ONSEMI MC100EP16VCDR2

MC100EP16VC
3.3V / 5VECL Differential
Receiver/Driver with High
Gain and Enable Output
The EP16VC is a differential receiver/driver. The device is
functionally equivalent to the EP16 and LVEP16 devices but with high
gain and enable output.
The EP16VC provides an EN input which is synchronized with the
data input (D) signal in a way that provides glitchless gating of the
QHG and QHG outputs.
When the EN signal is LOW, the input is passed to the outputs and
the data output equals the data input. When the data input is HIGH and
EN goes HIGH, it will force the QHG LOW and the QHG HIGH on the
next negative transition of the data input. If the data input is LOW
when the EN goes HIGH, the next data transition to a HIGH is ignored
and QHG remains LOW and QHG remains HIGH. The next positive
transition of the data input is not passed on to the data outputs under
these conditions. The QHG and QHG outputs remain in their disabled
state as long as the EN input is held HIGH. The EN input has no
influence on the Q output and the data input is passed on (inverted) to
this output whether EN is HIGH or LOW. This configuration is ideal
for crystal oscillator applications where the oscillator can be free
running and gated on and off synchronously without adding extra
counts to the output.
The VBB/D pin is internally dedicated and available for differential
interconnect. VBB/D may rebias AC coupled inputs. When used,
decouple VBB/D and VCC via a 0.01 F capacitor and limit current
sourcing or sinking to 1.5 mA. When not used, VBB/D should be left
open.
The 100 Series contains temperature compensation.
•
•
•
•
•
310 ps Typical Prop Delay Q, 380 ps Typical Prop Delay QHG, QHG
Gain > 200
Maximum Frequency > 3 GHz Typical
PECL Mode Operating Range: VCC = 3.0 V to 5.5 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = −3.0 V to −5.5 V
Open Input Default State
•
• QHG Output Will Default LOW with D Inputs Open or at VEE
• VBB Output
http://onsemi.com
MARKING DIAGRAMS*
8
8
KEP66
ALYW
1
SO−8
D SUFFIX
CASE 751
1
8
8
KP66
ALYW
1
TSSOP−8
DT SUFFIX
CASE 948R
1
K = MC100
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week
*For additional information, see Application Note
AND8002/D
ORDERING INFORMATION
Device
Package
Shipping
MC100EP16VCD
SO−8
98 Units/Rail
MC100EP16VCDR2
SO−8
2500 Tape & Reel
MC100EP16VCDT
TSSOP−8
100 Units/Rail
MC100EP16VCDTR2 TSSOP−8 2500 Tape & Reel
 Semiconductor Components Industries, LLC, 2003
September, 2003− Rev. 2
1
Publication Order Number:
MC100EP16VC/D
MC100EP16VC
Q
D
VBB/D
1
8
2
7
6
3
LEN
VBB
EN
Q
PIN DESCRIPTION
QHG
QHG
OE
LATCH
4
VCC
5
D
VEE
PIN
FUNCTION
D*
ECL Data Input
Q
ECL Data Output
QHG, QHG
ECL High Gain Data Outputs
EN*
ECL Enable Input
VBB/D
Reference Voltage Output / ECL Data Input
VCC
Positive Supply
VEE
Negative Supply
* Pins will default LOW when left open.
Figure 1. 8−Lead Pinout (Top View) and Logic Diagram
ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
75 k
Internal Input Pullup Resistor
ESD Protection
N/A
Human Body Model
Machine Model
Charged Device Model
> 4 kV
> 200 V
> 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
Flammability Rating
Level 1
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Transistor Count
167 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
MAXIMUM RATINGS (Note 2)
Parameter
Symbol
Condition 1
Condition 2
Rating
Units
VCC
PECL Mode Power Supply
VEE = 0 V
6
V
VEE
NECL Mode Power Supply
VCC = 0 V
−6
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6
−6
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
IBB
VBB Sink/Source
± 1.5
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
JA
Thermal Resistance (Junction−to−Ambient)
0 LFPM
500 LFPM
8 SOIC
8 SOIC
190
130
°C/W
°C/W
JC
Thermal Resistance (Junction−to−Case)
std bd
8 SOIC
41 to 44
°C/W
JA
Thermal Resistance (Junction−to−Ambient)
0 LFPM
500 LFPM
8 TSSOP
8 TSSOP
185
140
°C/W
°C/W
JC
Thermal Resistance (Junction−to−Case)
