 SB119 SA119 SC118 SB118 SA118 SC117 SB117 SA117 SC116 SB116 Pad# 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 Pad Name SA116 SC115 SB115 SA115 SC114 SB114 SA114 SC113 SB113 SA113 SC112 SB112 SA112 SC111 SB111 SA111 SC110 SB110 SA110 SC109 SB109 SA109 SC108 SB108 SA108 SC107 SB107 SA107 SC106 SB106 SA106 SC105 SB105 SA105 SC104 SB104 SA104 SC103 SB103 SA103 SC102 SB102 SA102 SC101 SB101 SA101 SC100 SB100 SA100 SC99 SB99 SA99 SC98 SB98 SA98 SC97 SB97 SA97 SC96 SB96 SA96 SC95 SB95 SA95 SC94 SB94 SA94 SC93 SB93 SA93 SC92 SB92 SA92 SC91 SB91 SA91 SC90 SB90 SA90 SC89 Pad# 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 Pad Name SB89 SA89 SC88 SB88 SA88 SC87 SB87 SA87 SC86 SB86 SA86 SC85 SB85 SA85 SC84 SB84 SA84 SC83 SB83 SA83 SC82 SB82 SA82 SC81 SB81 SA81 SC80 SB80 SA80 SC79 SB79 SA79 SC78 SB78 SA78 SC77 SB77 SA77 SC76 SB76 SA76 SC75 SB75 SA75 SC74 SB74 SA74 SC73 SB73 SA73 SC72 SB72 SA72 SC71 SB71 SA71 SC70 SB70 SA70 SC69 SB69 SA69 SC68 SB68 SA68 SC67 SB67 SA67 SC66 SB66 SA66 SC65 SB65 SA65 SC64 SB64 SA64 SC63 SB63 SA63 Solomon Systech Pad# 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 Solomon Systech Pad Name SC62 SB62 SA62 SC61 SB61 SA61 SC60 SB60 SA60 SC59 SB59 SA59 SC58 SB58 SA58 SC57 SB57 SA57 SC56 SB56 SA56 SC55 SB55 SA55 SC54 SB54 SA54 SC53 SB53 SA53 SC52 SB52 SA52 SC51 SB51 SA51 SC50 SB50 SA50 SC49 SB49 SA49 SC48 SB48 SA48 SC47 SB47 SA47 SC46 SB46 SA46 SC45 SB45 SA45 SC44 SB44 SA44 SC43 SB43 SA43 SC42 SB42 SA42 SC41 SB41 SA41 SC40 SB40 SA40 SC39 SB39 SA39 SC38 SB38 SA38 SC37 SB37 SA37 SC36 SB36 Pad# 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 Pad Name SA36 SC35 SB35 SA35 SC34 SB34 SA34 SC33 SB33 SA33 SC32 SB32 SA32 SC31 SB31 SA31 SC30 SB30 SA30 SC29 SB29 SA29 SC28 SB28 SA28 SC27 SB27 SA27 SC26 SB26 SA26 SC25 SB25 SA25 SC24 SB24 SA24 SC23 SB23 SA23 SC22 SB22 SA22 SC21 SB21 SA21 SC20 SB20 SA20 SC19 SB19 SA19 SC18 SB18 SA18 SC17 SB17 SA17 SC16 SB16 SA16 SC15 SB15 SA15 SC14 SB14 SA14 SC13 SB13 SA13 SC12 SB12 SA12 SC11 SB11 SA11 SC10 SB10 SA10 SC9 Pad# 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 Pad Name SB9 SA9 SC8 SB8 SA8 SC7 SB7 SA7 SC6 SB6 SA6 SC5 SB5 SA5 SC4 SB4 SA4 SC3 SB3 SA3 SC2 SB2 SA2 SC1 SB1 SA1 SC0 SB0 SA0 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 Jan 2011 Pad# 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 P 14/57 Pad Name COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 COM39 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 NC NC Rev 1.5 SSD1351 7 PIN DESCRIPTIONS Key: I = Input O =Output I/O = Bi-directional (input/output) P = Power pin NC = Not Connected Pull LOW= connect to Ground Pull HIGH= connect to VDDIO Table 7-1 : SSD1351 Pin Description Pin Name VDD Pin Type Description P Power supply for core logic operation. A capacitor is necessary to connected between this pin and VSS. It is regulated internally from VCI. Refer to Section 8.10 for details. Power supply for interface logic level. It should match with the MCU interface voltage level and must be connected to external source. VDDIO P VCI P VCC P Refer to Section 8.10 for details. Power supply for panel driving voltage. This is also the most positive power voltage supply pin. It is supplied by external high voltage source. VPP P Reserved pin. It must be connected to VDD. VSS P Ground pin VLSS P Analog system ground pin VCOMH P COM signal deselected voltage level. A capacitor should be connected between this pin and VSS. BGGND P It should be connected to Ground. Low voltage power supply VCI must always be equal to or higher than VDDIO. GPIO0 I/O Detail refer to Command B5h GPIO1 I/O Detail refer to Command B5h VSL P This is segment voltage reference pin. External VSL is set as default. This pin has to connect with resistor and diode to ground. (details depend on application) Refer to Command B4h for details. SSD1351 Rev 1.5 P 15/57 Jan 2011 Solomon Systech Pin Name BS[1:0] Pin Type Description I MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS3 and BS2 are command programmable (by command ABh). [reset = 00]. BS1 and BS0 are pin select. Table 7-2 : Bus Interface selection BS[3:0] XX00 XX01 0011 0010 0111 0110 1111 1110 Interface 4 line SPI 3 line SPI 8-bit 6800 parallel 8-bit 8080 parallel 16-bit 6800 parallel 16-bit 8080 parallel 18-bit 6800 parallel 18-bit 8080 parallel Note (1) 0 is connected to VSS (2) 1 is connected to VDDIO IREF I This pin is the segment output current reference pin. A resistor should be connected between this pin and VSS. CL I External clock input pin. When internal clock is enable (i.e. pull HIGH in CLS pin), this pin is not used and should be connected to Ground. When internal clock is disable (i.e. pull LOW in CLS pin), this pin is the external clock source input pin. CLS I Internal clock selection pin. When this pin is pulled HIGH, internal oscillator is enabled (normal operation). When this pin is pulled LOW, an external clock signal should be connected to CL. CS# I This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW. RES# I This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation. D/C# I This pin is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data at D[17:0] will be interpreted as data. When the pin is pulled LOW, the data at D[17:0] will be interpreted as command. R/W# (WR#) I This pin is read / write control input pin connecting to the MCU interface. When 6800 interface mode is selected, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin R/W (WR#) must be connected to VSS. Solomon Systech Jan 2011 P 16/57 Rev 1.5 SSD1351 Pin Name E (RD#) Pin Type Description I This pin is MCU interface input. When 6800 interface mode is selected, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When 8080 interface mode is selected, this pin receives the Read (RD#) signal. Read operation is initiated when this pin is pulled LOW and the chip is selected. When serial interface is selected, this pin E(RD#) must be connected to VSS. D[17:0] I/O These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode) FR O This pin is reserved pin. No connection is necessary and should be left open individually. TR[4:0] O These are reserved pins. No connection is necessary and should be left open individually. VSS1 P This pin is reserved pin. It should be connected to VSS. VCI1 P This pin is reserved pin. No connection is necessary and should be left open individually. SA[127:0] SB[127:0] SC[127:0] O These pins provide the OLED segment driving signals. These pins are VSS state when display is OFF. The 384 segment pins are divided into 3 groups, SA, SB and SC. Each group can have different color settings for color A, B and C. COM[127:0] SSD1351 Rev 1.5 I/O P 17/57 These pins provide the Common switch signals to the OLED panel. Jan 2011 Solomon Systech 8 FUNCTIONAL BLOCK DESCRIPTIONS 8.1 MCU Interface SSD1351 MCU interface consist of 18 data pin and 5 control pins. The pin assignment at different interface mode is summarized in Table 8-1. Different MCU mode can be set by hardware selection on BS[1:0] pins and software command on BS[3:0].