IRF IRF6668

PD - 97044A
IRF6668
DirectFET™ Power MOSFET ‚
l
l
l
l
l
l
l
l
l
RoHS compliant containing no lead or bromide 
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Ideal for High Performance Isolated Converter
Primary Switch Socket
Optimized for Synchronous Rectification
Low Conduction Losses
Compatible with existing Surface Mount Techniques 
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
80V max ±20V max 12mΩ@ 10V
Qg
tot
22nC
Qgd
7.8nC
DirectFET™
ISOMETRIC
MZ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SH
SJ
SP
MZ
MN
Description
The IRF6668 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving
previous best thermal resistance by 80%.
The IRF6668 is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V-60V ETSI
input voltage range systems. The IRF6668 is also ideal for secondary side synchronous rectification in regulated isolated DCDC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency
and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance
isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TC = 70°C
IDM
IS @ TC = 25°C
IS @ TC = 70°C
ISM
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
e
f
f
Pulsed Drain Current
Continuous Source Current (Body Diode)
Continuous Source Current (Body Diode)
Pulsed Source Current (Body Diode)
e
f
f
Max.
Units
80
±20
55
44
170
81
52
170
V
A
Notes:
„ TC measured with thermocouple mounted to top (Drain) of part.
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Repetitive rating; pulse width limited by max. junction temperature.
www.irf.com
1
11/4/05
IRF6668
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
VGS = 0V, ID = 250µA
V
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 12A g
BVDSS
Drain-to-Source Breakdown Voltage
80
–––
–––
∆BVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.097
–––
Static Drain-to-Source On-Resistance
–––
12
15
VGS(th)
Gate Threshold Voltage
3.0
4.0
4.9
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
µA
IGSS
gfs
Qg
Drain-to-Source Leakage Current
Conditions
Typ. Max. Units
–––
–––
20
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
22
–––
–––
VDS = VGS, ID = 100µA
VDS = 80V, VGS = 0V
VDS = 64V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 12A
Total Gate Charge
–––
22
31
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.8
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.6
–––
Qgd
Gate-to-Drain Charge
–––
7.8
12
ID = 12A
Qgodr
–––
7.8
–––
See Fig. 14
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
9.4
–––
Qoss
Output Charge
–––
12
–––
nC
RG (Internal)
Gate Resistance
–––
1.0
–––
Ω
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
19
13
–––
–––
td(off)
Turn-Off Delay Time
–––
7.1
–––
tf
Fall Time
–––
23
–––
Ciss
Input Capacitance
–––
1320
–––
Coss
Output Capacitance
–––
310
–––
Crss
Reverse Transfer Capacitance
–––
76
–––
Coss
Output Capacitance
–––
1400
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
200
–––
VGS = 0V, VDS = 64V, f=1.0MHz
Min.
Typ. Max. Units
–––
–––
VDS = 40V
nC
VGS = 10V
VDS = 16V, VGS = 0V
VDD = 40V, VGS = 10Vg
ID = 12A
ns
RG= 6.2Ω
See Fig. 16
VGS = 0V
VDS = 25V
pF
Avalanche Characteristics
Parameter
EAS
Single Pulse Avalanche Energy
24
mJ
Conditions
TJ = 25°C, IS = 23A, RG = 25Ω
L = 0.088mH. See Fig. 13
Diode Characteristics
Parameter
Min.
Typ. Max. Units
VSD
Diode Forward Voltage
–––
–––
1.3
trr
Reverse Recovery Time
–––
34
Qrr
Reverse Recovery Charge
–––
40
Conditions
V
TJ = 25°C, IS = 12A, VGS = 0V g
51
ns
TJ = 25°C, IF = 12A, VDD = 40V
60
nC
di/dt = 100A/µs g
Notes:
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6668
Absolute Maximum Ratings
h
h
f
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
°C
Thermal Resistance
Parameter
hj
ij
fj
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
–––
12.5
–––
1.0
45
–––
1.4
–––
Units
°C/W
Thermal Response ( Z thJC )
10
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ1
τ2
τ2
C i= τi/R i
C i= τi/R i
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ3
τC
Ri (°C/W) τi (sec)
0.3173 0.000048
0.5283 0.000336
0.5536 0.001469
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case 
Notes:
† Surface mounted on 1 in. square Cu, steady state (still air).
