SOLOMON SYSTECH SEMICONDUCTOR TECHNICAL DATA SSD1325 Advance Information 128 x 80, 16 Gray Scale Dot Matrix OLED/PLED Segment/Common Driver with Controller This document contains information on a new product. Specifications and information herein are subject to change without notice. http://www.solomon-systech.com SSD1325 Rev 2.3 P 1/63 Jul 2010 Copyright © 2010 Solomon Systech Limited Appendix: IC Revision history of SSD1325 Specification Version 1.0 1. 2. 3. Change Items Changed to Advance Info Added information of SSD1325T3R1 and SSD1325UR1 Revised the cutline tolerance of SSD1325T3R1 and SSD1325UR1 1.1 1. Added information of SSD1325U2 03-Jan-05 1.2 1. Added information of SSD1325T1R1 and SSD1325T6R1 03-Oct-05 1.3 1. 2. 3. Added application example of SSD1325T1R1 Revised commands B1h, B3h, BCh, BEh Revised command descriptions: “Set Row Period” and “Set Display Clock Divide Ratio” Revised SSD1325U2 pin assignment Corrected the SCLK(D0) waveform in the figure of Serial Interface Characteristic: Original: 06-Feb-06 4. 5. Effective Date 11-Aug-04 Now: 1.4 1. 2. 3. 4. 5. 6. 7. Added Graphic Acceleration Commands (23h, 24h, 25h, 26h, 2Eh, 2Fh) Revised commands AEh, AFh, B8h in command table Revise SSD1325 die drawing and pad coordinate Added a note on capacitor value on application example Added a note in B1 command ( 0 DCLK is invalid in Phase 1&2) Revised D/C#, CL pin description Revised MCU interface section 04-Sep-06 1.5 1. 2. Added power on / off sequence Add RESET timing in the AC Characteristics Table 05-Oct-06 1.6 1. 2. 3. Revised hex code of AEh in command table Revised the figure of Segment Current vs Contrast Setting Revised command description of Set Contrast Control Register 24-Oct-06 1.7 1. 2. Added commands B0h and B4h on the command table Added note in command ADh (Set Master Configuration) in command table 03-Jul-07 1.8 1. 2. Revised pin description of VSL and VSLCAP pin Removed SSD1325UR1, SSD1325T3R1, SSD1325U2 and SSD1325T1R1 dwgs Revised application example from SSD1325T1R1 to SSD1325T6R1 Added light sensitivity note under Table 22 - Maximum Ratings Added commands BFh in command table, VSL pin description & application example 08-Aug-07 Added a Remark column in the Ordering Information table Removed the internal DC-DC block from the SSD1325 Block Diagram Amended the die size Updated the Pin Description table and added pin descriptions for FR and DOF# 16-Oct-07 3. 4. 5. 1.9 1. 2. 3. 4. Solomon Systech Jul 2010 P 2/63 Rev 2.3 SSD1325 Version Change Items Removed the internal DC-DC voltage converter and its corresponding information 6. Added details on section 8.2 (Segment drivers / Common drivers) 7. Added details on section 8.6 (Current Control and Voltage Control) 8. Revised sections 10.1.6 (Set Display Start Line (A1h)) & 10.1.7 (Set Display Offset (A2h)) by adding examples 9. Revised section 10.1.10 (Set Master Configuration (ADh)) 10. Added Remark on section 15.1 SSD1325Z Die Tray Information 11. Added application example of SSD1325Z SPI serial interface 12. Revise the adjacent pin uniformity limit to +/-1.5% Effective Date 5. 2.0 1. 2. Amended the die size Revised the die tray information 19-Dec-07 2.1 1. 2. Revised the default values of commands BCh and BEh in command table Removed the below figures: Figure 30 : VCOMH vs Bit Value Figure 31 : VP vs Bit Value Added and revised Power on / off Sequence notes (2~5) 15-May-08 3. 2.2 1. Deleted the statement “OLED driving output voltage, 14V maximum” in the Features list (section 2) 11-Aug-08 2.3 1. Replace SSD1325Z by SSD1325Z2 and add SSD1325Z2 into section 3 ordering information (P.8) Revise die thickness tolerance from ±25um to ±15um in section 5 (P.10) Added +/- 50um tolerance for Die Size section 5 (P.10 ) Revise typo in AEh / AFh command (P.33) Revise typo in B3h command (p.34) Revise disclaimer (P.63) 13-Jul-10 2. 3. 8. 4. 5. Solomon Systech Jul 2010 P 3/63 Rev 2.3 SSD1325 TABLE OF CONTENTS 1 GENERAL DESCRIPTION ............................................................................................................................... 8 2 FEATURES .......................................................................................................................................................... 8 3 ORDERING INFORMATION........................................................................................................................... 8 4 BLOCK DIAGRAM ............................................................................................................................................ 9 5 DIE PAD FLOOR PLAN .................................................................................................................................. 10 6 PIN ARRANGEMENT ..................................................................................................................................... 13 7 PIN DESCRIPTION.......................................................................................................................................... 15 8 FUNCTIONAL BLOCK DESCRIPTIONS .................................................................................................... 18 8.1 MCU INTERFACE SELECTION........................................................................................................................ 18 8.1.1 MCU Parallel 6800-series Interface.................................................................................................... 18 8.1.2 MCU Parallel 8080-series Interface.................................................................................................... 19 8.1.3 MCU Serial Interface........................................................................................................................... 21 8.2 SEGMENT DRIVERS/COMMON DRIVERS........................................................................................................ 22 8.3 OSCILLATOR CIRCUIT AND DISPLAY TIME GENERATOR ............................................................................... 25 8.4 COMMAND DECODER AND COMMAND INTERFACE ....................................................................................... 25 8.5 RESET CIRCUIT ............................................................................................................................................. 26 8.6 CURRENT CONTROL AND VOLTAGE CONTROL ............................................................................................. 26 8.7 GRAPHIC DISPLAY DATA RAM (GDDRAM)............................................................................................... 26 8.8 GRAY SCALE DECODER ................................................................................................................................ 29 8.9 POWER ON AND OFF SEQUENCE .................................................................................................................. 31 9 COMMAND TABLE......................................................................................................................................... 32 9.1 10 Data Read / Write .................................................................................................................................... 37 COMMAND DESCRIPTIONS .................................................................................................................... 38 10.1 FUNDAMENTAL COMMAND DESCRIPTION ..................................................................................................... 38 10.1.1 Set Column Address (15h).................................................................................................................... 38 10.1.2 Set Row Address (75h) ......................................................................................................................... 38 10.1.3 Set Contrast Current (81h) .................................................................................................................. 39 10.1.4 Set Current Range (84h, 85h, 87h) ...................................................................................................... 39 10.1.5 Set Re-map (A0h) ................................................................................................................................. 39 10.1.6 Set Display Start Line (A1h) ................................................................................................................ 42 10.1.7 Set Display Offset (A2h)....................................................................................................................... 43 10.1.8 Set Display Mode (A4h ~ A7h)............................................................................................................. 44 10.1.9 Set Multiplex Ratio (A8h)..................................................................................................................... 45 10.1.10 Set Master Configuration (ADh)...................................................................................................... 45 10.1.11 Set Display ON/OFF (AEh / AFh) ................................................................................................... 45 10.1.12 Set VCOMH Voltage (BEh) .................................................................................................................. 45 10.1.13 Set Precharge Voltage (BCh)........................................................................................................... 46 10.1.14 Set Phase Length (B1h).................................................................................................................... 46 10.1.15 Set Row Period (B2h)....................................................................................................................... 46 10.1.16 Set Display Clock Divide Ratio (B3h).............................................................................................. 46 10.1.17 Set Gray Scale Table........................................................................................................................ 46 10.1.18 NOP (E3h) ....................................................................................................................................... 47 10.1.19 Status register Read ......................................................................................................................... 47 10.2 GRAPHIC ACCELERATION COMMAND SET DESCRIPTION .............................................................................. 48 10.2.1 Graphic Acceleration Command Options (23h) .................................................................................. 48 10.2.2 Draw Rectangle (24h).......................................................................................................................... 48 10.2.3 Copy (25h) ........................................................................................................................................... 49 10.2.4 Horizontal Scroll (26h) ........................................................................................................................ 49 Solomon Systech Jul 2010 P 4/63 Rev 2.3 SSD1325 10.2.5 10.2.6 Stop Moving (2Eh) ............................................................................................................................... 50 Start Moving (2Fh) .............................................................................................................................. 50 11 MAXIMUM RATINGS................................................................................................................................. 51 12 DC CHARACTERISTICS............................................................................................................................ 52 13 AC CHARACTERISTICS............................................................................................................................ 53 14 APPLICATION EXAMPLES ...................................................................................................................... 