(refer to Table 7-2 for BS[3:0] setting) Table 8-1 : MCU interface assignment under different bus interface mode Pin Name Bus Interface 8b / 8080 8b / 6800 16b / 8080 16b / 6800 18b / 8080 18b / 6800 SPI 4-wire SPI 3-Wire Data / Command Interface D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 Tie Low Tie Low Tie Low D[15:0] Tie Low D[15:0] D[17:0] D[17:0] Tie Low Tie Low D5 D4 D3 D2 D[7:0] D[7:0] D1 D0 NC SDIN SCLK NC SDIN SCLK Control Signal E R/W# CS# D/C# RD# WR# CS# D/C# E R/W# CS# D/C# RD# WR# CS# D/C# E R/W# CS# D/C# RD# WR# CS# D/C# E R/W# CS# D/C# Tie Low CS# D/C# Tie Low CS# Tie Low RES# RES# RES# RES# RES# RES# RES# RES# RES# Table 8-2 : Data bus selection modes Data Read Data Write Command Read Command Write 6800 – series Parallel Interface 18-/16-/8-bits 18-/16-/8-bits Yes. Refer to section 9 Yes 8080 – series Parallel Interface 18-/16-/8-bits 18-/16-/8-bits Yes. Refer to section 9 Yes 3-wire Serial Interface or 4-wire Serial Interface No 8-bits No Yes 8.1.1 MCU Parallel 6800-series Interface The parallel interface consists of 18 bi-directional data pins (D[17:0]), R/W#, D/C#, E and CS#. A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal. Table 8-3 : Control pins of 6800 interface Function E R/W# CS# D/C# Write command ↓ L L L Read status ↓ H L L Write data ↓ L L H Read data ↓ H L H Note (1) ↓ stands for falling edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-1. Solomon Systech Jan 2011 P 18/57 Rev 1.5 SSD1351 Figure 8-1 : Data read back procedure - insertion of dummy read R/W# E N Databus Write column address Dummy read n n+1 Read 1st data Read 2nd data n+2 Read 3rd data 8.1.2 MCU Parallel 8080-series Interface The parallel interface consists of 18 bi-directional data pins (D[17:0]), RD#, WR#, D/C# and CS#. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW. Figure 8-2 : Example of Write procedure in 8080 parallel interface mode CS# WR# D[17:0] D/C# high RD# low Figure 8-3 : Example of Read procedure in 8080 parallel interface mode CS# RD# D[17:0] D/C# WR# high low SSD1351 Rev 1.5 P 19/57 Jan 2011 Solomon Systech Table 8-4 : Control pins of 8080 interface Function Write command Read status Write data Read data RD# H ↑ H ↑ WR# ↑ H ↑ H CS# L L L L D/C# L L H H Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8-4. Figure 8-4 : Display data read back procedure - insertion of dummy read WR# RD# Databus N Write column address Dummy read n n+1 Read 1st data Read 2nd data n+2 Read 3rd data 8.1.3 MCU Serial Interface (4-wire SPI) The 4-wire serial interface consists of serial clock: SCLK, serial data: SDIN, D/C#, CS#. In 4-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D17and E can be connected to an external ground. Table 8-5 : Control pins of 4-wire Serial interface Function Write command Write data E Tie LOW Tie LOW CS# L L D/C# L H Note (1) H stands for HIGH in signal (2) L stands for LOW in signal SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. Under serial mode, only write operations are allowed. Solomon Systech Jan 2011 P 20/57 Rev 1.5 SSD1351 Figure 8-5 : Write procedure in 4-wire Serial interface mode CS# D/C# SDIN/ SCLK DB1 DB2 DBn SCLK (D0) SDIN(D1) D7 D6 D5 D4 D3 D2 D0 D1 8.1.4 MCU Serial Interface (3-wire SPI) The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CS#. In 3-wire SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D17, R/W# (WR#), E(RD#) and D/C# can be connected to an external ground. The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0). Under serial mode, only write operations are allowed. Table 8-6 : Control pins of 3-wire Serial interface Function Write command Write data E(RD#) Tie LOW Tie LOW R/W#(WR#) Tie LOW Tie LOW CS# L L D/C# Tie LOW Tie LOW D0 ↑ ↑ Note L stands for LOW in signal (1) Figure 8-6 : Write procedure in 3-wire Serial interface mode CS# SDIN/ SCLK DB1 DB2 DBn SCLK (D0) D/C# SDIN(D1) SSD1351 Rev 1.5 D7 P 21/57 D6 Jan 2011 D5 D4 D3 D2 D1 D0 Solomon Systech 8.2 Reset Circuit When RES# input is pulled LOW, the chip is initialized with the following status: 1. Display is OFF 2. 128 MUX Display Mode 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h) 4. Display start line is set at display RAM address 0 5. Column address counter is set at 0 6. Normal scan direction of the COM outputs 7. Command A2h,B1h,B3h,BBh,BEh are locked by command FDh 8.3 GDDRAM 8.3.1 GDDRAM structure The GDDRAM is a bit mapped static RAM holding the pattern to be displayed. The RAM size is 128 x 128 x 18bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. Each pixel has 18-bit data. Each sub-pixels for color A, B and C have 6 bits. The arrangement of data pixel in graphic display data RAM is shown in Table 8-7 Table 8-7 : 262k Color Depth Graphic Display Data RAM Structure Normal Segment Address Remapped Color Data Format Common Address Normal 0 1 2 3 4 5 6 7 : : : 123 124 125 126 127 Remapped 127 126 125 124 123 122 121 120 : : : 4 3 2 1 0 SEG output Solomon Systech A A5 A4 A3 A2 A1 A0 0 127 B B5 B4 B3 B2 B1 B0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 : : : 6 6 6 6 6 : : : 6 6 6 6 6 : : : 6 6 6 6 6 SA0 SB0 SC0 SA1 C C5 C4 C3 C2 C1 C0 6 6 6 6 6 6 no of bits A A5 A4 A3 A2 A1 A0 1 126 B B5 B4 B3 B2 B1 B0 C C5 C4 C3 C2 C1 C0 2 125 A A5 A4 A3 A2 A1 A0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 : : : 6 6 6 6 6 : : : 6 6 6 6 6 …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… SB1 SC1 SA2 …… 6 6 6 6 6 6 6 6 6 6 6 6 in this cell …… …… …… …… …… …… …… …… …… …… 126 1 C C5 C4 C3 C2 C1 C0 …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… …… 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 …… Jan 2011 A A5 A4 A3 A2 A1 A0 127 0 B B5 B4 B3 B2 B1 B0 C C5 C4 C3 C2 C1 C0 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 6 6 6 6 6 6 6 6 : : : 6 6 6 6 6 Common output COM0 COM1 COM2 COM3 COM4 COM5 COM6 COM7 : : : : COM124 COM125 COM126 COM127 SC126 SA127 SB127 SC127 P 22/57 Rev 1.5 SSD1351 8.3.2 Data bus to RAM mapping under different input mode Table 8-8 : Write Data bus usage under different bus width and color depth mode Write Data 8 bits/Se rial 8 bits/Se rial 65k 262k 16 bits 65k 16 bits 262k format 1 16 bits 262k format 2 18 bits 262k Data bus D9 D8 D17 D16 D15 D14 D13 D12 D11 D10 1st X X X X X X X X X 2nd X X X X X X X X X 1st X X X X X X X X 2nd X X X X X X X 3rd X X X X X X X X X C4 C3 C2 C1 C0 Bus width C olor De pth Input orde r D7 D6 D5 D4 D3 D2 D1 D0 X C4 C3 C2 C1 C0 B5 B4 B3 X B2 B1 B0 A4 A3 A2 A1 A0 X X X X C5 C4 C3 C2 C1 C0 X X X X X B5 B4 B3 B2 B1 B0 X X X X X A5 A4 A3 A2 A1 A0 B5 B4 B3 B2 B1 B0 A4 A3 A2 A1 A0 1st X X X X X X X X X X X X C5 C4 C3 C2 C1 C0 2nd X X X X B5 B4 B3 B2 B1 B0 X X A5 A4 A3 A2 A1 A0 1st X X X X C15 C14 C13 C12 C11 C10 X X B15 B14 B13 B12 B11 B10 2nd X X X X A15 A14 A13 A12 A11 A10 X X C25 C24 C23 C22 C21 C20 3rd X X X X B25 B24 B23 B22 B21 B20 X X A25 A24 A23 A22 A21 A20 C5 C4 C3 C2 C1 C0 B5 B4 B3 B2 B1 B0 A5 A4 A3 A2 A1 A0 Table 8-9 : Read Data bus usage under different bus width and color depth mode Read Data 8 bits 8 bits 65k 262k 16 bits 65k 16 bits 262k format 1 16 bits 262k format 2 18 bits 262k D16 D15 D14 D13 D12 D11 D10 D7 D6 D5 D4 D3 D2 D1 D0 1st X X X X X X X X X X C4 C3 C2 C1 C0 B5 B4 B3 2nd X X X X X X X X X X B2 B1 B0 A4 A3 A2 A1 A0 1st X X X X X X X X X X X X C5 C4 C3 C2 C1 C0 2nd X X X X X X X X X X X X B5 B4 B3 B2 B1 B0 3rd X X X X X X X X X X X X A5 A4 A3 A2 A1 A0 X X C4 C3 C2 C1 C0 B5 B4 B3 B2 B1 B0 A4 A3 A2 A1 A0 1st X X X X X X X X X X X X C5 C4 C3 C2 C1 C0 2nd X X X X B5 B4 B3 B2 B1 B0 X X A5 A4 A3 A2 A1 A0 1st X X X X C15 C14 C13 C12 C11 C10 X X B15 B14 B13 B12 B11 B10 2nd X X X X A15 A14 A13 A12 A11 A10 X X C25 C24 C23 C22 C21 C20 3rd SSD1351 Data bus D9 D8 D17 Bus width Color De pth Input orde r X X X X B25 B24 B23 B22 B21 B20 X X A25 A24 A23 A22 A21 A20 C5 C4 C3 C2 C1 C0 B5 B4 B3 B2 B1 B0 A5 A4 A3 A2 A1 A0 Rev 1.5 P 23/57 Jan 2011 Solomon Systech 8.4 Command Decoder This module determines whether the input should be interpreted as data or command based upon the input of the D/C# pin. If D/C# pin is HIGH, data is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the inputs at D0-D17 are interpreted as a Command and it will be decoded and be written to the corresponding command register. 