AD ADRF6602ACPZ-R7

1550 MHz to 2150 MHz Rx Mixer with
Integrated Fractional-N PLL and VCO
ADRF6602
FEATURES
GENERAL DESCRIPTION
Rx mixer with integrated fractional-N PLL
RF input frequency range: 1000 MHz to 3100 MHz
Internal LO frequency range: 1550 MHz to 2150 MHz
Input P1dB: 14.5 dBm
Input IP3: 30 dBm
IIP3 optimization via external pin
SSB noise figure
IP3SET pin open: 13.5 dB
IP3SET pin at 3.3 V: 14 dB
Voltage conversion gain: 6 dB
Matched 200 Ω IF output impedance
IF 3 dB bandwidth: 500 MHz
Programmable via 3-wire SPI interface
40-lead, 6 mm × 6 mm LFCSP
The ADRF6602 is a high dynamic range active mixer with
integrated phase-locked loop (PLL) and voltage-controlled
oscillator (VCO). The PLL/synthesizer uses a fractional-N
PLL to generate an fLO input to the mixer. The reference input
can be divided or multiplied and then applied to the PLL phase
frequency detector (PFD).
The PLL can support input reference frequencies from 12 MHz
to 160 MHz. The PFD output controls a charge pump whose
output drives an off-chip loop filter.
The loop filter output is then applied to an integrated VCO. The
VCO output at 2× fLO is applied to an LO divider, as well as to a
programmable PLL divider. The programmable PLL divider is
controlled by a Σ-Δ modulator (SDM). The modulus of the SDM
can be programmed from 1 to 2047.
APPLICATIONS
The active mixer converts the single-ended 50 Ω RF input to
a 200 Ω differential IF output. The IF output can operate up
to 500 MHz.
Cellular base stations
The ADRF6602 is fabricated using an advanced silicon-germanium
BiCMOS process. It is available in a 40-lead, RoHS-compliant,
6 mm × 6 mm LFCSP with an exposed paddle. Performance is
specified over the −40°C to +85°C temperature range.
FUNCTIONAL BLOCK DIAGRAM
VCC1
VCC2
VCC_LO
VCC_MIX
VCC_V2I
VCC_LO
1
10
17
22
27
34
NC NC
32
33
ADRF6602
INTERNAL LO RANGE
1550MHz TO 2150MHz
LODRV_EN 36
LON 37
BUFFER
LOP 38
BUFFER
PLL_EN 16
FRACTION MODULUS
REG
CLK 13
SPI
INTERFACE
LE 14
2:1
MUX
INTEGER
REG
REF_IN 6
÷2
÷4
N COUNTER
21 TO 123
MUX
TEMP
SENSOR
7
2.5V
LDO
9
DECL2P5
VCO
LDO
40 DECLVCO
VCO
CORE
PRESCALER
÷2
29 IP3SET
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
MUXOUT 8
4
DECL3P3
26 RF
IN
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
2
11 15 20 21 23 24 25 28 30 31 35
5
RSET
GND
3
39
18 19
CP VTUNE IFP IFN
08545-001
DATA 12
DIV
BY
4, 2, 1
3.3V
LDO
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
ADRF6602
TABLE OF CONTENTS
Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Register 4—PLL Charge Pump, PFD, and Reference Path
Control (Default: 0x0AA7E4)................................................... 13 Register 5—PLL Enable and LO Path Control (Default:
0x0000E5) .................................................................................... 14 Register 6—VCO Control and VCO Enable (Default:
0x1E2106) .................................................................................... 14 RF Specifications .......................................................................... 3 Register 7—Mixer Bias Enable and External VCO Enable
(Default: 0x000007).................................................................... 14 Synthesizer/PLL Specifications ................................................... 4 Theory of Operation ...................................................................... 15 Logic Input and Power Specifications ....................................... 5 Programming the ADRF6602................................................... 15 Timing Characteristics ................................................................ 5 Initialization Sequence .............................................................. 15 Absolute Maximum Ratings............................................................ 6 LO Selection Logic ..................................................................... 16 ESD Caution .................................................................................. 6 Applications Information .............................................................. 17 Pin Configuration and Function Descriptions ............................. 7 Basic Connections for Operation ............................................. 17 Typical Performance Characteristics ............................................. 9 Evaluation Board ............................................................................ 18 Register Structure ........................................................................... 11 Evaluation Board Control Software ......................................... 18 Register 0—Integer Divide Control (Default: 0x0001C0)..... 11 Schematics and Artwork ........................................................... 20 Register 1—Modulus Divide Control (Default: 0x003001) .. 11 Evaluation Board Configuration Options ............................... 22 Register 2—Fractional Divide Control (Default:
0x001802) .................................................................................... 12 Outline Dimensions ....................................................................... 23 Ordering Guide .......................................................................... 23 Register 3—Σ-Δ Modulator Dither Control (Default:
0x10000B) .................................................................................... 12 REVISION HISTORY
1/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADRF6602
SPECIFICATIONS
RF SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
Table 1.
