PD - 97044A IRF6668 DirectFET Power MOSFET l l l l l l l l l RoHS compliant containing no lead or bromide Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses Compatible with existing Surface Mount Techniques Typical values (unless otherwise specified) VDSS VGS RDS(on) 80V max ±20V max 12mΩ@ 10V Qg tot 22nC Qgd 7.8nC DirectFET ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6668 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6668 is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V-60V ETSI input voltage range systems. The IRF6668 is also ideal for secondary side synchronous rectification in regulated isolated DCDC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TC = 70°C IDM IS @ TC = 25°C IS @ TC = 70°C ISM Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V e f f Pulsed Drain Current Continuous Source Current (Body Diode) Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) e f f Max. Units 80 ±20 55 44 170 81 52 170 V A Notes: TC measured with thermocouple mounted to top (Drain) of part. Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Repetitive rating; pulse width limited by max. junction temperature. www.irf.com 1 11/4/05 IRF6668 Electrical Characteristic @ TJ = 25°C (unless otherwise specified) Parameter Min. VGS = 0V, ID = 250µA V V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 12A g BVDSS Drain-to-Source Breakdown Voltage 80 ––– ––– ∆BVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.097 ––– Static Drain-to-Source On-Resistance ––– 12 15 VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C µA IGSS gfs Qg Drain-to-Source Leakage Current Conditions Typ. Max. Units ––– ––– 20 ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 22 ––– ––– VDS = VGS, ID = 100µA VDS = 80V, VGS = 0V VDS = 64V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 12A Total Gate Charge ––– 22 31 Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.8 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– Qgd Gate-to-Drain Charge ––– 7.8 12 ID = 12A Qgodr ––– 7.8 ––– See Fig. 14 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 9.4 ––– Qoss Output Charge ––– 12 ––– nC RG (Internal) Gate Resistance ––– 1.0 ––– Ω td(on) tr Turn-On Delay Time Rise Time ––– ––– 19 13 ––– ––– td(off) Turn-Off Delay Time ––– 7.1 ––– tf Fall Time ––– 23 ––– Ciss Input Capacitance ––– 1320 ––– Coss Output Capacitance ––– 310 ––– Crss Reverse Transfer Capacitance ––– 76 ––– Coss Output Capacitance ––– 1400 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 200 ––– VGS = 0V, VDS = 64V, f=1.0MHz Min. Typ. Max. Units ––– ––– VDS = 40V nC VGS = 10V VDS = 16V, VGS = 0V VDD = 40V, VGS = 10Vg ID = 12A ns RG= 6.2Ω See Fig. 16 VGS = 0V VDS = 25V pF Avalanche Characteristics Parameter EAS Single Pulse Avalanche Energy 24 mJ Conditions TJ = 25°C, IS = 23A, RG = 25Ω L = 0.088mH. See Fig. 13 Diode Characteristics Parameter Min. Typ. Max. Units VSD Diode Forward Voltage ––– ––– 1.3 trr Reverse Recovery Time ––– 34 Qrr Reverse Recovery Charge ––– 40 Conditions V TJ = 25°C, IS = 12A, VGS = 0V g 51 ns TJ = 25°C, IF = 12A, VDD = 40V 60 nC di/dt = 100A/µs g Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6668 Absolute Maximum Ratings h h f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range °C Thermal Resistance Parameter hj ij fj RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. ––– 12.5 ––– 1.0 45 ––– 1.4 ––– Units °C/W Thermal Response ( Z thJC ) 10 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 τC τ1 τ2 τ2 C i= τi/R i C i= τi/R i SINGLE PULSE ( THERMAL RESPONSE ) τ3 τ3 τC Ri (°C/W) τi (sec) 0.3173 0.000048 0.5283 0.000336 0.5536 0.001469 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case Notes: Surface mounted on 1 in. square Cu, steady state (still air). Used double sided cooling, mounted on 1 in. square Cu board Rθ is