IRF IRF6641TR1PBF

PD - 97262
IRF6641TRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
RoHS Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
VDSS
l
VGS
RDS(on)
200V max ±20V max
Qg
Qgd
Vgs(th)
9.5nC
4.0V
tot
34nC
51mΩ@ 10V
DirectFET™ ISOMETRIC
MZ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SH
SJ
SP
MZ
MN
Description
The IRF6641PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging
to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving
previous best thermal resistance by 80%.
The IRF6641PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for wide range 36V75V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance
enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal
for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
e
e
f
h
Units
200
±20
4.6
3.7
26
37
46
11
V
A
mJ
A
12.0
200
I D = 5.5A
, Gate-to-Source Voltage (V)
GS
I D = 5.5A
180
160
140
120
T J = 125°C
100
80
T J = 25°C
60
40
V
, Drain-to -Source On Resistance (m Ω)
R
DS(on)
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Max.
10.0
V DS = 160V
V DS = 100V
V DS = 40V
8.0
6.0
4.0
2.0
20
0.0
0
4
6
V GS,
8
10
12
14
16
Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
0
5
10
15
20
25
30
35
40
Q G , Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.77mH, RG = 25Ω, IAS = 11A.
1
10/02/06
IRF6641TRPbF
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
BVDSS
Drain-to-Source Breakdown Voltage
Parameter
200
–––
–––
V
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.23
–––
V/°C
Static Drain-to-Source On-Resistance
–––
51
59.9
VGS(th)
Gate Threshold Voltage
3.0
4.0
4.9
mΩ
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
µA
–––
–––
250
IGSS
gfs
Qg
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 5.5A i
VDS = VGS, ID = 150µA
VDS = 200V, VGS = 0V
VDS = 160V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 5.5A
Forward Transconductance
13
–––
–––
Total Gate Charge
–––
34
48
Qgs1
Pre-Vth Gate-to-Source Charge
–––
8.7
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.9
–––
Qgd
Gate-to-Drain Charge
–––
9.5
14
ID = 5.5A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
14
–––
See Fig. 15
Qsw
–––
11
–––
Qoss
Output Charge
–––
12
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
td(on)
Turn-On Delay Time
–––
16
–––
VDD = 100V, VGS = 10Vi
–––
ID = 5.5A
VDS = 100V
nC
VGS = 10V
VDS = 16V, VGS = 0V
tr
Rise Time
–––
11
td(off)
Turn-Off Delay Time
–––
31
–––
tf
Fall Time
–––
6.5
–––
Ciss
Input Capacitance
–––
2290
–––
Coss
Output Capacitance
–––
240
–––
Crss
Reverse Transfer Capacitance
–––
46
–––
Coss
Output Capacitance
–––
1780
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
100
–––
VGS = 0V, VDS = 160V, f=1.0MHz
Min.
Typ.
Max.
–––
–––
26
–––
–––
37
integral reverse
ns
RG = 6.2Ω
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
Units
Conditions
MOSFET symbol
A
D
showing the
G
S
VSD
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 5.5A, VGS = 0V i
trr
Reverse Recovery Time
–––
85
130
ns
TJ = 25°C, IF = 5.5A, VDD = 100V
Qrr
Reverse Recovery Charge
–––
320
480
nC
di/dt = 100A/µs c
(Body Diode)g
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6641TRPbF
Absolute Maximum Ratings
e
e
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Thermal Response ( Z thJA )
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
10
1
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
τ1
τ2
τ2
τ3
τ3
0.001
0.01
0.001268
17.299
0.033387
17.566
0.508924
11.19309
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
τA
τ4
0.6784
9.4701
0.01
1E-005
τ4
τi (sec)
Ri (°C/W)
τA
Ci= τi/Ri
Ci= τi/Ri
0.001
1E-006
R4
R4
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
3
IRF6641TRPbF
100
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
7.0V
10
BOTTOM
VGS
15V
10V
8.0V
7.0V
10
7.0V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
0.1
1
10
0.1
1
10
VDS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
100
2.5
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
ID = 5.5A
10
T J = 150°C
T J = 25°C
T J = -40°C
1
VDS = 10V
≤60µs PULSE WIDTH
0.1
VGS = 10V
2.0
1.5
1.0
0.5
2
4
6
8
10
12
14
16
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
100000
Fig 7. Normalized On-Resistance vs. Temperature
100
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
T J = 25°C
Crss = C gd
Typical RDS(on) ( mΩ)
C, Capacitance (pF)
90
Coss = Cds + C gd
10000
Ciss
1000
Coss
100
Crss
80
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
70
60
50
10
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
0
10
20
30
40
50
60
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6641TRPbF
1000
T J = 150°C
T J = 25°C
T J = -40°C
10
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
1
10
1
100µsec
10msec
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
0
0.0
0.2
0.4
0.6
0.8
1.0
0
1.2
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
6.0
Typical VGS(th) , Gate threshold Voltage (V)
5
4
ID, Drain Current (A)
1msec
3
2
1
5.0
4.0
ID
ID
ID
ID
3.0
= 150µA
= 250µA
= 1.0mA
= 1.0A
2.0
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
TA , Ambient Temperature (°C)
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
EAS , Single Pulse Avalanche Energy (mJ)
200
ID
180
TOP
3.7A
5.7A
BOTTOM 11A
160
140
120
100
80
60
40
20
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6641TRPbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 14a. Gate Charge Test Circuit
Fig 14b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
RG
V20V
GS
tp
+
V
- DD
IAS
A
I AS
0.01Ω
tp
Fig 15a. Unclamped Inductive Test Circuit
VDS
VGS
RD
VDS
90%
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 16a. Switching Time Test Circuit
6
Fig 15b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
www.irf.com
IRF6641TRPbF
Driver Gate Drive
D.U.T
ƒ
+
‚
RG
*
•
•
•
•
„
**
P.W.
Period
D.U.T. ISD Waveform
Reverse
Recovery
Current
VDD
D=
***
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-

P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
VDD
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6641TRPbF
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
MIN
6.25
4.80
3.85
0.35
0.68
0.68
0.93
0.63
0.28
1.13
2.53
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32
1.26
2.66
0.676
0.080
0.17
IMPERIAL
MAX
0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.0274
0.0031
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6641TRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
3.90
0.161
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6641TRPBF). For 1000 parts on 7"
reel, order IRF6641TR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION
IMPERIAL
METRIC
METRIC
CODE
MIN
MAX
MIN
MAX
MAX
MIN
A
12.992
330.0
177.77 N.C
N.C
N.C
B
0.795
20.2
19.06
N.C
N.C
N.C
C
0.504
12.8
13.5
0.520
12.8
13.2
D
0.059
1.5
1.5
N.C
N.C
N.C
E
3.937
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
N.C
0.724
18.4
13.50
G
0.488
12.4
11.9
0.567
14.4
12.01
H
0.469
11.9
11.9
0.606
15.4
12.01
(QTY 1000)
IMPERIAL
MAX
MIN
N.C
6.9
0.75
N.C
0.53
0.50
0.059
N.C
2.31
N.C
N.C
0.53
0.47
N.C
0.47
N.C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/06
www.irf.com
9