8.5 8.5.1 Oscillator & Timing Generator Oscillator Figure 8-7 : Oscillator Circuit Internal Oscillator Fosc M U X CL CLK DCLK Divider Display Clock CLS This module is an On-Chip low power RC oscillator circuitry (Figure 8-7). The operation clock (CLK) can be generated either from internal oscillator or external source CL pin by CLS pin. If CLS pin is HIGH, internal oscillator is selected. If CLS pin is LOW, external clock from CL pin will be used for CLK. The frequency of internal oscillator FOSC can be programmed by command B3h. The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can be programmed from 1 to 16 by command B3h. DCLK = FOSC / D The frame frequency of display is determined by the following formula: FFRM = Fosc D × K × No. of Mux where • D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 1024 . • K is the number of display clocks per row. The value is derived by K = Phase 1 period +Phase 2 period + X X = DCLKs in current drive period. Default X = 134 Default K is 5 + 8 + 134 = 147 • Number of multiplex ratio is set by command CAh. The reset value is 127 (i.e. 128MUX). • Fosc is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in higher frequency. If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system. Solomon Systech Jan 2011 P 24/57 Rev 1.5 SSD1351 8.6 SEG/COM Driving block This block is used to derive the incoming power sources into the different levels of internal use voltage and current. • VCC is the most positive voltage supply. • VCOMH is the Common deselected level. It is internally regulated. • VLSS is the ground path of the analog and panel current. • IREF is a reference current for segment current drivers ISEG. The relationship between reference current and segment current of a color is: ISEG = Contrast / 256 * IREF * scale factor in which the contrast is set by Set Contrast command (C1h); and the scale factor (1 ~ 16) is set by Master Current Control command (C7h). A resistor should be connected between IREF pin and VSS pin. For example, in order to achieve ISEG = 200uA at maximum contrast 255, IREF is set to around 12.5uA. This current value is obtained by connecting an appropriate resistor from IREF pin to VSS as shown in Figure 8-8. Figure 8-8 : IREF Current Setting by Resistor Value SSD1351 IREF ≈ 12.5uA IREF (voltage at this pin = VCC – 6V) R1 VSS Since the voltage at IREF pin is VCC – 6V, the value of resistor R1 can be found as below: For IREF = 12.5uA, VCC =16V: R1 = (Voltage at IREF – VSS) / IREF ≈ (16 – 6) / 12.5uA ≈ 800KΩ SSD1351 Rev 1.5 P 25/57 Jan 2011 Solomon Systech 8.7 SEG / COM Driver Segment drivers consist of 384 (128 x 3 colors) current sources to drive OLED panel. The driving current can be adjusted from 0 to 200uA with 256 steps by contrast setting command (C1h). Common drivers generate scanning voltage pulse. The block diagrams and waveforms of the segment and common driver are shown as follow. Figure 8-9 : Segment and Common Driver Block Diagram VCC ISEG VCOMH Current Drive Non-select Row Reset OLED Pixel Selected Row VLSS VLSS Segment Driver Common Driver The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage VCOMH as shown in Figure 8-10. In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is disabled and the Reset switch is enabled. On the other hand, the segment drives to ISEG when the pixel is turned ON. Solomon Systech Jan 2011 P 26/57 Rev 1.5 SSD1351 Figure 8-10 : Segment and Common Driver Signal Waveform One Frame Period COM 0 De -select Row V COMH V LSS Selected Row C OM 1 V COMH V LSS COM Voltage This row is selected to turn on V COMH V LSS Time Segment Voltage Waveform for ON VP Waveform for OFF V LSS Time There are four phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to VLSS in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0]. An OLED panel with larger capacitance requires a longer period for discharging. SSD1351 Rev 1.5 P 27/57 Jan 2011 Solomon Systech In phase 2, first pre-charge is performed. The pixel is driven to attain the corresponding voltage level VP from VLSS. The amplitude of VP can be programmed by the command BBh. The period of phase 2 can be programmed by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage. In phase 3, the OLED pixel is driven to the targeted driving voltage through second pre-charge. The second pre-charge can control the speed of the charging process. The period of phase 3 can be programmed by command B6h. Last phase (phase 4) is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The gray scale can be programmed into different Gamma settings by command B8h/B9h. The bigger gamma setting in the current drive stage results in brighter pixels and vice versa (Details refer to Section 8.8). This is shown in the following figure. Figure 8-11: Gray Scale Control in Segment Phase2 Phase1 Segment Voltage Phase4 Phase3 VP VLSS Time Wider pulse width drives pixel brighter OLED Panel After finishing phase 4, the driver IC will go back to phase 1 to display the next row image data. This four-step cycle is run continuously to refresh image display on OLED panel. The length of phase 4 is defined by command B8h “Look Up Table for Gray Scale Pulse width” or B9h “Use Built-in Linear LUT”. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry. Solomon Systech Jan 2011 P 28/57 Rev 1.5 SSD1351 8.8 Gray Scale Decoder The gray scale effect is generated by controlling the segment current in current drive phase. The segment current is controlled by the Gamma Settings (Setting 0~ Setting 180) through command B8h. The larger the setting, the brighter the pixel will be. The Gray Scale Table stores the corresponding Gamma Setting of the 64 gray scale levels (GS0~GS63) through the software commands B8h or B9h. Three programmable Gray Scale Tables (Gamma Look Up table) support the three colors A, B and C. As shown in Figure 8-12, color A, B, C sub-pixel RAM data has 6 bits, represent the 64 gray scale level from GS0 to GS63. Figure 8-12 : Relation between GDDRAM content and Gray Scale table entry for three colors in 262K color mode (under command B9h Use Built-in Linear LUT) Color A, B or C GDDRAM data (6 bits) 000000 000001 000010 000011 000100 : 111101 111110 111111 Gray Scale Table GS0 GS1 GS2 GS3 GS4 : GS61 GS62 GS63 Default Gamma Setting (Command B9h Linear Gamma Look Up Table) Setting 0 Setting 0 Setting 2 Setting 4 Setting 6 : Setting 120 Setting 122 Setting 124 In command B8h, there are total 180 Gamma Settings (Setting 0 to Setting 180) available for the Gray Scale table. GS0 has no pre-charge and current drive stages so it is in Gamma Setting 0. GS1 can be set as only precharge but no current drive stage by input Gamma Setting 0. When setting the Gray Scale Table (by B8h command) , the rules below must follow: 1) All Gamma Settings (i.e. GS1, GS2, GS3,.....GS63) are entered after command B8h. 2) The gray scale is defined in incremental way, with reference to the length of previous table entry: Setting of GS1 has to be >= 0 Setting of GS2 has to be > Setting of GS1 +1 Setting of GS3 has to be > Setting of GS2 +1 : Setting of GS63 has to be > Setting of GS62 +1 SSD1351 Rev 1.5 P 29/57 Jan 2011 Solomon Systech 8.9 Power ON and OFF sequence The following figures illustrate the recommended power ON and power OFF sequence of SSD1351 (assume VCI and VDDIO are at the same voltage level). Power ON sequence: 1. Power ON VCI, VDDIO. 2. After VCI, VDDIO become stable, set wait time at least 1ms (t0) for internal VDD become stable. Then set RES# pin LOW (logic low) for at least 2us (t1) (4) and then HIGH (logic high). 3. After set RES# pin LOW (logic low), wait for at least 2us (t2). Then Power ON VCC.(1) 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 200ms (tAF). 5. After VCI become stable, wait for at least 300ms to send command. Figure 8-13 : The Power ON sequence. ON VCI, VDDIO VCI,, VDDIO RES# ON VCC Send AFh command for Display ON t0 OFF t1 RES# GND t2 VCC OFF tAF ON SEG/COM OFF Power OFF sequence: 1. Send command AEh for display OFF. 2. Power OFF VCC.(1), (2) 3. Wait for tOFF. Power OFF VCI, VDDIO. (where Minimum tOFF=0ms (3), Typical tOFF=100ms) Figure 8-14 : The Power OFF sequence Send command AEh for display OFF VCC OFF VCC OFF VCI ,VDDIO OFF VCI, VDDIO tOFF OFF Note: (1) Since an ESD protection circuit is connected between VCI, VDDIO and VCC, VCC becomes lower than VCI whenever VCI, VDDIO is ON and VCC is OFF as shown in the dotted line of VCC in Figure 8-13 and Figure 8-14. (2) VCC should be kept float (disable) when it is OFF. (3) VCI, VDDIO should not be Power OFF before VCC Power OFF. (4) The register values are reset after t1. (5) Power pins (VCI, VDDIO and VCC) can never be pulled to ground under any circumstance. Solomon Systech Jan 2011 P 30/57 Rev 1.5 SSD1351 8.10 VDD Regulator In SSD1351, the power supply pin for core logic operation: VDD, is internally regulated through the VDD regulator. The following figure shows the VDD regulator pin connection scheme: Figure 8-15 VDD pin connection scheme VDD Regulator Enable Command: ABh A[0]=1b. VCI VCI VDDIO VSS VDDIO VDD GND 8.10.1 VDD Regulator in Sleep Mode Power can be saved by disable the internal VDD regulator during Sleep mode. The following figures show the corresponding command sequence: Figure 8-16 : Case 1 - Command sequence for just entering/ exiting sleep mode Command for entering sleep mode : AEh (Sleep In) Sleep mode Command for exiting sleep mode : AFh (Sleep Out) Figure 8-17 : Case 2 - Command sequence for disabling internal VDD regulator during sleep mode Command for entering sleep mode : AEh (Sleep In) Command for disable internal VDD regulator: ABh, bit A[0] is set to 0b Sleep mode Command for enable internal VDD regulator (1): ABh, bit A[0] is set to 1b Wait at least 1ms for VDD becomes stable Command for exiting sleep mode : AFh (Sleep Out) In the above two cases, the RAM content can also be kept during the sleep mode. Note: (1) It should be noted that the internal VDD regulator should be enabled before exiting sleep mode (issuing command AFh). (2) No RAM access through MCU interface when there is no internal VDD. SSD1351 Rev 1.5 P 31/57 Jan 2011 Solomon Systech 9 COMMAND 9.1 Basic Command List Table 9-1 : Command table (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes) Fundamental Command Table D/C# Hex D7 D6 0 15 0 0 1 A[6:0] * A6 1 B[6:0] * B6 D5 0 A5 B5 D4 1 A4 B4 D3 0 A3 B3 D2 1 A2 B2 D2 0 A1 B1 D0 1 A0 B0 Command Set Column Address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127 Set Row Address A[6:0]: Start Address. [reset=0] B[6:0]: End Address. [reset=127] Range from 0 to 127 0 1 1 75 A[6:0] B[6:0] 0 * * 1 1 1 0 1 0 1 A6 A5 A4 A3 A2 A1 A0 B6 B5 B4 B3 B2 B1 B0 0 5C 0 1 0 1 1 1 0 0 Write RAM Command 0 5D 0 1 0 1 1 1 0 1 Read RAM Command 0 A0 1 0 1 0 0 0 0 0 1 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 Description Enable MCU to write Data into RAM Enable MCU to read Data from RAM A[0]=0b, Horizontal address increment [reset] A[0]=1b, Vertical address increment A[1]=0b, Column address 0 is mapped to SEG0 [reset] A[1]=1b, Column address 127 is mapped to SEG0 A[2]=0b, Color sequence: A Æ B Æ C [reset] A[2]=1b, Color sequence is swapped: C Æ B Æ A A[3]=0b, Reserved A[3]=1b, Reserved Set Re-map / Color Depth (Display RAM A[4]=0b, Scan from COM0 to COM[N –1] [reset] to Panel) A[4]=1b, Scan from COM[N-1] to COM0. Where N is the Multiplex ratio. A[5]=0b, Disable COM Split Odd Even A[5]=1b, Enable COM Split Odd Even [reset] A[7:6] Set Color Depth, 00b / 01b: 65k color [reset] 10b: 262k color 11b 262k color, 16-bit format 2 Refer to Table 8-8 for details Solomon Systech Jan 2011 P 32/57 Rev 1.5 SSD1351 Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D2 D0 0 A1 1 0 1 0 0 0 0 1 1 A[6:0] * A6 A5 A4 A3 A2 A1 A0 0 A2 1 0 1 A[6:0] * A6 A5 A4 A3 A2 A1 A0 0 A4~A7 1 0 1 1 0 0 0 0 0 1 1 Command Set Display Start Line Description Set vertical scroll by RAM from 0~127. [reset=00h] Set vertical scroll by Row from 0-127. [reset=60h] 0 Set Display Offset Note This command is locked by Command FDh by default. To unlock it, please refer to Command FDh. (1) A4h: All OFF X1 X0 Set Display Mode A5h: All ON (All pixels have GS63) A6h : Reset to normal display [reset] A7h: Inverse Display (GS0 -> GS63, GS1 -> GS62, ....) 