std bd
8 TSSOP
41 to 44
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 248°C
265
°C
2. Maximum Ratings are those values beyond which device damage may occur.
http://onsemi.com
2
VI VCC
VI VEE
MC100EP16VC
100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3)
Symbol
IEE
Characteristic
Power Supply Current
Min
−40°C
Typ
Max
Min
25°C
Typ
Max
Min
85°C
Typ
Max
25
36
45
30
40
50
32
42
52
Unit
mA
VOH
Output HIGH Voltage (Note 4)
2105
2230
2355
2105
2230
2355
2105
2230
2355
mV
VOL
Output LOW Voltage (Note 4)
1305
1430
1555
1305
1430
1555
1305
1430
1555
mV
VIH
Input HIGH Voltage (Single−Ended)
2075
2420
2075
2420
2075
2420
mV
VIL
Input LOW Voltage (Single−Ended)
1355
1675
1355
1675
1355
1675
mV
VBB
Output Voltage Reference
1725
1925
1700
1900
1675
1875
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 5)
3.3
2.0
3.3
2.0
3.3
V
IIH
Input HIGH Current
150
A
IIL
Input LOW Current
1825
2.0
1800
150
D
1775
150
0.5
0.5
A
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V.
4. All loading with 50 to VCC−2.0 volts.
5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6)
−40°C
Typ
Max
Min
25°C
Typ
Max
Min
85°C
Typ
Max
Symbol
IEE
Characteristic
Power Supply Current
Min
25
36
45
30
40
50
32
42
52
Unit
mA
VOH
Output HIGH Voltage (Note 7)
3805
3930
4055
3805
3930
4055
3805
3930
4055
mV
VOL
Output LOW Voltage (Note 7)
3005
3130
3255
3005
3130
3255
3005
3130
3255
mV
VIH
Input HIGH Voltage (Single−Ended)
3775
4120
3775
4120
3775
4120
mV
VIL
Input LOW Voltage (Single−Ended)
3055
3375
3055
3375
3055
3375
mV
VBB
Output Voltage Reference
3425
3625
3400
3600
3375
3575
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 8)
5.0
2.0
5.0
2.0
5.0
V
IIH
Input HIGH Current
150
A
IIL
Input LOW Current
3525
2.0
3500
150
D
3475
150
0.5
0.5
A
0.5
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V.
7. All loading with 50 to VCC−2.0 volts.
8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = −5.5 V to −3.0 V (Note 9)
Min
−40°C
Typ
Max
Min
25°C
Typ
Max
Min
85°C
Typ
Max
25
36
45
30
40
50
32
42
52
Unit
mA
Output HIGH Voltage (Note 10)
−1195
−1070
−945
−1195
−1070
−945
−1195
−1070
−945
mV
Output LOW Voltage (Note 10)
−1995
−1870
−1745
−1995
−1870
−1745
−1995
−1870
−1745
mV
VIH
Input HIGH Voltage (Single−Ended)
−1225
−880
−1225
−880
−1225
−880
mV
VIL
Input LOW Voltage (Single−Ended)
−1945
−1625
−1945
−1625
−1945
−1625
mV
VBB
Output Voltage Reference
−1575
−1375
−1600
−1400
−1625
−1425
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 11)
0.0
V
IIH
Input HIGH Current
150
A
IIL
Input LOW Current
Symbol
IEE
Characteristic
Power Supply Current
VOH
VOL
−1475
VEE+2.0
0.0
VEE+2.0
150
D
0.5
−1500
0.0
VEE+2.0
150
0.50
−1525
0.5
A
NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
9. Input and output parameters vary 1:1 with VCC.
10. All loading with 50 to VCC−2.0 volts.
11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
3
MC100EP16VC
AC CHARACTERISTICS VCC = 0 V; VEE = −3.0 V to −5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 12)
−40°C
Symbol
Min
Characteristic
Typ
25°C
Max
Min
>3
Typ
85°C
Max
Min
>3
Typ
Max
fmax
Maximum Frequency
(See Figure 2 Fmax/JITTER)
tPLH,
tPHL
Propagation Delay
(Differential) Q
(Differential) QHG, QHG
(Single−Ended) Q
(Single−Ended) QHG, QHG
200
250
250
300
280
360
330
410
tS
Setup Time
EN = L to D
EN =H to D
50
100
tH
Hold Time
EN = L to D
EN =H to D
100
50
tSKEW
Duty Cycle Skew (Note 13)
5.0
20
5.0
20
5.0
20
ps
tJITTER
RMS Random Clock Jitter
(See Figure 2 Fmax/JITTER)
0.2
<1
0.2
<1
0.2
<1
ps
VPP
Input Voltage Swing
(Differential Configuration)
tr
tf
Output Rise/Fall Times
(20% − 80%)
350
450
400
500
250
300
300
350
310
380
360
430
15
60
50
100
50
15
100
50
>3
Unit
400
500
450
550
GHz
275
325
325
375
340
430
390
480
425
525
475
575
ps
5
40
50
100
18
10
ps
40
20
100
50
5
20
ps
HG
Q
25
150
800
800
1200
1200
25
150
800
800
1200
1200
25
150
800
800
1200
1200
mV
Q
QHG, QHG
200
70
300
130
400
220
250
80
350
150
450
240
250
100
350
170
500
270
ps
12. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC−2.0 V.
13. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays
are measured from the cross point of the inputs to the cross point of the outputs.
http://onsemi.com
4
MC100EP16VC
900
9
800
8
700
7
600
6
500
5
JITTEROUT ps (RMS)
VOUTpp (mV)
Single−Ended Input
ÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉ
ÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉ
400
4
300
3
200
2
100
1
0
0
500
1000
1500
2000
2500
3000
3500
4000
FREQUENCY (MHz)
900
9
800
8
700
7
600
6
500
5
JITTEROUT ps (RMS)
VOUTpp (mV)
Figure 2. Fmax/Jitter for QHG, QHG Output
ÉÉÉÉÉÉÉ ÉÉ
ÉÉÉÉÉÉÉ ÉÉ
ÉÉÉÉÉÉÉ
ÉÉ
ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
400
4
300
3
200
2
100
1
0
0
500
1000
1500
2000
2500
3000
FREQUENCY (MHz)
Figure 3. Fmax/Jitter for Q Output
http://onsemi.com
5
3500
4000
MC100EP16VC
900
9
800
8
700
7
600
6
500
5
JITTEROUT ps (RMS)
VOUTpp (mV)
Differential Inputs
ÉÉ
ÉÉ
ÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
400
4
300
3
200
2
100
1
0
0
500
1000
1500
2000
2500
3000
FREQUENCY (MHz)
900
9
800
8
700
7
600
6
500
5
JITTEROUT ps (RMS)
VOUTpp (mV)
Figure 4. Fmax/Jitter for QHG, QHG Output
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉ
400
4
300
3
200
2
100
1
0
0
500
1000
1500
2000
FREQUENCY (MHz)
Figure 5. Fmax/Jitter for Q Output
http://onsemi.com
6
2500
3000
MC100EP16VC
Q
D
Receiver
Device
Driver
Device
Q
D
50 50 V TT
V TT = V CC − 2.0 V
Figure 6. Typical Termination for Output Driver and Device Evaluation
(Refer to Application Note AND8020 − Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1404
−
ECLinPS Circuit Performance at Non−Standard VIH Levels
AN1405
−
ECL Clock Distribution Techniques
AN1406
−
Designing with PECL (ECL at +5.0 V)
AN1504
−
Metastability and the ECLinPS Family
AN1568
−
Interfacing Between LVDS and ECL
AN1650
−
Using Wire−OR Ties in ECLinPS Designs
AN1672
−
The ECL Translator Guide
AND8001
−
Odd Number Counters Design
AND8002
−
Marking and Date Codes
AND8009
−
ECLinPS Plus Spice I/O Model Kit
AND8020
−
Termination of ECL Logic Devices
For an updated list of Application Notes, please see our website at http://onsemi.com.
http://onsemi.com
7
MC100EP16VC
PACKAGE DIMENSIONS
SO−8
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751−07
ISSUE AA
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER
SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDAARD IS 751−07
A
8
5
0.25 (0.010)
S
B
1
M
Y
M
4
K
−Y−
G
C
N
X 45 SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
S
http://onsemi.com
8
J
DIM
A
B
C
D
G
H
J
K
M
N
S
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0
8
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0
8
0.010
0.020
0.228
0.244
MC100EP16VC
PACKAGE DIMENSIONS
TSSOP−8
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948R−02
ISSUE A
8x
0.15 (0.006) T U
K REF
0.10 (0.004)
S
2X
L/2
8
1
PIN 1
IDENT
S
T U
V
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE −W−.
S
5
0.25 (0.010)
B
−U−
L
0.15 (0.006) T U
M
M
4
A
−V−
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
http://onsemi.com
9
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0
6
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0
6
MC100EP16VC
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800−282−9855 Toll Free USA/Canada
http://onsemi.com
10
MC100EP16VC/D