57 15 PACKAGE INFORMATION....................................................................................................................... 59 15.1 15.2 SSD1325Z2 DIE TRAY INFORMATION .......................................................................................................... 59 SSD1325T6R1 DETAIL DIMENSION ............................................................................................................. 61 Solomon Systech Jul 2010 P 5/63 Rev 2.3 SSD1325 LIST OF FIGURES FIGURE 1 : SSD1325 BLOCK DIAGRAM .......................................................................................................................... 9 FIGURE 2 : SSD1325Z2 DIE DRAWING ......................................................................................................................... 10 FIGURE 3 : SSD1325Z2 ALIGNMENT MARK DIMENSIONS ............................................................................................ 11 FIGURE 4 : SSD1325T6R1 PIN ASSIGNMENT ............................................................................................................... 13 FIGURE 5 : DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ .................................................................... 19 FIGURE 6 : EXAMPLE OF WRITE PROCEDURE IN 8080 PARALLEL INTERFACE MODE ...................................................... 19 FIGURE 7 : EXAMPLE OF READ PROCEDURE IN 8080 PARALLEL INTERFACE MODE ....................................................... 19 FIGURE 8: DISPLAY DATA READ BACK PROCEDURE - INSERTION OF DUMMY READ ....................................................... 20 FIGURE 9: DISPLAY DATA WRITE PROCEDURE IN SPI MODE.......................................................................................... 21 FIGURE 10 : SEGMENT AND COMMON DRIVER BLOCK DIAGRAM ................................................................................. 22 FIGURE 11 : SEGMENT AND COMMON DRIVER SIGNAL WAVEFORM............................................................................. 23 FIGURE 12 : GRAY SCALE CONTROL BY PWM IN SEGMENT ......................................................................................... 24 FIGURE 13 : OSCILLATOR CIRCUIT ............................................................................................................................... 25 FIGURE 14: IREF CURRENT SETTING BY RESISTOR VALUE ............................................................................................ 26 FIGURE 15 : GRAY SCALE PULSE WIDTH SET DIAGRAM ................................................................................................. 30 FIGURE 16 : THE POWER ON SEQUENCE ....................................................................................................................... 31 FIGURE 17 : THE POWER OFF SEQUENCE ..................................................................................................................... 31 FIGURE 18 : EXAMPLE OF COLUMN AND ROW ADDRESS POINTER MOVEMENT............................................................ 38 FIGURE 19 : SEGMENT CURRENT VS CONTRAST SETTING .............................................................................................. 39 FIGURE 20 : ADDRESS POINTER MOVEMENT OF HORIZONTAL ADDRESS INCREMENT MODE ....................................... 40 FIGURE 21: ADDRESS POINTER MOVEMENT OF VERTICAL ADDRESS INCREMENT MODE ............................................. 40 FIGURE 22: OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=0.................................................................... 41 FIGURE 23 : OUTPUT PIN ASSIGNMENT WHEN COMMAND A0H BIT A[6]=1. .................................................................. 41 FIGURE 24: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING ................................................................... 42 FIGURE 25: EXAMPLE OF SET DISPLAY OFFSET WITH NO REMAPPING.......................................................................... 43 FIGURE 26: EXAMPLE OF NORMAL DISPLAY ................................................................................................................ 44 FIGURE 27: EXAMPLE OF ENTIRE DISPLAY ON ............................................................................................................ 44 FIGURE 28 : EXAMPLE OF ENTIRE DISPLAY OFF .......................................................................................................... 44 FIGURE 29: EXAMPLE OF INVERSE DISPLAY ................................................................................................................. 44 FIGURE 30 : EXAMPLE OF GAMMA CORRECTION BY GRAY SCALE TABLE SETTING ........................................................ 46 FIGURE 31 : EXAMPLE OF DRAW RECTANGLE COMMAND.............................................................................................. 48 FIGURE 32: EXAMPLE OF COPY COMMAND ................................................................................................................... 49 FIGURE 33: SCROLLING EXAMPLES ............................................................................................................................... 49 FIGURE 34 : 6800-SERIES MCU PARALLEL INTERFACE CHARACTERISTICS .................................................................. 54 FIGURE 35 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 1) ............................................................. 55 FIGURE 36 : 8080-SERIES PARALLEL INTERFACE CHARACTERISTICS (FORM 2) ............................................................. 55 FIGURE 37 : SERIAL INTERFACE CHARACTERISTICS ..................................................................................................... 56 FIGURE 38 : APPLICATION EXAMPLE FOR SSD1325Z2 SPI SERIAL INTERFACE MODE .................................................. 57 FIGURE 39: APPLICATION EXAMPLE FOR SSD1325T6R1............................................................................................. 58 FIGURE 40 : SSD1325Z2 DIE TRAY DRAWING ............................................................................................................. 59 FIGURE 41 : SSD1325T6R1 DETAIL DIMENSION ......................................................................................................... 61 Solomon Systech Jul 2010 P 6/63 Rev 2.3 SSD1325 LIST OF TABLES TABLE 1 : ORDERING INFORMATION ............................................................................................................................... 8 TABLE 2 : SSD1325Z2 BUMP DIE PAD COORDINATES ................................................................................................. 12 TABLE 3: SSD1325T6R1 TAB PIN ASSIGNMENT TABLE .............................................................................................. 14 TABLE 4: PIN DESCRIPTIONS ........................................................................................................................................ 15 TABLE 5 : BUS INTERFACE SELECTION .......................................................................................................................... 15 TABLE 6 : MCU INTERFACE ASSIGNMENT UNDER DIFFERENT BUS INTERFACE MODE ................................................... 18 TABLE 7: CONTROL PINS OF 6800 INTERFACE ............................................................................................................... 18 TABLE 8: CONTROL PINS OF 8080 INTERFACE (FORM 1) ............................................................................................... 20 TABLE 9: CONTROL PINS OF 8080 INTERFACE (FORM 2) ............................................................................................... 20 TABLE 10: CONTROL PINS OF SERIAL INTERFACE ......................................................................................................... 21 TABLE 11 : GDDRAM ADDRESS MAP 1........................................................................................................................ 27 TABLE 12 : GDDRAM ADDRESS MAP 2........................................................................................................................ 27 TABLE 13 : GDDRAM ADDRESS MAP 3........................................................................................................................ 28 TABLE 14 : GDDRAM ADDRESS MAP 4........................................................................................................................ 28 TABLE 15 : GDDRAM ADDRESS MAP 5........................................................................................................................ 29 TABLE16 : GRAY SCALE PULSE WIDTH SET TABLE ........................................................................................................ 29 TABLE 17 : GRAY SCALE PULSE WIDTH DEFAULT VALUES ............................................................................................ 30 TABLE 18: COMMAND TABLE ....................................................................................................................................... 32 TABLE 19: GRAPHIC ACCELERATION COMMAND .......................................................................................................... 35 TABLE 20: READ COMMAND TABLE ............................................................................................................................. 36 TABLE 21: ADDRESS INCREMENT TABLE (AUTOMATIC)............................................................................................... 37 TABLE 22 : MAXIMUM RATINGS (VOLTAGE REFERENCE TO VSS)................................................................................. 51 TABLE 23 : DC CHARACTERISTICS ............................................................................................................................... 52 TABLE 24 : AC CHARACTERISTICS ............................................................................................................................... 53 TABLE 25 : 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS ...................................................... 54 TABLE 26 : 8080-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS ...................................................... 55 TABLE 27 : SERIAL INTERFACE TIMING CHARACTERISTICS .......................................................................................... 56 TABLE 28 : SSD1325Z2 DIE TRAY DIMENSIONS .......................................................................................................... 60 Solomon Systech Jul 2010 P 7/63 Rev 2.3 SSD1325 1 GENERAL DESCRIPTION SSD1325 is a single-chip CMOS OLED/PLED driver with controller for organic/polymer light emitting diode dot-matrix graphic display system. It consists of 208 high voltage/current driving output pins for driving 128 segments and 80 commons. This IC is designed for Common Cathode type OLED/PLED panel. SSD1325 displays data directly from its internal 128x80x4 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from general MCU through the hardware selectable 6800-/8080-series compatible Parallel Interface or Serial Peripheral Interface. It has a 128-step contrast control and a 16 gray level control. The embedded on-chip oscillator and DCDC voltage converter reduce the number of external components. 