PD - 97262 IRF6641TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques VDSS l VGS RDS(on) 200V max ±20V max Qg Qgd Vgs(th) 9.5nC 4.0V tot 34nC 51mΩ@ 10V DirectFET ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6641PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6641PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for wide range 36V75V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g e e f h Units 200 ±20 4.6 3.7 26 37 46 11 V A mJ A 12.0 200 I D = 5.5A , Gate-to-Source Voltage (V) GS I D = 5.5A 180 160 140 120 T J = 125°C 100 80 T J = 25°C 60 40 V , Drain-to -Source On Resistance (m Ω) R DS(on) VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Max. 10.0 V DS = 160V V DS = 100V V DS = 40V 8.0 6.0 4.0 2.0 20 0.0 0 4 6 V GS, 8 10 12 14 16 Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 0 5 10 15 20 25 30 35 40 Q G , Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.77mH, RG = 25Ω, IAS = 11A. 1 10/02/06 IRF6641TRPbF Electrical Characteristic @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage Parameter 200 ––– ––– V ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.23 ––– V/°C Static Drain-to-Source On-Resistance ––– 51 59.9 VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 mΩ V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Conditions VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 5.5A i VDS = VGS, ID = 150µA VDS = 200V, VGS = 0V VDS = 160V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 5.5A Forward Transconductance 13 ––– ––– Total Gate Charge ––– 34 48 Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.7 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.9 ––– Qgd Gate-to-Drain Charge ––– 9.5 14 ID = 5.5A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 14 ––– See Fig. 15 Qsw ––– 11 ––– Qoss Output Charge ––– 12 ––– nC RG Gate Resistance ––– 1.0 ––– Ω td(on) Turn-On Delay Time ––– 16 ––– VDD = 100V, VGS = 10Vi ––– ID = 5.5A VDS = 100V nC VGS = 10V VDS = 16V, VGS = 0V tr Rise Time ––– 11 td(off) Turn-Off Delay Time ––– 31 ––– tf Fall Time ––– 6.5 ––– Ciss Input Capacitance ––– 2290 ––– Coss Output Capacitance ––– 240 ––– Crss Reverse Transfer Capacitance ––– 46 ––– Coss Output Capacitance ––– 1780 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 100 ––– VGS = 0V, VDS = 160V, f=1.0MHz Min. Typ. Max. ––– ––– 26 ––– ––– 37 integral reverse ns RG = 6.2Ω VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Units Conditions MOSFET symbol A D showing the G S VSD Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 5.5A, VGS = 0V i trr Reverse Recovery Time ––– 85 130 ns TJ = 25°C, IF = 5.5A, VDD = 100V Qrr Reverse Recovery Charge ––– 320 480 nC di/dt = 100A/µs c (Body Diode)g Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6641TRPbF Absolute Maximum Ratings e e f Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Thermal Response ( Z thJA ) 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 10 1 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τ1 τ2 τ2 τ3 τ3 0.001 0.01 0.001268 17.299 0.033387 17.566 0.508924 11.19309 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 τA τ4 0.6784 9.4701 0.01 1E-005 τ4 τi (sec) Ri (°C/W) τA Ci= τi/Ri Ci= τi/Ri 0.001 1E-006 R4 R4 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) 3 IRF6641TRPbF 100 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 7.0V 10 BOTTOM VGS 15V 10V 8.0V 7.0V 10 7.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 0.1 1 10 0.1 1 10 VDS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100 2.5 Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) ID = 5.5A 10 T J = 150°C T J = 25°C T J = -40°C 1 VDS = 10V ≤60µs PULSE WIDTH 0.1 VGS = 10V 2.0 1.5 1.0 0.5 2 4 6 8 10 12 14 16 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 100000 Fig 7. Normalized On-Resistance vs. Temperature 100 VGS = 0V, f = 1 MHZ Ciss = C gs + C gd, C ds SHORTED T J = 25°C Crss = C gd Typical RDS(on) ( mΩ) C, Capacitance (pF) 90 Coss = Cds + C gd 10000 Ciss 1000 Coss 100 Crss 80 Vgs = 7.0V Vgs = 8.0V Vgs = 10V Vgs = 15V 70 60 50 10 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) 0 10 20 30 40 50 60 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current www.irf.com IRF6641TRPbF 1000 T J = 150°C T J = 25°C T J = -40°C 10 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 1 10 1 100µsec 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 0 0.0 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 6.0 Typical VGS(th) , Gate threshold Voltage (V) 5 4 ID, Drain Current (A) 1msec 3 2 1 5.0 4.0 ID ID ID ID 3.0 = 150µA = 250µA = 1.0mA = 1.0A 2.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) TA , Ambient Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Ambient Temperature EAS , Single Pulse Avalanche Energy (mJ) 200 ID 180 TOP 3.7A 5.7A BOTTOM 11A 160 140 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6641TRPbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS D.U.T RG V20V GS tp + V - DD IAS A I AS 0.01Ω tp Fig 15a. Unclamped Inductive Test Circuit VDS VGS RD VDS 90% D.U.T. RG + - VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 16a. Switching Time Test Circuit 6 Fig 15b. Unclamped Inductive Waveforms 10% VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms www.irf.com IRF6641TRPbF Driver Gate Drive D.U.T + RG * • • • • ** P.W. Period D.U.T. ISD Waveform Reverse Recovery Current VDD D= *** + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel VDD ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6641TRPbF DirectFET Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M R P MIN 6.25 4.80 3.85 0.35 0.68 0.68 0.93 0.63 0.28 1.13 2.53 0.616 0.020 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 0.97 0.67 0.32 1.26 2.66 0.676 0.080 0.17 IMPERIAL MAX 0.246 0.189 0.152 0.014 0.027 0.027 0.037 0.025 0.011 0.044 0.100 0.0235 0.0008 0.003 MAX 0.250 0.201 0.156 0.018 0.028 0.028 0.038 0.026 0.013 0.050 0.105 0.0274 0.0031 0.007 DirectFET Part Marking 8 www.irf.com IRF6641TRPbF DirectFET Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MIN MAX MAX 0.311 7.90 0.319 8.10 0.154 3.90 0.161 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6641TRPBF). For 1000 parts on 7" reel, order IRF6641TR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION IMPERIAL METRIC METRIC CODE MIN MAX MIN MAX MAX MIN A 12.992 330.0 177.77 N.C N.C N.C B 0.795 20.2 19.06 N.C N.C N.C C 0.504 12.8 13.5 0.520 12.8 13.2 D 0.059 1.5 1.5 N.C N.C N.C E 3.937 100.0 58.72 N.C N.C N.C F N.C N.C N.C 0.724 18.4 13.50 G 0.488 12.4 11.9 0.567 14.4 12.01 H 0.469 11.9 11.9 0.606 15.4 12.01 (QTY 1000) IMPERIAL MAX MIN N.C 6.9 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/06 www.irf.com 9