‡ Used double sided cooling, mounted on 1 in. square Cu board
ˆ Rθ is measured at TJ of approximately 90°C.
PCB with small clip heatsink (still air).
Note
www.irf.com
†
Note
†
Note
‡
3
IRF6668
1000
1000
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
100
BOTTOM
100
10
6.0V
6.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
10
0.1
1
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
ID = 12A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
VDS = 10V
≤60µs PULSE WIDTH
100
T J = 150°C
10
T J = 25°C
T J = -40°C
1
0.1
4
6
8
10
1.5
1.0
12
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 12A
C oss = C ds + C gd
Ciss
1000
Coss
Crss
100
20 40 60 80 100 120 140 160
Fig 5. Normalized On-Resistance vs. Temperature
Fig 4. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS = 10V
0.5
2
10
10.0
VDS= 64V
VDS= 40V
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Capacitance vs.Drain-to-Source Voltage
4
10
0
2
4
6
8 10 12 14 16 18 20 22 24
QG, Total Gate Charge (nC)
Fig 7. Typical Total Gate Charge vs
Gate-to-Source Voltage
www.irf.com
IRF6668
60
RDS(on), Drain-to -Source On Resistance (m Ω)
60
ID = 12A
T J = 25°C
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
50
Typical RDS(on) ( mΩ)
50
40
30
T J = 125°C
20
40
30
20
10
10
T J = 25°C
0
0
4
6
8
10
12
14
0
16
20
40
Fig 8. Typical On-Resistance vs. Gate Voltage
100
Fig 9. Typical On-Resistance vs. Drain Current
6.0
Typical VGS(th) , Gate threshold Voltage (V)
1000
ISD, Reverse Drain Current (A)
80
ID, Drain Current (A)
VGS, Gate -to -Source Voltage (V)
T J = 150°C
T J = 25°C
T J = -40°C
100
10
1
VGS = 0V
5.0
4.0
ID = 100µA
ID = 250µA
3.0
ID = 1.0mA
ID = 1.0A
2.0
0
0.0
0.2
0.4
0.6
0.8
1.0
-75 -50 -25
1.2
Fig 10. Typical Source-Drain Diode Forward Voltage
1000
0
25
50
75 100 125 150
T J , Temperature ( °C )
VSD, Source-to-Drain Voltage (V)
Fig 11. Typical Threshold Voltage vs.
Junction Temperature
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
EAS , Single Pulse Avalanche Energy (mJ)
ID, Drain-to-Source Current (A)
60
100
100µsec
1msec
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
ID
TOP
4.3A
7.6A
BOTTOM 23A
80
60
40
20
0
0.1
0
1
10
VDS, Drain-to-Source Voltage (V)
Fig12. Maximum Safe Operating Area
www.irf.com
100
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
5
IRF6668
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 14a. Gate Charge Test Circuit
Fig 14b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
RG
V20V
GS
tp
+
V
- DD
IAS
A
I AS
0.01Ω
tp
Fig 15a. Unclamped Inductive Test Circuit
VDS
VGS
RD
VDS
90%
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 16a. Switching Time Test Circuit
6
Fig 15b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
www.irf.com
IRF6668
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6668
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
0.93
0.63
0.28
1.13
2.53
0.59
0.03
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32
1.26
2.66
0.70
0.08
0.17
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.023
0.001
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.028
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6668
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6668). For 1000 parts on 7" reel,
order IRF6668TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MAX
MIN
MIN
CODE
MIN
MIN
MAX
MAX
MAX
N.C
A
6.9
12.992
330.0
177.77 N.C
N.C
N.C
0.75
0.795
N.C
B
20.2
19.06
N.C
N.C
N.C
C
0.53
0.504
0.50
12.8
13.5
0.520
13.2
12.8
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
2.31
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
12.4
N.C
11.9
0.567
14.4
12.01
H
0.47
0.469
11.9
N.C
11.9
0.606
15.4
12.01
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MAX
MIN
MAX
0.311
7.90
0.319
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
5.45
0.219
5.55
0.201
0.209
5.10
5.30
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/05
www.irf.com
9