2 FEATURES 3 Support max. 128 x 80 matrix panel Power supply: VDD =2.4V - 3.5V VCC =8.0V - 16.0V For matrix display: o Can output maximum segment source current: 300uA o Common maximum sink current: 40mA Embedded 128 x 80 x 4 bit SRAM display memory 128 step contrast current control on monochrome passive OLED panel 16 gray scale Internal Oscillator Programmable Frame Rate 8-bit 6800-series Parallel Interface, 8080-series Parallel Interface, Serial Peripheral Interface. Row re-mapping and Column re-mapping Low power consumption (<5.0uA @sleep mode) Wide range of operating temperature: -40 to 85 °C ORDERING INFORMATION Table 1 : Ordering Information Ordering Part Number SEG COM Package Form Reference Remarks SSD1325Z2 128 80 COG Page 10, 59 • Min SEG pad pitch: 52.2um • Min COM pad pitch: 51.8um SSD1325T6R1 Solomon Systech 128 80 TAB Page 60 • • • • 8-bit 80 / 68 / SPI interface Output lead pitch: 0.12mm x 0.998 = 0.11976mm 4 SPH, 35m film Full resolution 128 x 80 Jul 2010 P 8/63 Rev 2.3 SSD1325 BLOCK DIAGRAM Figure 1 : SSD1325 Block Diagram . . . . . . . . . . . Common Drivers GDDRAM Grey Scale Decorder . . . . . . . . . . . Segment Drivers D7 D6 D5 D4 D3 D2 D1 D0 MCU Interface RES# CS# D/C# E (RD#) R/W#(WR#) BS2 BS1 BS0 Solomon Systech . . . . . . . . . . . Jul 2010 P 9/63 COM39 COM38 | COM1 COM0 SEG0 | SEG127 COM40 COM41 | COM78 COM79 VSLCAP VSL Common Drivers Current Control Voltage Control Display Timing Generator BGGND VDDB VSSB GDR FB RESE VBREF VCC VCOMH VREF IREF M\S# CL CLS Oscillator VDD VSS Command Decoder 4 Rev 2.3 SSD1325 5 DIE PAD FLOOR PLAN Figure 2 : SSD1325Z2 Die Drawing PIN 1 Note 1 + represents the centre of the alignment mark Alignment Mark X-pos (μm) Y-pos (μm) 4934.100 -557.675 -4934.100 -557.675 + shape 5014.100 -52.200 T shape -5014.100 -52.200 o Shape SSD1325Z2 Die Size Die Thickness I/O pad pitch SEG pad pitch COM pad pitch Bump Height 10942um +/- 50um x 1508um +/- 50um 457 +/- 15um 76.2um 52.2um 51.8um Nominal 12um Bump size Pad 1-7,123-331 Pad 8-122 X (um) 34 54 Y (um) 84 84 y SSD1325Z2 x Pad 1, 2, 3... Gold Bumps face up Solomon Systech Jul 2010 P 10/63 Rev 2.3 SSD1325 Figure 3 : SSD1325Z2 Alignment Mark Dimensions Solomon Systech Jul 2010 P 11/63 Rev 2.3 SSD1325 Table 2 : SSD1325Z2 Bump Die Pad Coordinates Pad# Signal 1 DUMMY 2 DUMMY 3 COM75 4 COM76 COM77 5 6 COM78 COM79 7 8 DUMMY 9 DUMMY 10 DUMMY 11 DUMMY 12 DUMMY 13 DUMMY 14 DUMMY 15 DUMMY 16 DUMMY 17 DUMMY 18 DUMMY 19 DUMMY 20 DUMMY 21 VCL 22 VCL 23 VCL 24 VSS 25 VSSB 26 VSSB 27 VSL 28 VSLCAP 29 VSLCAP 30 VDD 31 VCC 32 VCC 33 VCOMH 34 VCOMH 35 TR8 36 TR7 37 TR6 38 TR5 39 TR4 40 TR3 41 TR2 42 TR1 43 TR0 44 VSS 45 VSSB 46 GDR 47 GDR 48 GDR 49 GDR 50 VDDB 51 VDDB 52 VDD 53 VDD 54 FB 55 RESE 56 VBREF 57 BGGND VSS 58 VCC 59 60 GPIO0 61 GPIO1 62 VDD 63 BS0 64 VSS 65 BS1 66 VDD 67 BS2 68 VSS 69 FR CL 70 71 DOF# VSS 72 CS# 73 74 RES# D/C# 75 VSS 76 77 R/W#(WR#) E(RD#) 78 VDD 79 80 D0 81 D1 82 D2 83 D3 84 D4 85 D5 86 D6 87 D7 88 VSS 89 M/S# 90 CLS X-pos -5414.000 -5361.800 -5309.600 -5257.800 -5206.000 -5154.200 -5102.400 -4767.075 -4690.875 -4614.675 -4538.475 -4462.275 -4386.075 -4309.875 -4233.675 -4157.475 -4081.275 -4005.075 -3928.875 -3852.675 -3471.675 -3395.475 -3319.275 -3243.075 -3166.875 -3090.675 -3014.475 -2938.275 -2862.075 -2785.875 -2709.675 -2633.475 -2557.275 -2481.075 -2404.875 -2328.675 -2252.475 -2176.275 -2100.075 -2023.875 -1947.675 -1871.475 -1795.275 -1719.075 -1642.875 -1338.075 -1261.875 -1185.675 -1109.475 -728.475 -652.275 -576.075 -499.875 -423.675 -347.475 -271.275 -195.075 -118.875 -42.675 33.525 109.725 185.925 262.125 338.325 414.525 490.725 566.925 643.125 719.325 795.525 871.725 947.925 1024.125 1100.325 1176.525 1252.725 1328.925 1405.125 1481.325 1557.525 1633.725 1709.925 1786.125 1862.325 1938.525 2014.725 2090.925 2167.125 2243.325 2319.525 Solomon Systech Y-pos -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 Pad# 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 Signal VDD ICAS IREF VCOMH VCOMH VREF VCC VCC VDD VSL VSS VCL VCL VCL DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY COM39 COM38 COM37 COM36 COM35 DUMMY DUMMY DUMMY DUMMY COM34 COM33 COM32 COM31 COM30 COM29 COM28 COM27 COM26 COM25 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0 SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 X-pos 2395.725 2471.925 2548.125 2624.325 2700.525 2776.725 2852.925 2929.125 3005.325 3081.525 3157.725 3233.925 3310.125 3386.325 3462.525 3538.725 3614.925 3691.125 3767.325 3843.525 3919.725 3995.925 4072.125 4148.325 4224.525 4300.725 4376.925 4453.125 4529.325 4605.525 4681.725 4757.925 5102.400 5154.200 5206.000 5257.800 5309.600 5361.800 5414.000 5414.000 5361.800 5309.600 5257.800 5206.000 5154.200 5102.400 5050.600 4998.800 4947.000 4895.200 4843.400 4791.600 4739.800 4688.000 4636.200 4584.400 4532.600 4480.800 4429.000 4377.200 4325.400 4273.600 4221.800 4170.000 4118.200 4066.400 4014.600 3962.800 3911.000 3859.200 3807.400 3755.600 3703.800 3652.000 3600.200 3548.400 3340.800 3288.600 3236.400 3184.200 3132.000 3079.800 3027.600 2975.400 2923.200 2871.000 2818.800 2766.600 2714.400 2662.200 Y-pos -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 -672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 Pad# 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 Signal SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG69 SEG70 SEG71 SEG72 SEG73 SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 SEG81 SEG82 SEG83 SEG84 SEG85 SEG86 SEG87 SEG88 SEG89 SEG90 SEG91 SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99 SEG100 SEG101 SEG102 SEG103 X-pos 2610.000 2557.800 2505.600 2453.400 2401.200 2349.000 2296.800 2244.600 2192.400 2140.200 2088.000 2035.800 1983.600 1931.400 1879.200 1827.000 1774.800 1722.600 1670.400 1618.200 1566.000 1513.800 1461.600 1409.400 1357.200 1305.000 1252.800 1200.600 1148.400 1096.200 1044.000 991.800 939.600 887.400 835.200 783.000 730.800 678.600 626.400 574.200 522.000 469.800 417.600 365.400 313.200 261.000 208.800 156.600 104.400 52.200 0.000 -52.200 -104.400 -156.600 -208.800 -261.000 -313.200 -365.400 -469.800 -522.000 -574.200 -626.400 -678.600 -730.800 -783.000 -835.200 -887.400 -939.600 -991.800 -1044.000 -1096.200 -1148.400 -1200.600 -1252.800 -1305.000 -1357.200 -1409.400 -1461.600 -1513.800 -1566.000 -1618.200 -1670.400 -1722.600 -1774.800 -1827.000 -1879.200 -1931.400 -1983.600 -2035.800 -2088.000 Y-pos 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 Jul 2010 Pad# 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 P 12/63 Signal SEG104 SEG105 SEG106 SEG107 SEG108 SEG109 SEG110 SEG111 SEG112 SEG113 SEG114 SEG115 SEG116 SEG117 SEG118 SEG119 SEG120 SEG121 SEG122 SEG123 SEG124 SEG125 SEG126 SEG127 COM40 COM41 COM42 COM43 COM44 COM45 COM46 COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 COM74 DUMMY DUMMY X-pos -2140.200 -2192.400 -2244.600 -2296.800 -2349.000 -2401.200 -2453.400 -2505.600 -2557.800 -2610.000 -2662.200 -2714.400 -2766.600 -2818.800 -2871.000 -2923.200 -2975.400 -3027.600 -3079.800 -3132.000 -3184.200 -3236.400 -3288.600 -3340.800 -3548.400 -3600.200 -3652.000 -3703.800 -3755.600 -3807.400 -3859.200 -3911.000 -3962.800 -4014.600 -4066.400 -4118.200 -4170.000 -4221.800 -4273.600 -4325.400 -4377.200 -4429.000 -4480.800 -4532.600 -4584.400 -4636.200 -4688.000 -4739.800 -4791.600 -4843.400 -4895.200 -4947.000 -4998.800 -5050.600 -5102.400 -5154.200 -5206.000 -5257.800 -5309.600 -5361.800 -5414.000 Rev 2.3 Y-pos 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 672.075 SSD1325 6 PIN ARRANGEMENT 6.1 SSD1325T6R1 pin assignment Figure 4 : SSD1325T6R1 Pin Assignment Solomon Systech Jul 2010 P 13/63 Rev 2.3 SSD1325 Table 3: SSD1325T6R1 TAB Pin assignment Table PIN NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Solomon Systech PIN NAME NC VCC VCOMH IREF D7 D6 D5 D4 D3 D2 D1 D0 E/RD# R/W# D/C# RES# CS# NC BS2 BS1 VDD NC NC NC VBREF RESE FR VDDB GDR VSS VSL COM79 COM77 COM75 COM73 COM71 COM69 COM67 COM65 COM63 COM61 COM59 COM57 COM55 COM53 COM51 COM49 COM47 COM45 COM43 COM41 COM39 COM37 COM35 COM33 COM31 COM29 COM27 COM25 COM23 COM21 COM19 COM17 COM15 COM13 COM11 COM9 COM7 COM5 COM3 COM1 NC NC NC NC NC SEG127 SEG126 SEG125 SEG124 PIN NO. 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 PIN NAME SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 SEG99 SEG98 SEG97 SEG96 SEG95 SEG94 SEG93 SEG92 SEG91 SEG90 SEG89 SEG88 SEG87 SEG86 SEG85 SEG84 SEG83 SEG82 SEG81 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 SEG72 SEG71 SEG70 SEG69 SEG68 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 PIN NO. 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 PIN NAME SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0 NC NC NC NC NC COM0 COM2 COM4 COM6 COM8 COM10 COM12 COM14 COM16 COM18 COM20 COM22 COM24 COM26 COM28 COM30 COM32 COM34 COM36 COM38 COM40 COM42 COM44 COM46 COM48 COM50 COM52 COM54 COM56 COM58 COM60 PIN NO. 241 242 243 244 245 246 247 248 249 Jul 2010 PIN NAME COM62 COM64 COM66 COM68 COM70 COM72 COM74 COM76 COM78 P 14/63 Rev 2.3 SSD1325 7 PIN DESCRIPTION Key: I = Input NC = Not Connected O = Output Pull LOW = Connect to Ground IO = Bi-directional (input/output) Pull HIGH = Connect to VDD P = Power pin Table 4: Pin Descriptions Pin Name Pin Type RES# I Description This pin is reset signal input. When the pin is LOW, initialization of the chip is executed. Keep this pin HIGH during normal operation. CS# I This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled LOW. D/C# I This pin is Data/Command control pin. When the pin is pulled HIGH, the data at D[7:0] is treated as data. When the pin is pulled LOW, the data at D[7:0] will be transferred to the command register. For detail relationship to MCU interface signals, please refer to the Timing Characteristics Diagrams in Figure 34 to Figure 37. E (RD#) I This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as the Enable (E) signal. Read/write operation is initiated when this pin is pulled HIGH and the chip is selected. When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal. Data read operation is initiated when this pin is pulled LOW and the chip is selected. R/W# (WR#) I This pin is MCU interface input. When interfacing to a 6800-series microprocessor, this pin will be used as Read/Write (R/W#) selection input. Read mode will be carried out when this pin is pulled HIGH and write mode will be carried out when LOW. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. D[7:0] IO These pins are 8-bit bi-directional data bus to be connected to the microprocessor’s data bus. When serial mode is selected, D1 will be the serial data input SDIN and D0 will be the serial clock input SCLK. BS[2:0] I These pins are MCU bus interface selection. Table 5 : Bus Interface selection BS0 BS1 BS2 6800-parallel interface (8 bit) 0 0 1 8080-parallel interface (8 bit) 0 1 1 Serial interface 0 0 0 Note (1) 0 is connected to VSS (2) 1 is connected to VDD VDD P This is a power supply pin. It must be connected to external source. VSS P This is a ground pin. It also acts as ground reference for the logic pins. It must be connected to external ground. CL IO This pin is the system clock input. When internal oscillator is disabled (i.e. CLS is pulled LOW), this pin receives display clock signal from external clock source. When internal Solomon Systech Jul 2010 P 15/63 Rev 2.3 SSD1325 Pin Name Pin Type Description clock is enabled (i.e. CLS is pulled HIGH), this pin should be kept NC and left open. CLS I This is the internal clock enable pin. When this pin is pulled HIGH, internal oscillator is selected. The internal clock will be disabled when it is pulled LOW, an external clock source must be connected to CL pin for normal operation. VCC P This pin is the most positive voltage supply of the chip. It is supplied by external high voltage source. VCOMH P A capacitor should be connected between this pin and VSS. No external power supply is allowed to connect to this pin. IREF I This pin is the segment output current reference pin. ISEG is derived from IREF. A resistor should be connected between this pin and VSS to maintain the current around 10uA. COM0 ~ O COM79 These pins provide the Common switch signals to the OLED panel. These pins are in high impedance state when display is OFF. SEG0 ~ O SEG127 These pins provide the OLED segment driving signals. These pins are in high impedance state when display is OFF. VREF P This pin is the voltage reference for the pre-charge voltage in driving OLED device. Voltage should be set matching with the OLED driving voltage in the current drive phase. It can be either supplied externally