0 1 AB 1 0 A[7:0] A7 A6 1 0 0 0 1 0 0 0 1 0 1 A0 Function Selection 0 0 0 0 1 AD 1 0 1 0 1 1 0 1 AE~AF 1 0 1 0 1 1 1 X0 0 1 1 0 0 0 0 B0 1 NOP A[0]=0b, Disable internal VDD regulator (for power save during sleep mode only) A[0]=1b, Enable internal VDD regulator [reset] A[7:6]=00b, Select 8-bit parallel interface [reset] A[7:6]=01b, Select 16-bit parallel interface A[7:6]=11b, Select 18-bit parallel interface Command for no operation. AEh = Sleep mode On (Display OFF) Set Sleep mode AFh = Sleep mode OFF (Display ON) ON/OFF NOP Command for no operation. A[3:0] Phase 1 period of 5~31 DCLK(s) clocks [reset=0010b] A[3:0]: 0-1 invalid 2 = 5 DCLKs 3 = 7 DCLKs : 15 = 31DCLKs B1 1 0 1 1 0 0 0 1 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 Set Reset (Phase 1) / Pre-charge (Phase 2) period A[7:4] Phase 2 period of 3~15 DCLK(s) clocks [reset=1000b] A[7:4]: 0-2 invalid 3 = 3 DCLKs 4 = 4 DCLKs : 15 =15DCLKs Note (1) 0 DCLK is invalid in phase 1 & phase 2 (2) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh. SSD1351 Rev 1.5 P 33/57 Jan 2011 Solomon Systech Fundamental Command Table D/C# Hex D7 D6 D5 D4 D3 D2 D2 D0 0 B2 1 0 1 1 0 0 1 0 1 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 1 1 0 1 B[7:0] 0 0 0 0 0 0 0 0 C[7:0] 0 0 0 0 0 0 0 0 B3 1 0 1 1 0 0 1 1 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 Command Description A[7:0] = 00h, B[7:0] = 00h, C[7:0] = 00h normal [reset] Display A[7:0] = A4h, B[7:0] = 00h, C[7:0] = 00h enhance display Enhancement performance A[3:0] [reset=0001], divide by DIVSET where Front Clock Divider (DivSet)/ Oscillator Frequency A[3:0] 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 >=1011 DIVSET divide by 1 divide by 2 divide by 4 divide by 8 divide by 16 divide by 32 divide by 64 divide by 128 divide by 256 divide by 512 divide by 1024 invalid A[7:4] Oscillator frequency, frequency increases as level increases [reset=1101b] Note (1) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh. 0 1 1 1 B4 A[7:0] B[7:0] C[7:0] 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 A1 A0 0 1 0 1 0 1 B5 A[3:0] 1 * 0 * 1 * 1 * 0 1 0 1 A3 A2 A1 A0 A[1:0]=00 External VSL [reset] A[1:0]=01,10,11 are invalid Set Segment Low Voltage Note (1) When external VSL is enabled, in order to avoid distortion (VSL) in display pattern, an external circuit is needed to connect between VSL and VSS as shown in Figure 14-1. A[1:0] GPIO0: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH Set GPIO 0 1 B6 A[3:0] 1 0 1 1 * * * * 0 1 0 0 A3 A2 A1 A0 A[3:0] Set Second Pre-charge Period Set Second Precharge Period Solomon Systech A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH 0000b invalid 0001b 1 DCLKS 0010b 2 DCLKS .... 1000 8 DCLKS [reset] .... 1111 15 DCLKS Jan 2011 P 34/57 Rev 1.5 SSD1351 Fundamental Command Table D/C# 0 Hex B8 1 A1[7:0] 1 A2[7:0] 1 . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . 1 D7 D6 D5 D4 D3 D2 D2 D0 1 0 1 1 1 0 0 0 A17 A16 A15 A14 A13 A12 A11 A10 A27 A26 A25 A24 A23 A22 A21 A20 1 A62[7:0] A627 A626 A625 A624 A623 A622 A621 A620 1 A63[7:0] A637 A636 A635 A634 A633 A632 A631 A630 Command Description The next 63 data bytes define Gray Scale (GS) Table by setting the gray scale pulse width in unit of DCLK’s (ranges from 0d ~ 180d) A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2, : A62[7:0]: Gamma Setting for GS62, Look Up Table A63[7:0]: Gamma Setting for GS63 for Gray Scale Pulse width Note 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3..... < Setting of GS62 < Setting of GS63 (2) GS0 has only pre-charge but no current drive stages. (3) GS1 can be set as only pre-charge but no current drive stage by input gamma setting for GS1 equals 0. (1] 0 B9 1 0 1 1 1 0 0 1 0 1 BB A[4:0] 1 0 0 0 1 0 1 1 0 1 1 A4 A3 A2 A1 A0 Reset to default Look Up Table: GS1 = 0 DCLK GS2 = 2 DCLK GS3 = 4 DCLK Use Built-in GS4 = 6 DCLK Linear LUT ... [reset= linear] GS62 = 122 DCLK GS63 = 124 DCLK Set pre-charge voltage level.[reset = 17h] Set Pre-charge voltage A[4:0] 00000 : 11111 Hex code 00h : 1Fh pre-charge voltage 0.20 x VCC : 0.60 x VCC Note (1) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh. 0 BE 1 0 1 1 1 1 1 1 A[2:0] 0 0 0 0 0 A2 A1 A0 Set COM deselect voltage level [reset = 05h] 0 Set VCOMH Voltage A[2:0] 000 : 101 : 111 Hex code 00h : 05h : 07h V COMH 0.72 x VCC : 0.82 x VCC [reset] : 0.86 x VCC Note (1) This command is locked by Command FDh by default. To unlock it, please refer to Command FDh. SSD1351 Rev 1.5 P 35/57 Jan 2011 Solomon Systech Fundamental Command Table D/C# Hex D7 0 C1 1 1 A[7:0] A7 1 B[7:0] B7 1 C[7:0] C7 D6 1 A6 B6 C6 D5 0 A5 B5 C5 D4 0 A4 B4 C4 D3 0 A3 B3 C3 D2 0 A2 B2 C2 D2 0 A1 B1 C1 1 1 D0 1 A0 B0 C0 Command Description A[7:0] Contrast Value Color A [reset=10001010b] Set Contrast B[7:0] Contrast Value Color B [reset=01010001b] Current for C[7:0] Contrast Value Color C [reset=10001010b] Color A,B,C A[3:0] : 0000b reduce output currents for all colors to 1/16 A0 0001b reduce output currents for all colors to 2/16 Master Contrast .... Current Control 1110b reduce output currents for all colors to 15/16 1111b no change [reset] 0 C7 1 1 0 0 0 1 A[3:0] * * * * A3 A2 A1 0 1 CA A[6:0] 1 0 A[6:0] MUX ratio 16MUX ~ 128MUX, [reset=127], 1 0 0 1 0 1 0 A6 A5 A4 A3 A2 A1 A0 Set MUX Ratio (Range from 15 to 127) 0 D1 1 0 1 0 1 1 0 1 NOP 0 E3 1 1 1 0 0 0 1 1 NOP 0 1 1 FD 1 1 1 1 1 1 0 1 A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 Command for No Operation Command for No Operation A[7:0]: MCU protection status [reset = 12h] A[7:0] = 12b, Unlock OLED driver IC MCU interface from entering command [reset] A[7:0] = 16b, Lock OLED driver IC MCU interface from entering command A[7:0] = B0b, Command A2,B1,B3,BB,BE,C1 inaccessible Set Command in both lock and unlock state [reset] Lock A[7:0] = B1b, Command A2,B1,B3,BB,BE,C1 accessible if in unlock state Note The locked OLED driver IC MCU interface prohibits all commands and memory access except the FDh command. (1) Note (1) “*” stands for “Don’t care”. Solomon Systech Jan 2011 P 36/57 Rev 1.5 SSD1351 Table 9-2: SSD1351 Graphic Acceleration Command List Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Single byte command (D/C# = 0), Multiple byte command (D/C# = 0 for first byte, D/C# = 1 for other bytes) Graphic acceleration command D/C# Hex D7 D6 D5 D4 D3 D2 D2 D0 0 96 1 0 0 1 0 1 1 0 1 1 1 1 1 A[7:0] B[6:0] C[7:0] D[6:0] E[1:0] A7 0 C7 0 0 A6 B6 C6 D6 0 A5 B5 C5 D5 0 A4 B4 C4 D4 0 A3 B3 C3 D3 0 A2 B2 C2 D2 0 A1 B1 C1 D1 E1 Command A0 B0 C0 D0 E0 Description A[7:0] = 00000000b No scrolling A[7:0] = 00000001b to 00111111b Scroll towards SEG127 with 1 column offset A[7:0] = 01000000b to 11111111b Scroll towards SEG0 with 1 column offset B[6:0] : start row address Horizontal Scroll C[7:0] : number of rows to be H-scrolled B+C <= 128 D[6:0] : Reserved (reset=00h) E[1:0] : scrolling time interval 00b test mode 01b normal 10b slow 11b slowest Note (1) Operates during display ON. 0 9E 1 0 0 1 1 1 1 0 Stop horizontal scroll Stop Moving 0 9F 1 0 0 1 1 1 1 1 Start Moving Note (1) After sending 9Eh command to stop the scrolling action, the ram data needs to be rewritten Start horizontal scroll Note (1) After executed the graphic command, waiting time is required for update GDDRAM content. VCI =2.4~3.5V, waiting time = 500ns/pixel. (2) “*” stands for “Don’t care”. SSD1351 Rev 1.5 P 37/57 Jan 2011 Solomon Systech 10 COMMAND 10.1.1 Set Column Address (15h) This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row. 10.1.2 Set Row Address (75h) This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address. For example, column start address is set to 2 and column end address is set to 125, row start address is set to 1 and row end address is set to 126. Horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 125 and from row 1 to row 126 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation(solid line in Figure 10-1). Whenever the column address pointer finishes accessing the end column 125, it is reset back to column 2 and row address is automatically increased by 1(solid