Parameter
INTERNAL LO FREQUENCY RANGE
RF INPUT FREQUENCY RANGE
RF INPUT AT 1410 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
RF INPUT AT 1760 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
RF INPUT AT 2010 MHz
Input Return Loss
Input P1dB
Second-Order Intercept (IIP2)
Third-Order Intercept (IIP3)
Single-Side Band Noise Figure
LO to IF Leakage
IF OUTPUT
Voltage Conversion Gain
IF Bandwidth
Output Common-Mode Voltage
Gain Flatness
Gain Variation
Output Swing
Output Return Loss
LO INPUT/OUTPUT (LOP, LON)
Frequency Range
Output Level (LO as Output)
Input Level (LO as Input)
Input Impedance
Test Conditions/Comments
±3 dB RF input range
Min
1550
1000
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Relative to 50 Ω (can be improved with external match)
−5 dBm each tone (10 MHz spacing between tones)
−5 dBm each tone (10 MHz spacing between tones)
IP3SET = 3.3 V
IP3SET = open
At 1× LO frequency, 50 Ω termination at the RF port
Differential 200 Ω load
Small-signal 3 dB bandwidth
External pull-up balun or inductors required
Over frequency range, any 5 MHz/50 MHz
Over full temperature range
Differential 200 Ω load
Relative to 200 Ω
Externally applied 1× LO input, internal PLL disabled
Typ
Rev. 0 | Page 3 of 24
Unit
MHz
MHz
−12
15
56.5
31.5
14
13.5
−47
dB
dBm
dBm
dBm
dB
dB
dBm
−12
15
55
30.0
15
13.3
−47
dB
dBm
dBm
dBm
dB
dB
dBm
−12
14.5
57
28.5
16
14.7
−46
dB
dBm
dBm
dBm
dB
dB
dBm
6
500
5
0.2/1.0
1.0
2
−12
dB
MHz
V
dB
dB
V p-p
dB
250
1× LO into a 50 Ω load, LO output buffer enabled
Max
2150
3100
6000
−7
±6
50
MHz
dBm
dBm
Ω
ADRF6602
SYNTHESIZER/PLL SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 153.6 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
Table 2.
Parameter
SYNTHESIZER SPECIFICATIONS
Frequency Range
Figure of Merit
Reference Spurs
PHASE NOISE
Integrated Phase Noise
PFD Frequency
REFERENCE CHARACTERISTICS
REF_IN Input Frequency
REF_IN Input Capacitance
MUXOUT Output Level
MUXOUT Duty Cycle
CHARGE PUMP
Pump Current
Output Compliance Range
Test Conditions/Comments
Synthesizer specifications referenced to 1× LO
Internally generated LO
PREF_IN = 0 dBm
fREF = 153.6 MHz
fREF/4
fREF/2
fREF
> fREF
fLO = 1550 MHz to 2150 MHz, fPFD = 38.4 MHz
1 kHz to 10 kHz offset
100 kHz offset
500 kHz offset
1 MHz offset
5 MHz offset
10 MHz offset
20 MHz offset
1 kHz to 40 MHz integration bandwidth
Min
Typ
Max
Unit
2150
−222
MHz
dBc/Hz
−105
−105
−80
−85
dBc
dBc
dBc
dBc
−90
−103
−122
−130
−142
−148
−150
0.3
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
°rms
MHz
1550
20
40
REF_IN, MUXOUT pins
12
160
4
VOL (lock detect output selected)
VOH (lock detect output selected)
0.25
2.7
50
Programmable to 250 μA, 500 μA, 750 μA, 1 mA
500
1
Rev. 0 | Page 4 of 24
2.8
MHz
pF
V
V
%
μA
V
ADRF6602
LOGIC INPUT AND POWER SPECIFICATIONS
VS = 5 V; ambient temperature (TA) = 25°C; fREF = 38.4 MHz; fPFD = 38.4 MHz; high-side LO injection; fIF = 140 MHz; IIP3 optimized
using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.