or connected to VCC. VCL O This is the output pin for the voltage output low level for COM signals. This pin should be connected to VSS. VSL O This is the output pin for the voltage output low level for SEG signals. This pin can be kept NC or connected with a capacitor to VSS for stability. Refer to command BFh for VSL pin connection details. VSLCAP O This is a reserved pin. It has to be kept NC and left open. M/S# I This pin is an input pin and must be pulled HIGH to enable the chip function. VDDB P This is a reserved pin. It should be connected to VDD. VSSB P This is a reserved pin. It should be connected to VSS. GDR O This is a reserved pin. It should be kept NC. RESE I This is a reserved pin. It should be kept NC. FB I This is a reserved pin. It should be kept NC. VBREF I This is an internal voltage reference pin. It should be kept NC and left open. FR - It is No Connection pin. It should be kept NC and left open. DOF# - It is No Connection pin. It should be kept NC and left open. GPIO0 IO This is a reserved pin. It should be kept NC and left open. GPIO1 IO This is a reserved pin. It should be kept NC and left open. Solomon Systech Jul 2010 P 16/63 Rev 2.3 SSD1325 Pin Name Pin Type TR[8:0] - Description This is a reserved pin. It should be kept NC and left open. ICAS This is a reserved pin. It should be kept NC and left open. - Solomon Systech Jul 2010 P 17/63 Rev 2.3 SSD1325 8 FUNCTIONAL BLOCK DESCRIPTIONS 8.1 MCU Interface selection SSD1325 MCU interface consist of 8 data pins and 5 control pins. The pin assignment at different interface mode is summarized in Table 6. Different MCU mode can be set by hardware selection on BS[2:0] pins (please refer to Table 5 for BS[2:0] setting). Table 6 : MCU interface assignment under different bus interface mode Pin Name Bus Interface 8-bit 8080 8-bit 6800 SPI 8.1.1 Data/Command Interface D7 D6 D5 D4 Control Signal D3 D[7:0] D[7:0] Tie LOW D2 NC D1 D0 E R/W# RD# WR# E R/W# SDIN SCLK Tie LOW CS# CS# CS# CS# D/C# D/C# D/C# D/C# RES# RES# RES# RES# MCU Parallel 6800-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), R/W#, D/C#, E and CS#. A LOW in R/W# indicates WRITE operation and HIGH in R/W# indicates READ operation. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. The E input serves as data latch signal while CS# is LOW. Data is latched at the falling edge of E signal. Table 7: Control pins of 6800 interface Function Write command Read status Write data Read data E ↓ ↓ ↓ ↓ R/W# L H L H CS# L L L L D/C# L L H H Note ↓ stands for falling edge of signal H stands for HIGH in signal L stands for LOW in signal (1) In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 5. Solomon Systech Jul 2010 P 18/63 Rev 2.3 SSD1325 Figure 5 : Data read back procedure - insertion of dummy read R/W# E N Databus Write column address 8.1.2 n Dummy read Read 1st data n+1 n+2 Read 2nd data Read 3rd MCU Parallel 8080-series Interface The parallel interface consists of 8 bi-directional data pins (D[7:0]), RD#, WR#, D/C# and CS#. A LOW in D/C# indicates COMMAND read/write and HIGH in D/C# indicates DATA read/write. A rising edge of RD# input serves as a data READ latch signal while CS# is kept LOW. A rising edge of WR# input serves as a data/command WRITE latch signal while CS# is kept LOW. Figure 6 : Example of Write procedure in 8080 parallel interface mode CS# WR# D[7:0] D/C# RD# high low Figure 7 : Example of Read procedure in 8080 parallel interface mode CS# RD# D[7:0] D/C# WR# high low Solomon Systech Jul 2010 P 19/63 Rev 2.3 SSD1325 Table 8: Control pins of 8080 interface (Form 1) Function Write command Read status Write data Read data RD# H ↑ WR# ↑ H H ↑ ↑ H CS# L L L L D/C# L L H H Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal (4) Refer to Figure 35 for Form 1 8080-Series MCU Parallel Interface Timing Characteristics Alternatively, RD# and WR# can be keep stable while CS# serves as the data/command latch signal. Table 9: Control pins of 8080 interface (Form 2) Function Write command Read status Write data Read data RD# H L H L WR# L H L H CS# ↑ ↑ ↑ ↑ D/C# L L H H Note (1) ↑ stands for rising edge of signal (2) H stands for HIGH in signal (3) L stands for LOW in signal (4) Refer to Figure 36 for Form 2 8080-Series MCU Parallel Interface Timing Characteristics In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing is internally performed which requires the insertion of a dummy read before the first actual display data read. This is shown in Figure 8. Figure 8: Display data read back procedure - insertion of dummy read WR# RD# Databus N Write column address Solomon Systech Dummy read n n+1 Read 1st data Read 2nd data Jul 2010 P 20/63 n+2 Read 3rd data Rev 2.3 SSD1325 8.1.3 MCU Serial Interface The serial interface consists of serial clock SCLK, serial data SDIN, D/C#, CS#. In SPI mode, D0 acts as SCLK, D1 acts as SDIN. For the unused data pins, D2 should be left open. The pins from D3 to D7, E and R/W# can be connected to an external ground. Table 10: Control pins of Serial interface Function Write command Write data E Tie LOW Tie LOW R/W# Tie LOW Tie LOW CS# L L D/C# L H SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C# is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (GDDRAM) or command register in the same clock. Under serial mode, only write operations are allowed. Figure 9: Display data write procedure in SPI mode CS# D/C# SDIN/ SCLK DB1 DB2 DBn SCLK(D0) SDIN(D1) Solomon Systech D7 D6 D5 D4 D3 D2 Jul 2010 D1 P 21/63 D0 Rev 2.3 SSD1325 8.2 Segment Drivers/Common Drivers Segment drivers have 128 current sources to drive OLED panel. The driving current can be adjusted from 0 to 300uA with 7 bits, 128 steps. Common drivers generate voltage scanning pulses. The block diagrams and waveforms of the segment and common driver are shown as follow. Figure 10 : Segment and Common Driver Block Diagram VCC ISEG VCOMH Current Drive Non-select Row Reset OLED Pixel Selected Row VLSS Segment Driver VLSS Common Driver The commons are scanned sequentially, row by row. If a row is not selected, all the pixels on the row are in reverse bias by driving those commons to voltage VCOMH as shown in Figure 11. In the scanned row, the pixels on the row will be turned ON or OFF by sending the corresponding data signal to the segment pins. If the pixel is turned OFF, the segment current is kept at 0. On the other hand, the segment drives to ISEG when the pixel is turned ON. Solomon Systech Jul 2010 P 22/63 Rev 2.3 SSD1325 Figure 11 : Segment and Common Driver Signal Waveform One Frame Period COM0 Non-select Row VCOMH VCL Selected Row COM1 VCOMH VCL COM Voltage This row is selected to turn on VCOMH VCL Time Segment Voltage Waveform for ON VP Waveform for OFF VSL Time Solomon Systech Jul 2010 P 23/63 Rev 2.3 SSD1325 There are three phases to driving an OLED a pixel. In phase 1, the pixel is reset by the segment driver to VSS in order to discharge the previous data charge stored in the parasitic capacitance along the segment electrode. The period of phase 1 can be programmed by command B1h A[3:0] from 1 to 15 DCLK. An OLED panel with larger capacitance requires a longer period for discharging. In phase 2, pre-charge is performed. The pixel is driven to attain the corresponding voltage level VP from VSS. The amplitude of VP can be programmed by the command BCh. The period of phase 2 can be programmed in length from 1 to 15 DCLK by command B1h A[7:4]. If the capacitance value of the pixel of OLED panel is larger, a longer period is required to charge up the capacitor to reach the desired voltage. Last phase (phase 3 is current drive stage. The current source in the segment driver delivers constant current to the pixel. The driver IC employs PWM (Pulse Width Modulation) method to control the gray scale of each pixel individually. The wider pulse widths in the current drive stage results in brighter pixels and vice versa. This is shown in the following figure. Figure 12 : Gray Scale Control by PWM in Segment Phase2 Phase1 Phase3 Segment Voltage VP VSL Wider pulse width drives pixel brighter OLED Panel After finishing phase 3, the driver IC will go back to phase 1 to display the next row image data. This three-step cycle is run continuously to refresh image display on OLED panel. The pulse width, which is counted from Phase 2 to Phase 3, is defined by command B8h “Set Gray Scale Table”. In the table, the gray scale is defined in incremental way, with reference to the length of previous table entry. Solomon Systech Jul 2010 P 24/63 Rev 2.3 SSD1325 8.3 Oscillator Circuit and Display Time Generator This module is an On-Chip low power RC oscillator circuitry. The operation clock (CLK) can be generated either from internal oscillator or external source CL pin. This selection is done by CLS pin. If CLS pin is pulled HIGH, internal oscillator is chosen and CL should be left open. Pulling CLS pin LOW disables internal oscillator and external clock must be connected to CL pins for proper operation. When the internal oscillator is selected, its output frequency FOSC can be changed by command B3h, please refer to Table 18. Figure 13 : Oscillator Circuit Internal Oscillator Fosc M U X CL CLK DCLK Divider Display Clock CLS The display clock (DCLK) for the Display Timing Generator is derived from CLK. The division factor “D” can be programmed from 1 to 16 by command B3h DCLK = FOSC / D The frame frequency of display is determined by the following formula. FFRM = Fosc D × K × No. of Mux where • D stands for clock divide ratio. It is set by command B3h A[3:0]. The divide ratio has the range from 1 to 16. • K is row period. It is configured by command B2h. This value should comply with following condition. K ≥ Phase 1 + Phase 2 + Phase 3 + GS15 • Number of multiplex ratio is set by command A8h. The power ON reset value is 4Fh. • FOSC is the oscillator frequency. It can be changed by command B3h A[7:4]. The higher the register setting results in faster frequency. If the frame frequency is set too low, flickering may occur. On the other hand, higher frame frequency leads to higher power consumption on the whole system. 8.4 Command Decoder and Command Interface This module determines whether the input data is interpreted as data or command. Data is interpreted based upon the input of the D/C# pin. If D/C# pin is HIGH, the input at D7-D0 is written to Graphic Display Data RAM (GDDRAM). If it is LOW, the input at D7-D0 is interpreted as a Command which will be decoded and be written to the corresponding command register. Solomon Systech Jul 2010 P 25/63 Rev 2.3 SSD1325 8.5 Reset Circuit When RES# input is LOW, the chip is initialized with the following status: 1. Display is OFF 2. 128 x 80 Display Mode 3. Normal segment and display data column address and row address mapping (SEG0 mapped to address 00h and COM0 mapped to address 00h) 4. Shift register data clear in serial interface 5. Display start line is set at display RAM address 0 6. Column address counter is set at 0 7. Normal scan direction of the COM outputs 8. Contrast control register is set at 40h 8.6 Current Control and Voltage Control This block is used to derive the incoming power sources into the different levels of internal use voltage and current. • VDD is an external voltage supply. • VCC is the most positive external voltage supply. • VCOMH is the Common deselected level. It is internally regulated. • VSS is the ground path of the analog and panel current. • IREF is a reference current source for segment current drivers ISEG. Note that VREF is reference voltage, which is used to derive driving voltage for segments and commons. The magnitude of IREF is controlled by the value of resistor, which is connected between IREF pin and Vss as shown in Figure 14. It is recommended to set IREF to 10uA+/- 2uA so as to achieve ISEG = 300uA at maximum contrast 127. Figure 14: IREF Current Setting by Resistor Value SSD1325 IREF (voltage at this pin = VCC – 3) IREF ~ 10uA R1 VSS Since the voltage at IREF pin is VCC – 3V, the value of resistor R1 can be found as below. R1 = (Voltage at IREF – VSS) / IREF = (VCC – 3) / 10uA ≈ 910kΩ for VCC = 12V. 8.7 Graphic Display Data RAM (GDDRAM) The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 128x80x4 bits. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. The GDDRAM address maps in Table 11 to Table 15 show some examples on using the command “Set Re-map” A0h to re-map the GDDRAM. In the following tables, the lower nibble and higher nibble of D0, D1, D2 … D5117, D5118, D5119 represent the 128x80 data bytes in the GDDRAM. Solomon Systech Jul 2010 P 26/63 Rev 2.3 SSD1325 Table 11 shows the GDDRAM map under the following condition: • Command “Set Re-map” A0h is set to: Disable Column Address Re-map Disable Nibble Re-map Enable Horizontal Address Increment Disable COM Re-map • Display Start Line=00h • Data byte sequence: D0, D1, D2 … D5119 (A[0]=0) (A[1]=0) (A[2]=0) (A[4]=0) Table 11 : GDDRAM address map 1 SEG0 SEG1 SEG2 00 SEG3 SEG124 01 SEG125 SEG126 3E SEG127 3F SEG Outputs Column Address COM0 00 D0[3:0] D0[7:4] D1[3:0] D1[7:4] D62[3:0] D62[7:4] D63[3:0] D63[7:4] COM1 01 D64[3:0] D64[7:4] D65[3:0] D65[7:4] D126[3:0] D126[7:4] D127[3:0] D127[7:4] | | COM78 4E D4992[3:0] D4992[7:4] D4993[3:0] D4993[7:4] D5054[3:0] D5054[7:4] D5055[3:0] D5055[7:4] COM79 4F D5056[3:0] D5056[7:4] D5057[3:0] D5057[7:4] D5118[3:0] D5118[7:4] D5119[3:0] D5119[7:4] COM Outputs Row Address (HEX) (HEX) | (Display Startline=0) Nibble re-map A[1]=0 Table 12 shows the GDDRAM map under the following condition: • Command “Set Re-map” A0h is set to: Disable Column Address Re-map (A[0]=0) Disable Nibble Re-map (A[1]=0) Enable Vertical Address Increment (A[2]=1) Disable COM Re-map (A[4]=0) • Display Start Line=00h • Data byte sequence: D0, D1, D2 … D5119 Table 12 : GDDRAM address map 2 SEG0 SEG1 SEG2 00 SEG3 SEG124 01 SEG125 3E SEG126 SEG127 3F SEG Outputs Column Address COM0 00 D0[3:0] D0[7:4] D80[3:0] D80[7:4] D4960[3:0] D4960[7:4] D5040[3:0] D5040[7:4] COM1 01 D1[3:0] D1[7:4] D81[3:0] D81[7:4] D4961[3:0] D4961[7:4] D5041[3:0] D5041[7:4] | | COM78 4E D78[3:0] D78[7:4] D158[3:0] D158[7:4] D5038[3:0] D5038[7:4] D5118[3:0] D5118[7:4] COM79 4F D79[3:0] D79[7:4] D159[3:0] D159[7:4] D5039[3:0] D5039[7:4] D5119[3:0] D5119[7:4] COM Outputs Row Address (HEX) (HEX) | (Display Startline=0) Nibble re-map A[1]=0 Table 13 shows the GDDRAM map under the following condition: Solomon Systech Jul 2010 P 27/63 Rev 2.3 SSD1325 • • • Command “Set Re-map” A0h is set to: Enable Column Address Re-map (A[0]=1) Enable Nibble Re-map (A[1]=1) Enable Horizontal Address Increment (A[2]=0) Disable COM Re-map (A[4]=0) Display Start Line=00h Data byte sequence: D0, D1, D2 … D5119 Table 13 : GDDRAM address map 3 SEG0 SEG1 SEG2 3F SEG3 SEG124 3E SEG125 SEG126 01 SEG127 SEG Outputs 00 Column Address COM0 00 D63[7:4] D63[3:0] D62[7:4] D62[3:0] D1[7:4] D1[3:0] D0[7:4] D0[3:0] COM1 01 D127[7:4] D127[3:0] D126[7:4] D126[3:0] D65[7:4] D65[3:0] D64[7:4] D64[3:0] | | COM78 4E D5055[7:4] D5055[3:0] D5054[7:4] D5054[3:0] D4993[7:4] D4993[3:0] D4992[7:4] D4992[3:0] COM79 4F D5119[7:4] D5119[3:0] D5118[7:4] D5118[3:0] D5057[7:4] D5057[3:0] D5056[7:4] D5056[3:0] COM Outputs Row Address (HEX) (HEX) | Nibble re-map A[1]=1 (Display Startline=0) For vertical scrolling of the display, an internal register storing display start line can be set to control the portion of the RAM data to be mapped to the display. Table 14 shows the example in which the display start line register is set to 10h with the following condition: • Command “Set Re-map” A0h is set to: Disable Column Address Re-map (A[0]=0) Disable Nibble Re-map (A[1]=0) Enable Horizontal Address Increment (A[2]=0) Enable COM Re-map (A[4]=1) • Display Start Line=10h (corresponds to COM15) • Data byte sequence: D0, D1, D2 … D5119 Table 14 : GDDRAM address map 4 SEG0 SEG1 SEG2 00 SEG3 SEG124 01 SEG125 SEG126 SEG127 3E SEG Outputs 3F Column Address COM15 0F D0[3:0] D0[7:4] D1[3:0] D1[7:4] D62[3:0] D62[7:4] D63[3:0] D63[7:4] COM14 0E D64[3:0] D64[7:4] D65[3:0] D65[7:4] D126[3:0] D126[7:4] D127[3:0] D127[7:4] | | COM17 11 D4992[3:0] D4992[7:4] D4993[3:0] D4993[7:4] D5054[3:0] D5054[7:4] D5055[3:0] D5055[7:4] COM16 10 D5056[3:0] D5056[7:4] D5057[3:0] D5057[7:4] D5118[3:0] D5118[7:4] D5119[3:0] D5119[7:4] COM Outputs Row Address (HEX) (HEX) | (Display Startline=10H) Nibble re-map A[1]=0 Table 15 shows the GDDRAM map under the following condition: Solomon Systech Jul 2010 P 28/63 Rev 2.3 SSD1325 • Command “Set Re-map” A0h is set to: Disable Column Address Re-map (A[0]=0) Disable Nibble Re-map (A[1]=0) Enable Horizontal Address Increment (A[2]=0) Disable COM Re-map (A[4]=0) Display Start Line=00h Column Start Address=01h Column End Address=3Eh Row Start Address=01h Row End Address=4Eh Data byte sequence: D0, D1, D2 … D4835 • • • • • • Table 15 : GDDRAM address map 5 SEG0 SEG1 SEG2 00 COM0 00 COM1 01 | | COM78 4E COM79 4F COM Outputs Row Address (HEX) SEG3 SEG124 01 SEG125 SEG126 3E SEG127 SEG Outputs 3F Column Address (HEX) D0[3:0] D0[7:4] D61[3:0] D61[7:4] | D4774[3:0] D4774[7:4] D4835[3:0] D4835[7:4] (Display Startline=0) Nibble re-map A[1]=0 Note (1] Please refer to Table 18 for the details of setting command “Set Re-map”A0h. (2) The “Display Start Line” is set by the command “Set Display Start Line” A1h and please refer to Table 18 for the setting details (3) The “Column Start/End Address” is set by the command “Set Column Address” 15h and please refer to Table 18 for the setting details (4) The “Row Start/End Address” is set by the command “Set Row Address” 75h and please refer to Table 18 for the setting detail 8.8 Gray Scale Decoder There are 16 gray levels from GS0 to GS15. The gray scale of the display is defined by the pulse width (PW) of current drive phase, GS0 has no pre-charge (phase 2) and no current drive (phase 3). Each L value represents an offset to the corresponding gray scale level. See below table and graphical representation: Table16 : Gray scale pulse width set table Solomon Systech Jul 2010 P 29/63 Rev 2.3 SSD1325 L1 L2 L3 Description Set GS1 level Pulse Width Set GS2 level Pulse Width Offset Set GS3 level Pulse Width Offset Number of DCLKs 0-7 1-8 1-8 . . . . . . . . . L13 L14 L15 Set GS13 level Pulse Width Offset Set GS14 level Pulse Width Offset Set GS15 level Pulse Width Offset 1-8 1-8 1-8 DCLK: Internal Display Clock. It is used for defining phase clock period. Figure 15 : Gray scale pulse width set diagram One Row Period GS0 GS1 GS2 GS3 . . . GS13 GS14 GS15 Phase 1 Phase 2 P1 P2 Phase 3 PW offset offset . . . . . . . . . offset offset offset 123………………………….…………………………………………………………K=40 (POR) K: number of DCLKs no precharge and current drive Precharge Current Drive Table 17 : Gray scale pulse width default values RESET L1=1 L2=1 L3=1 L4=1 L5=1 L6=1 L7=1 L8=1 L9=1 L10=1 L11=1 L12=1 L13=1 L14=1 L15=1 Result GS1 level Pulse width=1 GS2 level Pulse width=3 GS3 level Pulse width=5 GS4 level Pulse width=7 GS5 level Pulse width=9 GS6 level Pulse width=11 GS7 level Pulse width=13 GS8 level Pulse width=15 GS9 level Pulse width=17 GS10 level Pulse width=19 GS11 level Pulse width=21 GS12 level Pulse width=23 GS13 level Pulse width=25 GS14 level Pulse width=27 GS15 level Pulse width=29 Solomon Systech Jul 2010 P 30/63 Rev 2.3 SSD1325 8.9 Power ON and OFF sequence The following figures illustrate the recommended power ON and power OFF sequence of SSD1325. Power ON sequence: 1. Power ON VDD. 2. After VDD become stable, set RES# pin LOW (logic LOW) for at least 3us (t1) (4) and then HIGH (logic HIGH). 3. After set RES# pin LOW (logic LOW), wait for at least 3us (t2). Then Power ON VCC.(1) 4. After VCC become stable, send command AFh for display ON. SEG/COM will be ON after 100ms (tAF). Figure 16 : The Power ON sequence ON VDD RES# ON VCC Send AFh command for Display ON VDD GND t1 RES# GND t2 VCC GND tAF ON SEG/COM OFF Power OFF sequence: 1. Send command AEh for display OFF. 2. Wait until panel discharges completely. 3. Power OFF VCC. (1), (2) ,(3) 4. Wait for tOFF. Power OFF VDD. (where Minimum tOFF=0ms (5) Typical tOFF=100ms) Figure 17 : The Power OFF sequence Send command AEh for display OFF OFF VCC OFF VDD VCC GND tOFF VDD GND Note: (1) Since an ESD protection circuit is connected between VDD and VCC, VCC becomes lower than VDD whenever VDD is ON and VCC is OFF as shown in the dotted line of VCC in Figure 16 and Figure 17. (2) VCC should be kept float (disable) when it is OFF. (3) Power Pins (VDD , VCC) can never be pulled to ground under any circumstance. The register values are reset after t1. (5) VDD should not be Power OFF before VCC Power OFF. (4) Solomon Systech Jul 2010 P 31/63 Rev 2.3 SSD1325 9 COMMAND TABLE Table 18: Command Table (D/C# = 0, R/W# (WR#) = 0, E (RD#) = 1) unless specific setting is stated Fundamental Command Table D/C Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description 0 15 0 0 0 1 0 1 0 1 Set Column Address Second command A[5:0] sets the column start address from 0-63, POR = 00h 0 A[5:0] * * A5 A4 A3 A2 A1 A0 0 B[5:0] * 0 0 75 0 1 1 1 0 1 0 1 Set Row address A[6:0] * A6 A5 A4 A3 A2 A1 A0 Second command A[6:0]sets the row start address from 0-79, RESET = 00h 0 B[6:0] * B6 B5 B4 B3 B2 B1 B0 Third command B[6:0] sets the row end address from 079, RESET = 4Fh 0 0 81 1 0 0 0 0 0 0 1 Set Contrast Current Double byte command to select 1 out of 128 contrast steps. Contrast increases as level increase A[6:0] * A6 A5 A4 A3 A2 A1 A0 The level is set to 40h after RESET 0 84~86 0 0 A0 1 0 1 0 0 0 0 0 Set Re-map A[6:0] * A6 A5 A4 A3 A2 A1 A0 1 * B5 B4 B3 B2 B1 B0 0 0 0 0 1 X1 X0 Set Current Range Third command B[5:0] sets the column end address from 0-63, RESET = 3Fh 84h = Quarter Current Range (RESET) 85h = Half Current Range 86h = Full Current Range A[0]=0, Disable Column Address Re-map (RESET) A[0]=1, Enable Column Address Re-map A[1]=0, Disable Nibble Re-map (RESET) A[1]=1, Enable Nibble Re-map A[2]=0, Horizontal Address Increment (RESET) A[2]=1, Vertical Address Increment A[4]=0, Disable COM Re-map disable (RESET) A[4]=1, Enable COM Re-map A[5]=0, Reserved (RESET) A[5]=1, Reserved A[6]=0, Disable COM Split Odd Even (RESET) A[6]=1, Enable COM Split Odd Even 0 0 A1 1 0 1 0 0 0 0 1 Set Display Start Line Set display RAM display start line register from 0-79 Display start line register is reset to 00h after RESET A[6:0] * A6 A5 A4 A3 A2 A1 A0 0 0 A2 1 0 1 0 0 0 1 0 Set Display Offset A[6:0] * A6 A5 A4 A3 A2 A1 A0 Solomon Systech Set vertical scroll by COM from 0-79 The value is reset to 00H after RESET Jul 2010 P 32/63 Rev 2.3 SSD1325 Fundamental Command Table D/C Hex D7 D6 D5 D4 D3 D2 D1 D0 Command 0 A4~A7 1 0 1 0 0 X2 X1 X0 Set Display Mode Description A4h = Normal Display (RESET) A5h = Entire Display ON, all pixels turns ON in GS level 15 A6h = Entire Display OFF, all pixels turns OFF A7h = Inverse Display 0 0 A8 1 0 1 0 1 0 0 0 Set Multiplex Ratio A[6:0] * A6 A5 A4 A3 A2 A1 A0 The next command determines multiplex ratio N from 16MUX-80MUX, A[6:0] = 15 represents 16MUX A[6:0] = 16 represents 17MUX : A[6:0] = 78 represents 79MUX A[6:0] = 79 represents 80MUX 0 0 AD 1 A[1:0] * 0 * 1 * 0 * 1 * 1 * 0 1 Set Master 1 A0 Configuration A[0] = 0, Select external VCC supply A[0] = 1, Reserved (RESET) Note (1) Bit A[0] must be set to 0b after RESET. (2) The setting will be activated after issuing Set Display ON command (AFh) 0 AE 1 0 1 0 1 1 1 0 Set Display OFF AEh = Display OFF (Sleep mode) (RESET) 0 AF 1 0 1 0 1 1 1 1 Set Display ON AFh = Display ON 0 B0 1 0 1 1 0 0 0 1 * 1 0 0 0 1 Set Phase Length * A 3 A2 A1 A0 0 A[5:0] * 0 Set Pre-charge A[5:0] = 08h (RESET) Compensation Enable * A5 A4 A3 A2 A1 A0 A[5:0] = 28h, Enable pre-charge compensation 0 0 B1 1 A[3:0] * 0 * 0 A[7:4] A7 A6 A5 A4 * * * * A[3:0] = P1, phase 1 period of 1-15 DCLKs, RESET = 3DCLKS = 3h A[7:4] = P2, phase 2 period of 1-15 DCLKs, RESET = 5DCLKS = 5h Note (1) 0 DCLK is invalid in phase 1 & phase 2 0 0 B2 1 0 1 1 0 0 1 0 Set Row Period The next command sets the number of DCLKs, K, A[7:0] A7 A6 A5 A4 A3 A2 A1 