line in Figure 10-1). While the end row 126 and end column 125 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2(dotted line in Figure 10-1). Figure 10-1 : Example of Column and Row Address Pointer Movement Col 0 Col 1 Col 2 ….. ……. Col125 Col126 Col127 Row 0 Row 1 Row 2 : : : : : : Row 125 Row 126 Row 127 Solomon Systech Jan 2011 P 38/57 Rev 1.5 SSD1351 10.1.3 Write RAM Command (5Ch) After entering this single byte command, data entries will be written into the display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before write data into RAM. 10.1.4 Read RAM Command (5Dh) After entering this single byte command, data is read from display RAM until another command is written. Address pointer is increased accordingly. This command must be sent before read data from RAM. 10.1.5 Set Re-map & Dual COM Line Mode (A0h) This command has multiple configurations and each bit setting is described as follows: • Address increment mode (A[0]) When A[0] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 10-2. Figure 10-2 : Address Pointer Movement of Horizontal Address Increment Mode Row 0 Row 1 : Row 126 Row 127 Col 0 Col 1 ….. Col 126 Col 127 : : : : : When A[0] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 10-3. Figure 10-3: Address Pointer Movement of Vertical Address Increment Mode Col 0 Row 0 Row 1 : Row 126 Row 127 • Col 1 ….. ….. ….. : ….. ….. Col 126 Col 127 Column Address Remap (A[1]) This command bit is made for increasing the layout flexibility of segment signals in OLED module with segment arranged from left to right (when A[1] is set to 0) or vice versa (when A[1] is set to 1), as demonstrated in Figure 10-4. A[1] = 0 (reset): RAM Column 0 ~ 127 maps to Col0~Col127 A[1] = 1: RAM Column 0 ~ 127 maps to Col127~Col0 SSD1351 Rev 1.5 P 39/57 Jan 2011 Solomon Systech • Color Remap (A[2]) A[2] = 0 (reset): color sequence A Æ B Æ C A[2] = 1: color sequence C Æ B Æ A • COM scan direction Remap (A[4]) This command bit determines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down or vice versa. A[1] = 0 (reset): Scan from up to down A[1] = 1: Scan from bottom to up Details of pin arrangement can be found in Figure 10-4. • Odd even split of COM pins (A[5]) This command bit can set the odd even arrangement of COM pins. A[5] = 0 (reset): Disable COM split odd even, pin assignment of common is in sequential as COM127 COM126...COM 65 COM64...SEG479...SEG0...COM0 COM1...COM62 COM63 A[5] = 1: Enable COM split odd even, pin assignment of common is in odd even split as COM127 COM125...COM3 COM1...SEG479...SEG0...COM0 COM2...COM124 COM126 Details of pin arrangement can be found in Figure 10-4. Figure 10-4 : COM Pins Hardware Configuration (MUX ratio: 128) A[0] =0 A[1]=0 Disable Odd Even Split of Disable COM Left / Right COM pins Remap A[7]=0 COM Scan Direction : from COM0 to COM127 ROW127 128 x 128 ROW64 ROW63 ROW0 COM64 SSD1351Z COM127 COM0 COM63 Pad 1,2,3,…Gold Bumps face up A[0] =1 Enable Odd Even Split of COM pins A[1]=0 A[7]=0 Disable COM Left / Right COM Scan Direction : from Remap COM0 to COM127 ROW126 ROW127 ROW125 128 x 128 ROW2 ROW1 ROW0 SSD1351Z COM64 COM126 COM127 COM0 COM1 COM63 Pad 1,2,3,… Gold Bumps face up Solomon Systech Jan 2011 P 40/57 Rev 1.5 SSD1351 • Display color mode (A[7:6]) Select either 262k, 65k or 256 color mode. 10.1.6 Set Display Start Line (A1h) This command is used to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 127. Figure 10-5 shows an example of using this command when MUX ratio = 128 and MUX ratio = 100 and Display Start Line = 28. In there, “Row” means the graphic display data RAM row. Figure 10-5 : Example of Set Display Start Line with no Remap COM Pin COM0 COM1 COM2 COM3 COM4 COM5 COM6 : : : : COM95 COM96 COM97 COM98 COM99 COM100 COM101 COM102 COM103 COM104 COM105 COM106 COM107 COM108 COM109 COM110 COM111 COM112 COM113 COM114 COM115 COM116 COM117 COM118 COM119 COM120 COM121 COM122 COM123 COM124 COM125 COM126 COM127 Display example 128 0 Row0 Row1 Row2 Row3 Row4 Row5 Row6 : : : : Row95 Row96 Row97 Row98 Row99 Row100 Row101 Row102 Row103 Row104 Row105 Row106 Row107 Row108 Row109 Row110 Row111 Row112 Row113 Row114 Row115 Row116 Row117 Row118 Row119 Row120 Row121 Row122 Row123 Row124 Row125 Row126 Row127 128 28 Row28 Row29 Row30 Row31 Row32 Row33 Row34 : : : : Row123 Row124 Row125 Row126 Row127 Row0 Row1 Row2 Row3 Row4 Row5 Row6 Row7 Row8 Row9 Row10 Row11 Row12 Row13 Row14 Row15 Row16 Row17 Row18 Row19 Row20 Row21 Row22 Row23 Row24 Row25 Row26 Row27 (b) (a) SSD1351 Rev 1.5 100 0 Row0 Row1 Row2 Row3 Row4 Row5 Row6 : : : : Row95 Row96 Row97 Row98 Row99 - P 41/57 Jan 2011 100 28 Row28 Row29 Row30 Row31 Row32 Row33 Row34 : : : : Row124 Row125 Row126 Row127 Row0 - (c) MUX ratio (CAh) Display start line (A1h) (d) (GDDARAM) Solomon Systech 10.1.7 Set Display Offset (A2h) This command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0-127. For example, to move the COM16 towards the COM0 direction for 16 lines, A[7:0] should be given by 00010000. The figure below shows an example of this command. In there, “Row” means the graphic display data RAM row. Figure 10-6 : Example of Set Display Offset with no Remap COM0 COM1 COM2 a 128 0 Row0 Row1 Row2 b 96 0 Row0 Row1 Row2 c 96 32 Row32 Row33 Row34 : : : : COM61 COM62 COM63 COM64 COM65 COM66 : COM93 COM94 COM95 COM96 COM97 COM98 : COM125 COM126 COM127 Display example Row61 Row62 Row63 Row64 Row65 Row66 : Row93 Row94 Row95 Row96 Row97 Row98 : Row125 Row126 Row127 (a) Solomon Systech Row61 Row62 Row63 Row64 Row65 Row66 : Row93 Row94 Row95 : - Case MUX ratio (CAh) Display offset (A2h A[7:0]) Row93 Row94 Row95 : Row0 Row1 Row2 : Row29 Row30 Row31 (c) (d) (GDDARAM) Jan 2011 P 42/57 Rev 1.5 SSD1351 10.1.8 Set Display Mode (A4h ~ A7h) These are single byte command and they are used to set Normal Display, Entire Display ON, Entire Display OFF and Inverse Display. • All OFF (A4h) Force the entire display to be at gray scale level “GS0” regardless of the contents of the display data RAM as shown in Figure. Figure 10-7 : Example of Entire Display OFF GDDRAM • Display Set Entire Display ON (A5h) Force the entire display to be at gray scale “GS63” regardless of the contents of the display data RAM as shown in Figure 10-8. Figure 10-8 : Example of Entire Display ON GDDRAM • Display Set Entire Display OFF (A6h) Reset the above effect and turn the data to ON at the corresponding gray level. Figure 10-9 shows an example of Normal Display. Figure 10-9 : Example of Normal Display GDDRAM • Display Inverse Display (A7h) The gray level of display data are swapped such that “GS0” ↔ “GS63”, “GS1” ↔ “GS62”, … Figure 10-10 shows an example of inverse display. Figure 10-10 : Example of Inverse Display GDDRAM SSD1351 Rev 1.5 P 43/57 Jan 2011 Display Solomon Systech 10.1.9 Set Function selection (ABh) This double byte command is used to select MCU bus interface and to enable or disable the VDD regulator. • MCU bus interface selection (A[7:6]) Select appropriate logic setting as described in the following table; for which BS3 and BS2 are command programmable, and BS1 and BS0 are pin selected (refer to Section 7). Table 10-11: Bus interface selection BS[3:2] 00 01 11 Interface SPI, 8-bit parallel [reset] 16-bit parallel 18-bit parallel • Set VDD regulator (A[0]) This bit is used to enable or disable the VDD regulator. A[0] = 0: Disable the internal VDD regulator (for power save during sleep mode only) A[0] = 1 (reset): Enable the internal VDD regulator 10.1.10 Set Sleep mode ON/OFF (AEh / AFh) These single byte commands are used to turn the OLED panel display ON or OFF. When the display is OFF (command AEh), the segment is in VSS state and common is in high impedance state. 