measured at TJ of approximately 90°C. PCB with small clip heatsink (still air). Note www.irf.com Note Note 3 IRF6668 1000 1000 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 100 BOTTOM 100 10 6.0V 6.0V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 1 0.1 1 10 0.1 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 2.0 ID = 12A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) VDS = 10V ≤60µs PULSE WIDTH 100 T J = 150°C 10 T J = 25°C T J = -40°C 1 0.1 4 6 8 10 1.5 1.0 12 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 12A C oss = C ds + C gd Ciss 1000 Coss Crss 100 20 40 60 80 100 120 140 160 Fig 5. Normalized On-Resistance vs. Temperature Fig 4. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS = 10V 0.5 2 10 10.0 VDS= 64V VDS= 40V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 6. Typical Capacitance vs.Drain-to-Source Voltage 4 10 0 2 4 6 8 10 12 14 16 18 20 22 24 QG, Total Gate Charge (nC) Fig 7. Typical Total Gate Charge vs Gate-to-Source Voltage www.irf.com IRF6668 60 RDS(on), Drain-to -Source On Resistance (m Ω) 60 ID = 12A T J = 25°C Vgs = 7.0V Vgs = 8.0V Vgs = 10V Vgs = 15V 50 Typical RDS(on) ( mΩ) 50 40 30 T J = 125°C 20 40 30 20 10 10 T J = 25°C 0 0 4 6 8 10 12 14 0 16 20 40 Fig 8. Typical On-Resistance vs. Gate Voltage 100 Fig 9. Typical On-Resistance vs. Drain Current 6.0 Typical VGS(th) , Gate threshold Voltage (V) 1000 ISD, Reverse Drain Current (A) 80 ID, Drain Current (A) VGS, Gate -to -Source Voltage (V) T J = 150°C T J = 25°C T J = -40°C 100 10 1 VGS = 0V 5.0 4.0 ID = 100µA ID = 250µA 3.0 ID = 1.0mA ID = 1.0A 2.0 0 0.0 0.2 0.4 0.6 0.8 1.0 -75 -50 -25 1.2 Fig 10. Typical Source-Drain Diode Forward Voltage 1000 0 25 50 75 100 125 150 T J , Temperature ( °C ) VSD, Source-to-Drain Voltage (V) Fig 11. Typical Threshold Voltage vs. Junction Temperature 100 OPERATION IN THIS AREA LIMITED BY R DS(on) EAS , Single Pulse Avalanche Energy (mJ) ID, Drain-to-Source Current (A) 60 100 100µsec 1msec 10 10msec 1 Tc = 25°C Tj = 150°C Single Pulse ID TOP 4.3A 7.6A BOTTOM 23A 80 60 40 20 0 0.1 0 1 10 VDS, Drain-to-Source Voltage (V) Fig12. Maximum Safe Operating Area www.irf.com 100 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current 5 IRF6668 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS D.U.T RG V20V GS tp + V - DD IAS A I AS 0.01Ω tp Fig 15a. Unclamped Inductive Test Circuit VDS VGS RD VDS 90% D.U.T. RG + - VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 16a. Switching Time Test Circuit 6 Fig 15b. Unclamped Inductive Waveforms 10% VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms www.irf.com IRF6668 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6668 DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M N P MIN 6.25 4.80 3.85 0.35 0.68 0.68 0.93 0.63 0.28 1.13 2.53 0.59 0.03 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 0.97 0.67 0.32 1.26 2.66 0.70 0.08 0.17 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.027 0.027 0.037 0.025 0.011 0.044 0.100 0.023 0.001 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.038 0.026 0.013 0.050 0.105 0.028 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6668 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6668). For 1000 parts on 7" reel, order IRF6668TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MAX MIN MIN CODE MIN MIN MAX MAX MAX N.C A 6.9 12.992 330.0 177.77 N.C N.C N.C 0.75 0.795 N.C B 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 13.2 12.8 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 12.4 N.C 11.9 0.567 14.4 12.01 H 0.47 0.469 11.9 N.C 11.9 0.606 15.4 12.01 NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 7.90 0.319 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 5.45 0.219 5.55 0.201 0.209 5.10 5.30 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/05 www.irf.com 9