A0 (set frame frequency) per row between 2-158 DCLKS RESET = 37DCLKS = 25h The K value should be set as K = P1+P2+GS15 pulse width (RESET: 3+5+29DCLKS) Solomon Systech Jul 2010 P 33/63 Rev 2.3 SSD1325 Fundamental Command Table D/C Hex D7 D6 D5 D4 D3 0 B3 1 0 1 1 0 0 A[3:0] * * * * A3 0 A[7:4] A7 A6 A5 A4 * D2 0 A2 * D1 1 A1 * D0 Command Description The lower nibble (A[3:0]) of the next command defines 1 Set Display Clock the divide ratio (D) of display clock (DCLK) A0 Divide Ratio / Divide ratio (D)=A[3:0]+1 Oscillator Frequency * (A[3:0]RESET is 0001b, i.e. divide ratio (D) = 2) The higher nibble (A[7:4] ) of the next command sets the Oscillator Frequency Oscillator Frequency increases with the value of A[7:4] and vice versa Range: 0000b~1111b RESET= 0100b represents 630KHz, typical step value: 5% of previous value 0 B4 1 0 1 1 0 0 A[2:0] * * * * * A2 A1 A0 Compensation Level A[2:0] = 3h, Recommended level 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B8 A[2:0] B[2:0] B[6:4] C[2:0] C[6:4] D[2:0] D[6:4] E[2:0] E[6:4] F[2:0] F[6:4] G[2:0] G[6:4] H[2:0] H[6:4] BC A[7:0] 0 * * B6 * C6 * D6 * E6 * F6 * G6 * H6 0 A6 1 * * B5 * C5 * D5 * E5 * F5 * G5 * H5 1 A5 1 * * B4 * C4 * D4 * E4 * F4 * G4 * H4 1 A4 0 0 BE 1 A[4 :0] * 1 * * * * * * * * * * * * * * * 1 A7 0 * Solomon Systech 1 * * * * * * * * * * * * * * * 1 A3 1 0 A2 B2 * C2 * D2 * E2 * F2 * G2 * H2 * 1 A2 0 0 Set Pre-charge A[2:0] = 0 (RESET) 0 A1 B1 * C1 * D1 * E1 * F1 * G1 * H1 * 0 A1 0 Set Gray Scale Table The next eight bytes of command set the gray scale level of GS1-15 as below: A0 A[2:0] = Gray scale level of GS1, RESET=1 B0 B[2:0] = Gray scale level of GS2, RESET=1 * B[6:4] = Gray scale level of GS3, RESET=1 C0 C[2:0] = Gray scale level of GS4 RESET=1 * C[6:4] = Gray scale level of GS5, RESET=1 D0 D[2:0] = Gray scale level of GS6, RESET=1 * D[6:4] = Gray scale level of GS7, RESET=1 E[2:0] = Gray scale level of GS8, RESET=1 E0 E[6:4] = Gray scale level of GS9, RESET=1 * F[2:0] = Gray scale level of GS10, RESET=1 F0 F[6:4] = Gray scale level of GS11, RESET=1 * G[2:0] = Gray scale level of GS12, RESET=1 G0 G[6:4] = Gray scale level of GS13, RESET=1 * H[2:0] = Gray scale level of GS14, RESET=1 H[6:4] = Gray scale level of GS15, RESET=1 H0 * 0 Set Precharge Voltage Second command A[7:0] sets the precharge voltage level, A0 A[7:0] 1xxxxxxx connects to VCOMH 001xxxxx 1.0 * VREF 00000000 0.51* VREF 00000001 0.52* VREF ..... (RESET) 00011000 0.75* VREF ..... 00011111 0.84* VREF 1 1 1 1 1 0 Set VCOMH Voltage Second command A[4:0] sets the VCOMH voltage level , A[4:0] 00000 0.51*VREF 0 A4 A3 A2 A1 A0 00001 0.52* VREF ..... 10001 0.68* VREF (RESET) ...... 11101 0.81* VREF 11110 0.82* VREF 11111 0.84* VREF Jul 2010 P 34/63 Rev 2.3 SSD1325 Fundamental Command Table D/C Hex D7 D6 D5 D4 D3 D2 D1 D0 Command 0 BF 1 0 1 1 1 1 1 1 Set Segment Low 0 A[3:0] * * * * A3 A2 A1 A0 Voltage (VSL) 0 E3 1 1 1 0 0 0 1 1 NOP Description Second command A[3:0] sets the VSL voltage as follow: A[3:0] = 0010 kept VSL pin NC A[3:0] = 1110 (RESET) connect a capacitor between VSL pin and VSS Command for No Operation Table 19: Graphic acceleration command Set (GAC) (D/C# = 0, R/W#(WR#)= 0, E(RD#) = 1) unless specific setting is stated Graphic acceleration command D/C# 0 Hex 23 0 A[4:0] D7 D6 D5 D4 D3 D2 D2 D0 0 0 1 0 0 0 1 1 * * * A4 * * Command A1 A0 Graphic Acceleration Command Options 0 0 0 0 0 0 24 0 0 1 0 0 1 0 0 A[5:0] * * B[6:0] * B6 C[5:0] * * D[6:0] * D6 E[7:0] E7 E6 A5 B5 C5 D5 E5 A4 B4 C4 D4 E4 A3 B3 C3 D3 E3 A2 B2 C2 D2 E2 A1 B1 C1 D1 E1 A0 B0 C0 D0 E0 Description A[0] = 0b: Disable Fill rectangle A[0] = 1b: Enable Fill rectangle (RESET) A[1] = 0b: Disable x-wrap(RESET) A[1] = 1b: Enable wrap around in x-direction during copying and scrolling A[4] = 0b: Disable reverse copy (RESET) A[4] = 1b: Enable reverse during copying. A[5:0]: Column Address of Start B[6:0]: Row Address of Start C[5:0]: Column Address of End D[6:0]: Row Address of End E[7:0]: Set Gray scale pattern E[7:0] This byte is divided into two nibbles. The most significant 4 bits represent the gray scale Draw Rectangle level of the left pixel of each group. The least significant 4 bits represent the gray scale level of the right pixel of each group. Please refer to Figure 31 for the gray scale pattern setting examples. Note: (1) 0 ≤ A < C ≤ 63 (2) 0 ≤ B < D ≤ 79 0 0 0 0 0 0 0 25 A[5:0] B[6:0] C[5:0] D[6:0] E[5:0] F[6:0] 0 * * * * * * 0 * B6 * D6 * F6 Solomon Systech 1 A5 B5 C5 D5 E5 F5 0 A4 B4 C4 D4 E4 F4 0 A3 B3 C3 D3 E3 F3 1 A2 B2 C2 D2 E2 F2 0 A1 B1 C1 D1 E1 F1 1 A0 B0 C0 D0 E0 F0 Copy A[5:0]: Column Address of Start B[6:0]: Row Address of Start C[5:0]: Column Address of End D[6:0]: Row Address of End Jul 2010 P 35/63 Rev 2.3 SSD1325 Graphic acceleration command D/C# Hex D7 D6 D5 D4 D3 D2 D2 D0 Command Description E[5:0]: Column Address of New Start F[6:0]: Row Address of New Start Note: (1) 0 ≤ A < C ≤ 63 (2) 0 ≤ B < D ≤ 79 (3) 0 ≤ E ≤ 63 (4) 0 ≤ F ≤ 79 0 26 0 0 1 0 0 1 1 0 0 0 A[5:0] B[6:0] C[1:0] * * * * A5 A4 A3 A2 A1 A0 B6 B5 B4 B3 B2 B1 B0 * * * * * C1 C0 A[5:0]: 1~63 horizontal offset in number of 2~127 column 0 no horizontal scroll 0 B[6:0]: 2~80 number of rows to be H-scrolled C[1:0]: scrolling time interval 00b 12 frames Horizontal Scroll 01b 64 frames 10b 128 frames 11b 256 frames Note: (1) Scrolling operates during display ON. (2) The parameters should not be changed after scrolling is activated This command deactivates the scrolling action. 0 2E 0 0 1 0 1 1 1 0 Stop Moving Note After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten. (1) This command activates the scrolling function according to the setting done by Horizontal Scroll command 26h. 0 2F 0 0 1 0 1 1 1 1 Start Moving Note The “wrap around in x-direction” function must be enabled before scrolling start. i.e. Bit A{1} of command 23h must be set to 1b before issuing 2F command. (1) Table 20: Read Command Table D7D6D5D4D3D2D1 D0 (D/C#=0, R/W# (WR#)=1, E (RD#)=1 for 6800 or E (RD#)=0 for 8080) D7 = 0:reserved D7 = 1:reserved D6 = 0:indicates the display is ON D6 = 1:indicated the display is OFF Status Register Read D5 = 0:reserved D5 = 1:reserved D4 = 0:reserved D4 = 1:reserved Note (1) Patterns other than that given in Command Table are prohibited to enter to the chip as a command; Otherwise, unexpected result will occur Solomon Systech Jul 2010 P 36/63 Rev 2.3 SSD1325 9.1 Data Read / Write To read data from the GDDRAM, input HIGH to R/W# (WR#) pin and D/C# pin for 6800-series parallel mode, LOW to E (RD#) pin and HIGH to D/C# pin for 8080-series parallel mode. In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data read. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data read. Also, a dummy read is required before the first data read. See Figure 5 and Figure 8 in Functional Description. To write data to the GDDRAM, input LOW to R/W#(WR#) pin and HIGH to D/C# pin for 6800-series parallel mode and 8080-series parallel mode. For serial interface mode, it is always in write mode. In horizontal address increment mode, GDDRAM column address pointer will be increased by one automatically after each data write. In vertical address increment mode, GDDRAM row address pointer will be increased by one automatically after each data write. It should be noted that, in horizontal address increment mode, the row address pointer would be increased by one automatically if the column address pointer wraps around. In vertical address increment mode, the column address pointer will be increased by one automatically if the row address pointer wraps around. Table 21: Address Increment Table (Automatic) Solomon Systech D/C# R/W# (WR#) Comment Address Increment 0 0 1 1 0 1 0 1 Write Command Read Status Write Data Read Data No No Yes Yes Jul 2010 P 37/63 Rev 2.3 SSD1325 10 COMMAND DESCRIPTIONS 10.1 Fundamental command description 10.1.1 Set Column Address (15h) This triple byte command specifies column start address and end address of the display data RAM. This command also sets the column address pointer to column start address. This pointer is used to define the current read/write column address in graphic display data RAM. If horizontal address increment mode is enabled by command A0h, after finishing read/write one column data, it is incremented automatically to the next column address. Whenever the column address pointer finishes accessing the end column address, it is reset back to start column address and the row address is incremented to the next row. 10.1.2 Set Row Address (75h) This triple byte command specifies row start address and end address of the display data RAM. This command also sets the row address pointer to row start address. This pointer is used to define the current read/write row address in graphic display data RAM. If vertical address increment mode is enabled by command A0h, after finishing read/write one row data, it is incremented automatically to the next row address. Whenever the row address pointer finishes accessing the end row address, it is reset back to start row address. The diagram below shows the way of column and row address pointer movement through the example: column start address is set to 2 and column end address is set to 61, row start address is set to 1 and row end address is set to 78; horizontal address increment mode is enabled by command A0h. In this case, the graphic display data RAM column accessible range is from column 2 to column 61 and from row 1 to row 78 only. In addition, the column address pointer is set to 2 and row address pointer is set to 1. After finishing read/write one pixel of data, the column address is increased automatically by 1 to access the next RAM location for next read/write operation (solid line in Figure 18). Whenever the column address pointer finishes accessing the end column 61, it is reset back to column 2 and row address is automatically increased by 1 (solid line in Figure 18). While the end row 78 and end column 61 RAM location is accessed, the row address is reset back to 1 and the column address is reset back to 2 (dotted line in Figure 18). Figure 18 : Example of Column and Row Address Pointer Movement Row 0 Row 1 Row 2 : : : Row 77 Row 78 Row 79 Solomon Systech SEG127 SEG126 63 SEG125 SEG124 62 SEG123 61 SEG122 : : ……. : : ….. SEG5 SEG4 2 SEG3 SEG2 1 SEG1 SEG0 0 Column address SEG outputs : : : Jul 2010 P 38/63 Rev 2.3 SSD1325 10.1.3 Set Contrast Current (81h) This command is to set Contrast Setting of the display. The chip has 128 contrast steps from 00H to 7FH. The segment output current increases with the increase of contrast step. See Figure 19 below. Figure 19 : Segment current vs Contrast setting 10.1.4 Set Current Range (84h, 85h, 87h) This command is used to select quarter range or half range or full range current mode. With the same contrast level, quarter range mode will give a quarter of the current output of the full range mode. Similar to half range current mode, it will give a half of the current output of the full range mode. See Figure 19. In RESET, quarter range current mode is default. 10.1.5 Set Re-map (A0h) This double command has multiple configurations and each bit setting is described as follows: • Column Address Remapping (A[0]) This bit is made for increase the flexibility layout of segment signals in OLED module with segment arranged from left to right (when A[0] is set to 0) or from right to left (when A[0] is set to 1). • Nibble Remapping (A[1]) When A[1] is set to 1, the two nibbles of the data bus for RAM access are re-mapped, such that (D7, D6, D5, D4, D3, D2, D1, D0) acts like (D3, D2, D1, D0, D7, D6, D5, D4). If this feature works together with Column Address Re-map, it would produce an effect of flipping the outputs from SEG0~127 to SEG127~SEG0 as show in Table 13. • Address increment mode (A[2]) When A[2] is set to 0, the driver is set as horizontal address increment mode. After the display RAM is read / written, the column address pointer is increased automatically by 1. If the column address pointer reaches column end address, the column address pointer is reset to column start address and row address pointer is increased by 1. The sequence of movement of the row and column address point for horizontal address increment mode is shown in Figure 20 Solomon Systech Jul 2010 P 39/63 Rev 2.3 SSD1325 Figure 20 : Address Pointer Movement of Horizontal Address Increment Mode Row 0 Row 1 : Row 78 Row 79 0 1 ….. 