10.1.11 Set Phase Length (B1h) This double byte command sets the length of phase 1 and 2 of segment waveform of the driver. • Phase 1 (A[3:0]): Set the period from 5 to 31 in the unit of 2 DCLKs. A larger capacitance of the OLED pixel may require longer period to discharge the previous data charge completely. • Phase 2 (A[7:4]): Set the period from 3 to 15 in the unit of DCLKs. A longer period is needed to charge up a larger capacitance of the OLED pixel to the target voltage VP. 10.1.12 Display Enhancement (B2h) This four byte command enhancement display performance. 10.1.13 Set Front Clock Divider / Oscillator Frequency (B3h) This double byte command consists of two functions: • Front Clock Divide Ratio (A[3:0]) Set the divide ratio to generate DCLK (Display Clock) from CLK. The divide ratio is from 1 to 16, with reset value = 1. Please refer to Section 8.5 for the detail relationship of DCLK and CLK. • Oscillator Frequency (A[7:4]) Program the oscillator frequency Fosc which is the source of CLK if CLS pin is pulled HIGH. The 4bit value results in 16 different frequency settings being available. 10.1.14 Set GPIO (B5h) This double byte command is used to set the states of GPIO0 and GPIO1 pins. Refer to Table 9-1 for details. Solomon Systech Jan 2011 P 44/57 Rev 1.5 SSD1351 10.1.15 Set Second Pre-charge period (B6h) This double byte command is used to set the phase 3 second pre-charge period. The period of phase 3 can be programmed by command B6h and it is ranged from 1 to 15 DCLK's. Please refer to Table 9-1 for the detail information. 10.1.16 Look Up Table for Gray Scale Pulse width (B8h) This command is used to set each individual gray scale level for the display. Except gray scale levels GS0 that has no pre-charge and current drive, each gray scale level is programmed in the length of current drive stage pulse width with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it’s turned ON. Following the command B8h, the user has to set the gray scale setting for GS1, GS2, …, GS62, GS63 one by one in sequence. GS1 can be set as gamma setting 0, which means there is only precharge phase but no current drive phase. Refer to Section 8.8 for details. The setting of gray scale table entry can perform gamma correction on OLED panel display. Since the perception of the brightness scale shall match the image data value in display data RAM, appropriate gray scale table setting like the example shown below (Figure 10-) can compensate this effect. Figure 10-12 : Example of Gamma correction by Gamma Look Up table setting Brightness Gamma Setting Gamma Look Up table setting Brightness Panel response Gray Scale Table Gamma Setting Result in linear response Gray Scale Table 10.1.17 Use Built-in Linear LUT (B9h) This single byte command reloads the preset linear Gray Scale table as GS0 =Gamma Setting 0, GS1 = Gamma Setting 0, GS2 = Gamma Setting 2, GS3 = Gamma Setting 4,... GS62 = Gamma Setting 122, GS63 = Gamma Setting 124. Refer to Section 8.8 for details. 10.1.18 Set Pre-charge voltage (BBh) This double byte command sets the first pre-charge voltage (phase 2) level of segment pins. The level of precharge voltage is programmed with reference to VCC. Refer to Table 9-1 for details. 10.1.19 Set VCOMH Voltage (BEh) This double byte command sets the high voltage level of common pins, VCOMH. The level of VCOMH is programmed with reference to VCC. Refer to Table 9-1 for details. SSD1351 Rev 1.5 P 45/57 Jan 2011 Solomon Systech 10.1.20 Set Contrast Current for Color A,B,C (C1h) This command is used to set Contrast Setting of the display. The chip has 256 contrast steps from 00h to FFh. The segment output current ISEG increases linearly with the contrast step, which results in brighter display. 10.1.21 Master Contrast Current Control (C7h) This double byte command is to control the segment output current by a scaling factor. The chip has 16 master control steps, with the factor ranges from 1 [0000b] to 16 [1111b – default]. The smaller the master current value, the dimmer the OLED panel display is set. For example, if original segment output current is 160uA at scale factor = 16, setting scale factor to 8 would reduce the current to 80uA. 10.1.22 Set Multiplex Ratio (CAh) This double byte command switches default 1:128 multiplex mode to any multiplex mode from 16 to 128. For example, when multiplex ratio is set to 16, only 16 common pins are enabled. The starting and the ending of the enabled common pins are depended on the setting of “Display Offset” register programmed by command A2h. Figure 10-5 and Figure 10-6 show examples of setting the multiplex ratio through command CAh. 10.1.23 Set Command Lock (FDh) This command is used to lock the OLED driver IC from accepting any command except itself. After entering FDh 16h (A[2]=1b), the OLED driver IC will not respond to any newly-entered command (except FDh 12h A[2]=0b) and there will be no memory access. This is call “Lock” state. That means the OLED driver IC ignore all the commands (except FDh 12h A[2]=0b) during the “Lock” state. Entering FDh 12h (A[2]=0b) can unlock the OLED driver IC. That means the driver IC resume from the “Lock” state. And the driver IC will then respond to the command and memory access. Solomon Systech Jan 2011 P 46/57 Rev 1.5 SSD1351 11 MAXIMUM RATINGS Table 11-1 : Maximum Ratings (Voltage Reference to VSS) Symbol VCC VDDIO VCI VSEG VCOM Vin TA Tstg Parameter Supply Voltage SEG output voltage COM output voltage Input voltage Operating Temperature Storage Temperature Range Value -0.5 to 19.0 -0.5 to VCI -0.3 to 4.0 0 to VCC 0 to 0.9*VCC Vss-0.3 to VDDIO+0.3 -40 to +85 -65 to +150 Unit V V V V V V ºC ºC *Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description. *This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected. SSD1351 Rev 1.5 P 47/57 Jan 2011 Solomon Systech 12 DC CHARACTERISTICS Conditions (Unless otherwise specified): Voltage referenced to VSS VCI = 2.4 to 3.5V TA = 25°C Table 12-1 : DC Characteristics Symbol VCC VCI VDDIO VOH VOL VIH VIL Parameter Operating Voltage Low voltage power supply Power Supply for I/O pins High Logic Output Level Low Logic Output Level High Logic Input Level Low Logic Input Level ISLP_VDDIO VDDIO Sleep mode Current ISLP_VCC VCC Sleep mode Current Test Condition Iout =100uA Iout =100uA VCI = VDDIO =2.8V, VCC =16V Display OFF, No panel attached VCI = VDDIO =2.8V, VCC =16V Display OFF, No panel attached VCI = VDDIO =2.8V, VCC =16V Display OFF, No panel attached Min 10 2.4 1.65 0.9*VDDIO 0 0.8*VDDIO 0 - Typ 16 - Max 18 