62 63 : : : : : Column address When A[2] is set to 1, the driver is set to vertical address increment mode. After the display RAM is read / written, the row address pointer is increased automatically by 1. If the row address pointer reaches the row end address, the row address pointer is reset to row start address and column address pointer is increased by 1. The sequence of movement of the row and column address point for vertical address increment mode is shown in Figure 21. Figure 21: Address Pointer Movement of Vertical Address Increment Mode 0 Row 0 Row 1 : Row 126 Row 127 • 1 ….. ….. ….. : ….. ….. 62 63 Column address COM Remapping (A[4]) This bit defines the scanning direction of the common for flexible layout of common signals in OLED module either from up to down (when A[4] is set to 0) or from bottom to up (when A[4] is set to 1). Table 14 shows an example of the using the COM Remapping to perform vertical scrolling. Solomon Systech Jul 2010 P 40/63 Rev 2.3 SSD1325 • Splitting of Odd / Even COM Signals (A[6]) This bit is made to match the COM layout connection on the panel. When A[6] is set to 0, no splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 80MUX ratio): Figure 22: Output pin assignment when command A0h bit A[6]=0. ROW79 ROW40 128 x80 ROW39 ROW0 COM40 COM0 COM39 COM79 SSD1325Z2 Output Pin Connection SSD1325Z2 Panel COM0 ROW0 COM1 ROW1 COM2 ROW2 COM3 ROW3 : : COM39 ROW39 COM40 ROW40 : : COM77 ROW77 COM78 ROW78 COM79 ROW79 Pad 1,2,3,… Gold Bumps face up When A[6] is set to 1, splitting odd / even of the COM signal is performed, output pin assignment sequence is shown as below (for 128MUX ratio): Figure 23 : Output pin assignment when command A0h bit A[6]=1. ROW79 ROW77 ROW75 ROW78 ROW76 ROW74 ...... ...... 128 x128 ROW5 ROW4 ROW3 ROW2 ROW0 ROW1 COM0 COM1 COM2 ... COM77 COM78 COM79 ... COM40 COM41 COM42 COM37 COM38 COM39 Output Pin Connection SSD1325Z2 Panel COM0 ROW0 (Even) COM1 ROW2 COM2 ROW4 : : COM37 ROW74 COM38 ROW76 COM39 ROW78 COM40 ROW1 (Odd) COM41 ROW3 COM42 ROW5 : : COM77 ROW75 COM78 ROW77 COM79 ROW79 SSD1325Z2 Pad 1,2,3,… Gold Bumps face up Solomon Systech Jul 2010 P 41/63 Rev 2.3 SSD1325 10.1.6 Set Display Start Line (A1h) This double byte command is to set Display Start Line register for determining the starting address of display RAM to be displayed by selecting a value from 0 to 79. Figure 24 shows an example using this command of this command when MUX ratio= 80 and MUX ratio= 54 and Display Start Line = 28. In there, “ROW” means the graphic display data RAM row. Figure 24: Example of Set Display Start Line with no Remapping MUX ratio (A8h) = 80 MUX ratio (A8h) = 80 MUX ratio (A8h) = 54 MUX ratio (A8h) = 54 COM Pin Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h) Display Start Line (A1h) =0 = 28 =0 = 28 COM0 ROW0 ROW28 ROW0 ROW28 COM1 ROW1 ROW29 ROW1 ROW29 COM2 ROW2 ROW30 ROW2 ROW30 COM3 ROW3 ROW31 ROW3 ROW31 : : : : : : : : : : COM23 ROW23 ROW51 ROW23 ROW51 COM24 ROW24 ROW52 ROW24 ROW52 COM25 ROW25 ROW53 ROW25 ROW53 COM26 ROW26 ROW54 ROW26 ROW54 : : : : : : : : : : COM49 ROW50 ROW77 ROW50 ROW77 COM51 ROW51 ROW78 ROW51 ROW78 COM52 ROW52 ROW79 ROW52 ROW79 COM53 ROW53 ROW0 ROW53 ROW0 COM54 ROW54 ROW1 COM55 ROW55 ROW2 : : : : : : : : : : COM76 ROW76 ROW24 COM77 ROW77 ROW25 COM78 ROW78 ROW26 COM79 ROW79 ROW27 Display Example Solomon Systech Jul 2010 P 42/63 Rev 2.3 SSD1325 10.1.7 Set Display Offset (A2h) This double byte command specifies the mapping of display start line (it is assumed that COM0 is the display start line, display start line register equals to 0) to one of COM0~COM79. Figure 25 shows an example using this command when MUX ratio= 80 and MUX ratio= 54 and Display Offset = 28. In there, “Row” means the graphic display data RAM row. Figure 25: Example of Set Display Offset with no Remapping MUX ratio (A8h) = 80 COM Pin Display Offset (A2h)=0 COM0 ROW0 COM1 ROW1 COM2 ROW2 COM3 ROW3 : : : : COM23 ROW23 COM24 ROW24 COM25 ROW25 COM26 ROW26 : : : : COM49 ROW50 COM51 ROW51 COM52 ROW52 COM53 ROW53 COM54 ROW54 COM55 ROW55 : : : : COM76 ROW76 COM77 ROW77 COM78 ROW78 COM79 ROW79 MUX ratio (A8h) = 80 Display Offset (A2h)=18 ROW28 ROW29 ROW30 ROW31 : : ROW51 ROW52 ROW53 ROW54 : : ROW77 ROW78 ROW79 ROW0 ROW1 ROW2 : : ROW24 ROW25 ROW26 ROW27 MUX ratio (A8h) = 64 Display Offset (A2h)=0 ROW0 ROW1 ROW2 ROW3 : : ROW23 ROW24 ROW25 ROW26 : : ROW50 ROW51 ROW52 ROW53 : : - MUX ratio (A8h) = 64 Display Offset (A2h)=18 ROW28 ROW29 ROW30 ROW31 : : ROW51 ROW52 ROW53 : : ROW0 ROW1 ROW2 : : ROW24 ROW25 ROW26 ROW27 Display Example Solomon Systech Jul 2010 P 43/63 Rev 2.3 SSD1325 10.1.8 Set Display Mode (A4h ~ A7h) These are single byte commands (A4h ~ A7h) and are used to set display status to Normal Display, Entire Display ON, Entire Display OFF or Inverse Display, respectively. • Normal Display (A4h) Reset the “Entire Display ON, Entire Display OFF or Inverse Display” effects and turn the data to ON at the corresponding gray level. Figure 26 shows an example of Normal Display. Figure 26: Example of Normal Display Memory • Display Set Entire Display ON (A5h) Force the entire display to be at gray scale level GS15, regardless of the contents of the display data RAM, as shown on Figure 27. Figure 27: Example of Entire Display ON Memory • Display Set Entire Display OFF (A6h) Force the entire display to be at gray scale level GS0, regardless of the contents of the display data RAM, as shown on Figure 28. Figure 28 : Example of Entire Display OFF Memory • Display Inverse Display (A7h) The gray scale level of display data are swapped such that “GS0” <-> “GS15”, “GS1” <-> “GS14”, etc. Figure 29 shows an example of inverse display. Figure 29: Example of Inverse Display Memory Solomon Systech Display Jul 2010 P 44/63 Rev 2.3 SSD1325 10.1.9 Set Multiplex Ratio (A8h) This double byte command sets multiplex ratio (MUX ratio) from 16MUX to 80MUX. In RESET, multiplex ratio is 80MUX. Please refer to Figure 24 and Figure 25 for the example of setting different MUX ratio. 10.1.10 Set Master Configuration (ADh) This command selects the external VCC power supply. External VCC power should be connected to the VCC pin. A[0] bit must be set to 0b after RESET. This command will be activated after issuing Set Display ON command (AFh) 10.1.11 Set Display ON/OFF (AEh / AFh) These single byte commands are used to turn the matrix display on the OLED panel display either ON or OFF. For AEh, the display is OFF, the segment and common output are in high impedance state and circuits will be turned OFF. When the sleep mode is set to OFF (AFh), the display is ON. 10.1.12 Set VCOMH Voltage (BEh) This double byte command sets the high voltage level of common pins, VCOMH . The level of VCOMH is programmed with reference to VCC . Please refer to Table 18 for detail information and breakdown levels of each step. Solomon Systech Jul 2010 P 45/63 Rev 2.3 SSD1325 10.1.13 Set Precharge Voltage (BCh) This double byte command is used to set the pre-charge voltage (phase 2) level. Please refer to Table 18 for detail information and breakdown levels of each step. 10.1.14 Set Phase Length (B1h) This is a double byte command. In the second byte of this double command, lower nibble and higher nibble is defined separately. The lower nibble adjusts the phase length of Reset (phase 1). The higher nibble is used to select the phase length of the pre-charge phase (phase 2). The phase length is ranged from 1 to 16 DCLK's. RESET for A[3:0] is set to 3h while reset for A[7:4] is set to 5h. Please refer to Table 18 for detail breakdown levels of each step. 10.1.15 Set Row Period (B2h) This command is used to set the row period. It is defined by multiplying the internal display clock period by the number of internal display clocks per row (valued from 14h to 7Fh), and RESET is 25h. The larger the value, the more precise of each gray scale level can be tuned. See “Gray Scale Table” command (B8h) for details. Also, it is used to define the frame frequency altogether with the use of “Display Clock Divide Ratio” command (B3h). Row period equals to the sum of phase 1 and phase 2 periods and the pulse width of GS15. See equation in Table 18. 10.1.16 Set Display Clock Divide Ratio (B3h) This double command is used to set the frequency of the internal display clocks, DCLK's. It is defined by dividing the oscillator frequency by the divide ratio (valued from 1 to 16). Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency. The lower nibble of the second byte is used to select the oscillator frequency. Please refer to Table 18 for detail breakdown levels of each step. 10.1.17 Set Gray Scale Table This command is used to set each individual gray scale level for the display. Except gray scale level GS0 that has no pre-charge and current drive, the pulse width of each gray scale level is programmed with unit of DCLK. The longer the length of the pulse width, the brighter the OLED pixel when it is turned ON. The setting of gray scale table entry can perform gamma correction on OLED panel display. Normally, it is desired that the brightness response of the panel is linearly proportional to the image data value in display data RAM. However, the OLED panel is somehow responded in non-linear way. Appropriate gray scale table setting like example below can compensate this effect. Figure 30 : Example of gamma correction by gray scale table setting Pulse Width Brightness Gray scale table setting Gray Scale Brightness Panel response Result in linear response Gray Scale Pulse width As shown in Table16 and Table 17, GS1 is defined with pulse width equals to the first offset value, L1, select from 0-7 internal display clocks. GS2 is defined with pulse width equals to GS1 plus the next offset value, L2, select from18 internal display clocks. Similarly, the next GS level is defined with pulse width equals to its lower one GS level plus the next offset value, select from 1-8 internal display clocks. In normal operation, GS15 should take the full current drive period as its pulse width. Therefore, the row period should be set as the Solomon Systech Jul 2010 P 46/63 Rev 2.3 SSD1325 sum of phase 1 period, phase 2 periods, and the pulse width of GS15 with the use of “Row period” command. 10.1.18 NOP (E3h) This is a no operation command. 10.1.19 Status register Read This command is issued by setting D/C# LOW during a data read (refer to Figure 34 to Figure 36 parallel interface waveform). It allows the MCU to monitor the internal status of the chip. Solomon Systech Jul 2010 P 47/63 Rev 2.3 SSD1325 10.2 Graphic Acceleration Command Set Description 10.2.1 Graphic Acceleration Command Options (23h) This command has two functions. • Enable / Disable fill (A[0]) 0 = Disable filling of rectangle in draw rectangle command. 1 = Enable filling of rectangle in draw rectangle command. (RESET) • Enable / Disable x-warp (A[1]) 0 = Disable wrap around in x-direction during copying and scrolling 1 = Enable wrap around in x-direction during copying and scrolling (RESET) • Enable / Disable reverse copy (A[4]) 0 = Disable reverse copy (RESET) 1 = During copy command, the new image colors are swapped such that “GS0” <-> “GS15”, “GS1” <-> “GS14”, …. 10.2.2 Draw Rectangle (24h) Specify a starting point (Row 1, Column 1) and an ending point (Row 2, Column 2) as well as giving the desire gray scale pattern, a rectangle will then be drawn. Figure 31 : Example of draw rectangle command Row 1, Column 1 Row 1, Column 1 Gray scale pattern =BBh Gray scale pattern =A0h Row 2, Column 2 Row 2, Column 2 The following example illustrates the rectangle drawing command sequence. 