3.5 VCI VDDIO 0.1*VDDIO VDDIO 0.2*VDDIO 10 Unit V V V V V V V uA - - 10 uA - 50 uA - 10 uA 0.5 10 uA - 255 280 uA - 1.15 1.26 mA Contrast = FFh - 200 - uA Contrast = 7Fh - 100 - uA n=A -3 50 - 3 uA % n=B -3 - 3 n=C -3 - 3 n=A -2 - 2 n=B -2 - 2 n=C -2 - 2 P 48/57 Rev 1.5 ISLP_VCI VCI Sleep mode Current IDDIO VDDIO Supply Current Enable Internal VDD during Sleep mode Disable Internal VDD during Sleep mode VCI = VDDIO =, 3.5V, VCC = 16V, Display ON, No panel attached, contrast = FF ICI VCI Supply Current VCI = VDDIO =, 3.5V, VCC = 16, Display ON, No panel attached, contrast = FF ICC VCC Supply Current VCI = VDDIO =, 3.5V, VCC = 16, Display ON, No panel attached, contrast = FF ISEG Segment Output Current Setting VCC = 16 at IREF = 12.5uA Dev Adj. Dev Contrast = 3Fh Segment (SA, SB, SC) output Dev = (ISn – IMID)/IMID current uniformity IMID = (IMAX + IMIN)/2 (contrast = FF) ISn = Segment n current . e.g. For n=A, then ISn = ISA = SA current Adj Dev = (ISn[m]-ISn[m+1]) / (ISn [m]+ Adjacent pin output current ISn [m+1]) uniformity (contrast = FF) e.g. For n=A, m=3, then ISn[m]= ISA[3] = SA[3] current Solomon Systech Jan 2011 % SSD1351 13 AC CHARACTERISTICS Conditions (Unless otherwise specified): Voltage referenced to VSS TA = 25°C Table 13-1 : AC Characteristics Symbol Parameter Test Condition FOSC (1) Oscillation Frequency of Display VCI = 2.8V Min 2.5 FFRM Timing Generator Frame Frequency for 128 MUX Mode 128x128 Graphic Display Mode, Display ON, Internal Oscillator Enabled tRES Reset low pulse width (RES#) - Typ 2.8 Max Unit 3.1 MHz FOSC * 1/(D*K*128) (2) 2000 - - Hz ns Note (1) FOSC stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value, and B3h A[3:0] is in [0001]. (2) D: divide ratio set by command B3h A[3:0] K: Phase 1 period +Phase 2 period + X X: DCLKs in current drive period SSD1351 Rev 1.5 P 49/57 Jan 2011 Solomon Systech Table 13-2 : 6800-Series MCU Parallel Interface Timing Characteristics (VDDIO- VSS =1.65V- VCI, VCI - VSS = 2.4-3.5V, TA = 25°C) Symbol Parameter Clock Cycle Time (read) tCYCLE Clock Cycle Time (write) Min 320 300 Typ Max Unit - - ns tAS Address Setup Time 24 - - ns tAH Address Hold Time 0 - - ns tDSW Write Data Setup Time 40 - - ns tDHW Write Data Hold Time 7 - - ns tDHR Read Data Hold Time 20 - - ns tOH Output Disable Time - - 70 ns tACC Access Time - - 140 ns 120 60 60 60 - - ns PWCSH Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write) Chip Select High Pulse Width (read) Chip Select High Pulse Width (write) - - ns tR Rise Time - - 15 ns tF Fall Time - - 15 ns PWCSL Figure 13-1 : 6800-series MCU parallel interface characteristics D/C# tAS tAH R/W# E tCYCLE CS# tR tF tDHW tDSW D[17:0] (1) (WRITE) D[17:0] (1) (READ) PWCSH PWCSL Valid Data tACC tDHR Valid Data tOH Note (1) when 8 bit used: D[7:0] instead; when 16 bit used: D[15:0] instead; when 18 bit used: D[17:0] instead. Solomon Systech Jan 2011 P 50/57 Rev 1.5 SSD1351 Table 13-3 : 8080-Series MCU Parallel Interface Timing Characteristics (VDDIO- VSS =1.65V- VCI, VCI - VSS = 2.4-3.5V, TA = 25°C) Symbol tCYCLE tAS tAH tDSW tDHW tDHR tOH tACC tPWLR tPWLW tPWHR tPWHW tR tF tCS tCSH tCSF Parameter Clock Cycle Time Address Setup Time Address Hold Time Write Data Setup Time Write Data Hold Time Read Data Hold Time Output Disable Time Access Time Read Low Time Write Low Time Read High Time Write High Time Rise Time Fall Time Chip select setup time Chip select hold time to read signal Chip select hold time Min 300 10 0 40 7 20 150 60 60 60 0 0 20 Typ - Max 46 140 15 15 - Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Figure 13-2 : 8080-series MCU parallel interface characteristics Write cycle CS# tCSF tCS D/C# tAH tAS tR tF WR# tPWLW tPWHW tDSW D[17:0] tCYCLE tDHW (1) Read cycle CS# tCSH tCS D/C# tAS tR tF RD# tAH tCYCLE tPWLR tACC tPWHR tDHR D[17:0] (1) tOH Note (1) when 8 bit used: D[7:0] instead; when 16 bit used: [15:0] instead; when 18 bit used: D[17:0] instead. SSD1351 Rev 1.5 P 51/57 Jan 2011 Solomon Systech Table 13-4 : Serial Interface Timing Characteristics (4-wire SPI) (VDDIO- VSS =1.65V- VCI, VCI - VSS = 2.4-3.5V, TA = 25°C) Symbol tcycle tAS tAH tCSS tCSH tDSW tDHW tCLKL tCLKH tR tF Parameter Clock Cycle Time Address Setup Time Address Hold Time Chip Select Setup Time Chip Select Hold Time Write Data Setup Time Write Data Hold Time Clock Low Time Clock High Time Rise Time Fall Time Min 220 15 42 20 10 15 20 20 20 - Typ - Max 15 15 D1 D0 Unit ns ns ns ns ns ns ns ns ns ns ns Figure 13-3 : Serial interface characteristics (4-wire SPI) D/C# t AS t AH t CSS CS# t CSH tcycle t CLKL tCLKH SCLK(D0) tF tR t DSW SDIN(D1) t DHW Valid Data CS# SCLK(D0) SDIN(D1) Solomon Systech D7 D6 D5 D4 D3 Jan 2011 D2 P 52/57 Rev 1.5 SSD1351 Table 13-5 : Serial Interface Timing Characteristics (3-wire SPI) (VDDIO- VSS =1.65V- VCI, VCI - VSS = 2.4-3.5V, TA = 25°C) Symbol tcycle tCSS tCSH tDSW tDHW tCLKL tCLKH tR tF Parameter Clock Cycle Time Chip Select Setup Time Chip Select Hold Time Write Data Setup Time Write Data Hold Time Clock Low Time Clock High Time Rise Time Fall Time Min 220 20 44 15 20 20 20 - Typ - Max 15 15 Unit ns ns ns ns ns ns ns ns ns Figure 13-4 : Serial interface characteristics (3-wire SPI) CS# SCLK SDIN D/C# D7 D6 D5 D4 D3 t CSS CS# D2 t CYCLE tF tCLKH tR t DSW SDIN (D1) SSD1351 D0 t CSH t CLKL SCLK (D0) D1 t DHW Valid Data Rev 1.5 P 53/57 Jan 2011 Solomon Systech 14 APPLICATION EXAMPLE Figure 14-1 : SSD1351Z application example for 18-bit 6800-parallel interface mode The configuration for 18-bit 6800-parallel interface mode is shown in the following diagram: (VCI = 3.3V, VDDIO = 1.8V, external VCC = 16V, IREF = 12.5uA, BS[3:2] are set to 11b through command A0h) Color OLED Panel COM1 : : : COM127 : : : : : : : SA127 SB127 SC127 SA0 SB0 SC0 COM126 : : : COM0 128RGBx128 VSS VLSS BGGND FR VSL CL CLS GPIO0 GPIO1 VCI IREF VPP VDD VDDIO BS1 BS0 D[17:0] E R/W# D/C# RES# CS# VCC VCOMH SSD1351Z R1 C1 C2 C3 C4a C4b VCC D[17:0] E R/W# D/C# RES# CS# C5 VDDIO VCI R2 D1 D2 GND Voltage at IREF = VCC – 6V. For VCC = 16V, IREF = 12.5uA: R1 = (Voltage at IREF - VSS) / IREF = (16-6) / 12.5u = 800KΩ R2 = 50Ω, 1/8W (1) D1 ~ D2: Vth=0.7V, 1N4148 (1) C1 ~ C3: 1uF, C4a, C5: 4.7uF, C4b: 0.1uF (1) Note (1) The values are recommended value. Select appropriate value against module application. (2) It is recommended to tie VLSS and VSS at one common ground point to minimize circulating ground noise. Solomon Systech Jan 2011 P 54/57 Rev 1.5 SSD1351 15 PACKAGE INFORMATION 15.1 SSD1351UR1 detail dimension SSD1351U Figure 15-1: SSD1351UR1 Detail Dimension C L Contact Side Plating: Sn Contact Side Plating: Sn SSD1351 Rev 1.5 P 55/57 Jan 2011 Solomon Systech 15.2 SSD1351Z Die Tray Information Figure 15-2: SSD1351UR1 Die Tray Information Solomon Systech Jan 2011 P 56/57 Rev 1.5 SSD1351 Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People’s Republic of China Electronic Industry Standard SJ/T 11363-2006 “Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品 中有毒有害物质的限量要求)”. Hazardous Substances test report is available upon request. http://www.solomon-systech.com SSD1351 Rev 1.5 P 57/57 Jan 2011 Solomon Systech