1. Enter the “draw rectangle mode” by execute the command 24h 2. Set the starting column coordinates, Column 1. e.g., 01h. 3. Set the starting row coordinates, Row 1. e.g., 01h. 4. Set the finishing column coordinates, Column 9. e.g., 09h 5. Set the finishing row coordinates, Row 5. e.g., 05h 6. Set the gray scale pattern: This byte is divided into two nibbles. The most significant 4 bits represent the gray scale level of the left pixel of each group. The least significant 4 bits represent the gray scale level of the right pixel of each group. Please refer to Figure 31 for the gray scale pattern setting examples. Solomon Systech Jul 2010 P 48/63 Rev 2.3 SSD1325 10.2.3 Copy (25h) Copy the rectangular region defined by the starting point (Row 1, Column 1) and the ending point (Row 2, Column 2) to location (Row 3, Column 3). If the new coordinates are smaller than the ending points, the new image will overlap the original one. The following example illustrates the copy procedure. 1. Enter the “copy mode” by execute the command 25h 2. Set the starting column coordinates, Column 1. E.g., 00h. 3. Set the starting row coordinates, Row 1. E.g., 00h. 4. Set the finishing column coordinates, Column 2. E.g., 05h 5. Set the finishing row coordinates, Row 2. E.g., 05h 6. Set the new column coordinates, Column 3. E.g., 03h 7. Set the new row coordinates, Row 3. E.g., 03h Figure 32: Example of copy command Row 1, Column 1 Original Image Row 3, Column 3 New Copied Image Row 3 + Row 2, Column 3 + Column 2 10.2.4 Horizontal Scroll (26h) This command consists of 3 consecutive bytes to set up the scrolling parameters. It determined the horizontal scrolling offset, no of scrolling row and scrolling speed. Some scrolling examples are shown in Figure 33 . Before issuing this command, the scrolling must be deactivated (2Eh). Otherwise, RAM content may be corrupted. Figure 33: Scrolling examples Display snap shot after scrolling start Display before scrolling start No of scrolling rows Example 1 : Partial screen horizontal scrolling with 1 column shift in every 64 frames Sample code 23h 02h 26h 01h 30h 01h // Enable wrap around in x-direction during scrolling // Horizontal scroll // Horizontal scroll by 1 column // Scrolling 48 rows // Set time interval between each scroll step as 64 frames 2Fh // Activate scrolling Solomon Systech Jul 2010 P 49/63 Rev 2.3 SSD1325 10.2.5 Stop Moving (2Eh) Stop motion of scrolling. After sending 2Eh command to deactivate the scrolling action, the ram data needs to be rewritten. 10.2.6 Start Moving (2Fh) Start motion of scrolling. This command should only be issued after scrolling setup parameters are defined through command 26h and the function of wrap around in x-direction is enabled through 23h. The following actions are prohibited after the horizontal scroll is activated 1. RAM access (Data write or read) 2. Changing scrolling setup parameters Solomon Systech Jul 2010 P 50/63 Rev 2.3 SSD1325 11 MAXIMUM RATINGS Table 22 : Maximum Ratings (Voltage Reference to VSS) Symbol VDD VCC VREF VSEG VCOM Vin TA Tstg Parameter Supply Voltage SEG output voltage COM output voltage Input voltage Operating Temperature Storage Temperature Range Value -0.3 to +4.0 0 to +17.0 0 to +17.0 0 to +VCC 0 to +0.9xVCC VSS -0.3 to VDD +0.3 -40 to +85 -65 to +150 Unit V V V V V ºC ºC Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected. Solomon Systech Jul 2010 P 51/63 Rev 2.3 SSD1325 12 DC CHARACTERISTICS Conditions (unless specified): Voltage referenced to VSS; VDD = 2.7, VCC = 12.0V, IREF = 10uA, at TA = 25°C. Table 23 : DC Characteristics Symbol VCC VDD VOH VOL VIH VIL ISLEEP Parameter Operating Voltage Logic Supply Voltage HIGH Logic Output Level LOW Logic Output Level HIGH Logic Input Level LOW Logic Input Level Sleep mode Current Test Condition IOUT = 100uA, 3.3MHz IOUT = 100uA, 3.3MHz No loading Min 8.0 2.4 0.9*VDD 0 0.8*VDD 0 - Typ 12.0 2.7 0.2 Max 16.0 3.5 VDD 0.1*VDD VDD 0.2*VDD 5 Unit V V V V V V uA Contrast = 7F - 700 - uA Contrast = 7F - - 650 Contrast = 7F 270 300 370 Contrast = 5F - 225 - Contrast = 3F - 150 - Contrast = 1F - 75 - Adjacent pin -1.5 - +1.5 Overall pin to pin -3 - +3 VCC Supply Current ICC VDD =2.7V, external VCC =12V, IREF =10uA, Frame rate=110Hz, All one pattern, Display ON, no loading VDD Supply Current IDD VDD =2.7V, external VCC =12V, IREF =10uA, Frame rate=110Hz, All one pattern, Display ON, no loading Segment Output Current ISEG Dev VDD =2.7V, VCC =12V, IREF =10uA, Frame rate=110Hz, Display ON, Segment pin under test is connected with a 20K resistive load to VSS Segment output current uniformity VDD=2.7V, VCC=12V, IREF=10uA, Contrast=7F Solomon Systech Jul 2010 P 52/63 Rev 2.3 uA uA % SSD1325 13 AC CHARACTERISTICS Conditions (Unless otherwise specified): Voltage referenced to VSS VDD = 2.4V to 3.5V VCC = 8.0V to 16.0V TA = 25°C Table 24 : AC Characteristics Symbol FOSC FFRM RES# Parameter Oscillation Frequency of Display Timing Generator Frame Frequency for 128 MUX Mode Test Condition VDD = 2.7V Min 535 Typ 630 Max 725 Unit kHz 128x80 Graphic Display Mode, Display ON, Internal Oscillator Enabled - FOSC * 1/(D*K*80) - Hz 3 - - - - 2 Reset LOW pulse width - Reset complete time - us us Note: (1) Fosc stands for the frequency value of the internal oscillator and the value is measured when command B3h A[7:4] is in default value. (2) D stands for divide ratio (3) K stands for total number of display clocks per row defined by command B2h (4) N stands for number of MUX selected by command A8h Solomon Systech Jul 2010 P 53/63 Rev 2.3 SSD1325 Conditions: VDD - VSS = 2.4 to 3.5V TA = 25°C Table 25 : 6800-Series MCU Parallel Interface Timing Characteristics Symbol tcycle tAS tAH tDSW tDHW tDHR tOH tACC PWCSL Parameter Clock Cycle Time Address Setup Time Address Hold Time Write Data Setup Time Write Data Hold Time Read Data Hold Time Output Disable Time Access Time Chip Select Low Pulse Width (read) Chip Select Low Pulse Width (write) Chip Select High Pulse Width (read) Chip Select High Pulse Width (write) Rise Time Fall Time PWCSH tR tF Min 300 0 0 40 15 20 120 60 60 60 - Typ - Max 70 140 - Unit ns ns ns ns ns ns ns ns ns - - ns - 15 15 ns ns Figure 34 : 6800-series MCU Parallel Interface Characteristics D/C# tAS tAH R/W# E tcycle PWCSH PWCSL CS# tR tDHW tF tDSW D0~D7(WRITE) Valid Data tDHR tACC D0~D7(READ) Valid Data tOH Solomon Systech Jul 2010 P 54/63 Rev 2.3 SSD1325 Conditions: VDD - VSS = 2.4 to 3.5V TA = 25°C Table 26 : 8080-Series MCU Parallel Interface Timing Characteristics Symbol tcycle tAS tAH tDSW tDHW tDHR tOH tACC tPWLR tPWLW tPWHR tPWHW tR tF tCS tCSH tCSF Parameter Clock Cycle Time Address Setup Time Address Hold Time Write Data Setup Time Write Data Hold Time Read Data Hold Time Output Disable Time Access Time Read Low Time Write Low Time Read High Time Write High Time Rise Time Fall Time Chip select setup time Chip select hold time to read signal Chip select hold time Min 300 10 0 40 15 20 120 60 60 60 0 0 20 Typ - Max 70 140 15 15 - Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Figure 35 : 8080-series parallel interface characteristics (Form 1) Write cycle (Form 1) Read cycle (Form 1) CS# CS# tCSH tCSF tCS tCS D/C# D/C# tAH tAS WR# tAS tR tF tcycle tPWLW tPWHW tDSW tR tF RD# tcycle tPWLR tDHW tPWHR tACC D[7:0] tAH tDHR D[7:0] tOH Figure 36 : 8080-series parallel interface characteristics (Form 2) Write cycle (Form 2) Read cycle (Form 2) tcycle tcycle tR CS# tR tF CS# tPWLW tF tPWLR tPWHR tPWHW tCS tCS D/C# D/C# tAS tAH WR# tAH RD# tDSW D[7:0] tAS tCSF tDHW tCSH tACC tDHR D[7:0] tOH Solomon Systech Jul 2010 P 55/63 Rev 2.3 SSD1325 Conditions: VDD - VSS = 2.4 to 3.5V TA = 25°C Table 27 : Serial Interface Timing Characteristics Symbol tcycle tAS tAH tCSS tCSH tDSW tDHW tCLKL tCLKH tR tF Parameter Clock Cycle Time Address Setup Time Address Hold Time Chip Select Setup Time Chip Select Hold Time Write Data Setup Time Write Data Hold Time Clock Low Time Clock High Time Rise Time Fall Time Min 250 150 150 120 60 100 100 100 100 - Typ - Max 15 15 Unit ns ns ns ns ns ns ns ns ns ns ns Figure 37 : Serial Interface Characteristics D/C# tAS tAH tCSS CS# tCSH tcycle tCLKL tCLKH SCLK(D0) tF tR tDSW SDIN(D1) tDHW Valid Data CS# SCLK(D0) SDIN(D1) Solomon Systech D7 D6 D5 D4 D3 D2 Jul 2010 D1 P 56/63 D0 Rev 2.3 SSD1325 14 APPLICATION EXAMPLES Figure 38 : Application Example for SSD1325Z2 SPI serial interface mode The configuration for SPI serial interface mode, externally VCC is shown in the following diagram: (VDD = 3V, VCC = VREF = 12V, IREF = 10uA) COM1 COM3 . . COM77 COM79 SEG0 . . . . . . . . . . . . SEG127 COM78 COM76 . . COM2 COM0 DISPLAY PANEL SIZE 128 X 80 SSD1325Z2 VCC VCOMH VDD D/C# RES# CS# E(RD#) R/W#(WR#) (SCLK) (SDIN) D0 D1 IREF VSS R1 C1 C2 C3 VCC VDD D/C# RES# CS# D0 (SCLK) D1 (SDIN) VSS (GND) Pins connected to MCU interface: D0, D1, D/C#, RES#, CS# Pins internally connected to VDD: M/S#, CLS, VDDB Pins internally connected to VSS: BS0, BS1, BS2, E(RD#), R/W#(WR#), VSSB, VCL Pin internally connected to VCC: VREF Pins floated: CL, GDR, RESE, FB, VBREF *VSL pin can be kept NC or connect a capacitor (1~2.2uF(1) ) between this pin and VSS. Refer to command BFh for VSL pin connection details. C1: 1uF, C2~ C3: 4.7uF (1) R1: 910kΩ, R1 ≈ (Voltage at IREF pin - VSS) / IREF = (12.0-3.0)V/10.0uA NOTE (1) The capacitor value is recommended value. Select appropriate value against module application. Solomon Systech Jul 2010 P 57/63 Rev 2.3 SSD1325 Figure 39: Application Example for SSD1325T6R1 The configuration for 6800-parallel interface mode, externally VCC is shown in the following diagram: (VDD = 3V, VCC = VREF = 12V, IREF = 10uA) COM1 COM3 . . COM77 COM79 SEG0 . . . . . . . . . . . . SEG127 COM78 COM76 . . COM2 COM0 DISPLAY PANEL SIZE 128 X 80 SSD1325T6R1 VCC VCOMH IREF D0~D7 E(RD#) R/W#(WR#) D/C# RES# CS# BS2 BS1 VDD VBREF RESE FB VDDB GDR VSS VSL R1 C2 C3 C4 VCC D0~D7 E (RD#) R/W#(WR#) D/C# RES# CS# VDD VSS [GND] VSS [GND] Pins connected to MCU interface: D0~D7, E(RD#), R/W#(WR#), D/C#, CS#, RES# Pins internally connected to VDD: M/S#, CLS Pins internally connected to VSS: BS0, VSSB Pin internally connected to VCC: VREF Pins floated: GDR, RESE, FB, VBREF, VDDB *VSL pin can be kept NC or connect a capacitor (1~2.2uF(1) ) between this pin and VSS. Refer to command BFh for VSL pin connection details. C2~ C4: 4.7uF (1) R1: 910kΩ, R1 ≈ (Voltage at IREF pin - VSS) / IREF = (12.0-3.0)V/10.0uA Note (1) The capacitor value is recommended value. Select appropriate value against module application. Solomon Systech Jul 2010 P 58/63 Rev 2.3 SSD1325 15 PACKAGE INFORMATION 15.1 SSD1325Z2 Die Tray Information Figure 40 : SSD1325Z2 Die Tray Drawing H DY 38.40 PY PX DX E 28.54 H K Remark 1. Depth of text: Max. 0.1mm 2. Tray material: ABS 3. Tray color code: Black 4. Surface resistance 109 ~ 1011 Ω 5. Tray warpage: Max 0.10mm 6. Unspecifier dim's tolerance: ± 0.15mm 7. Pocket size: 13.56 x 1.65 x 0.61mm Solomon Systech Jul 2010 P 59/63 Rev 2.3 SSD1325 Table 28 : SSD1325Z2 Die Tray Dimensions W1 W2 Dimensions mm (mil) 50.70±0.2 (1996) 45.50±0.2 (1791) H E K PX PY X Y Z 4.05±0.2 (160) 1.75±0.2 (69) 1.45±0.2 (57) 14.27±0.1 (562) 3.20±0.1 (126) 11.60±0.1 (457) 1.80±0.1 (71) 0.68±0.05 (27) DX DY 11.08±0.1 (437) 6.15±0.1 (242) N (number of die) 39 Parameter Solomon Systech Jul 2010 P 60/63 Rev 2.3 SSD1325 15.2 SSD1325T6R1 Detail Dimension Figure 41 : SSD1325T6R1 Detail Dimension 5T6 132 SSD Solomon Systech Jul 2010 P 61/63 Rev 2.3 SSD1325 Solomon Systech Jul 2010 P 62/63 Rev 2.3 SSD1325 Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. The product(s) listed in this datasheet comply with Directive 2002/95/EC of the European Parliament and of the council of 27 January 2004 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People’s Republic of China Electronic Industry Standard SJ/T 11363-2006 “Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)”. Hazardous Substances test report is available upon request. http://www.solomon-systech.com Solomon Systech Jul 2010 P 63/63 Rev 2.3 SSD1325