Table 3.
Parameter
LOGIC INPUTS
Input High Voltage, VINH
Input Low Voltage, VINL
Input Current, IINH/IINL
Input Capacitance, CIN
POWER SUPPLIES
Voltage Range
Supply Current
Test Conditions/Comments
CLK, DATA, LE
Min
Typ
1.4
0
Max
Unit
3.3
0.7
V
V
μA
pF
5.25
V
mA
mA
0.1
5
VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins
4.75
PLL only
External LO mode (internal PLL disabled,
IP3SET pin = 3.3 V)
Internal LO mode (internal PLL enabled,
IP3SET pin = 3.3 V)
Power-down mode
5
97
165
262
mA
30
mA
TIMING CHARACTERISTICS
VCC2 = 5 V ± 5%.
Table 4.
Parameter
t1
t2
t3
t4
t5
t6
t7
Limit
20
10
10
25
25
10
20
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
Description
LE setup time
DATA to CLK setup time
DATA to CLK hold time
CLK high duration
CLK low duration
CLK to LE setup time
LE pulse width
Timing Diagram
t4
t5
CLK
t2
DATA
DB23 (MSB)
t3
DB22
DB2
(CONTROL BIT C3)
DB1
(CONTROL BIT C2)
t1
DB0 (LSB)
(CONTROL BIT C1)
t7
08545-002
t6
LE
Figure 2. Timing Diagram
Rev. 0 | Page 5 of 24
ADRF6602
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Supply Voltage, VCC1, VCC2, VCC_LO,
VCC_MIX, VCC_V2I
Digital I/O, CLK, DATA, LE
IFP, IFN
RFIN
θJA (Exposed Paddle Soldered Down)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
−0.5 V to +5.5 V
−0.3 V to +3.6 V
−0.3 V to VCC + 0.3 V
18 dBm
35°C/W
150°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 6 of 24
ADRF6602
40
39
38
37
36
35
34
33
32
31
DECLVCO
VTUNE
LOP
LON
LODRV_EN
GND
VCC_LO
NC
NC
GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
INDICATOR
ADRF6602
TOP VIEW
(Not to Scale)
30
29
28
27
26
25
24
23
22
21
GND
IP3SET
GND
VCC_V2I
RFIN
GND
GND
GND
VCC_MIX
GND
NOTES
1. NC = NO CONNECT.
2. THE EXPOSED PADDLE SHOULD BE SOLDERED TO A
LOW IMPEDANCE GROUND PLANE.
08545-003
GND
DATA
CLK
LE
GND
PLL_EN
VCC_LO
IFP
IFN
GND
11
12
13
14
15
16
17
18
19
20
VCC1 1
DECL3P3 2
CP 3
GND 4
RSET 5
REF_IN 6
GND 7
MUXOUT 8
DECL2P5 9
VCC2 10
Figure 3. Pin Configuration
Table 6. Pin Function Descriptions
Pin No.
1
Mnemonic
VCC1
2
3
4, 7, 11, 15, 20,
21, 23, 24, 25,
28, 30, 31, 35
5
DECL3P3
CP
GND
RSET
Description
Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Decoupling Node for 3.3 V LDO. Connect a 0.1 μF capacitor between this pin and ground.
Charge Pump Output Pin. Connect to VTUNE through loop filter.
Ground. Connect these pins to a low impedance ground plane.
Charge Pump Current. The nominal charge pump current can be set to 250 μA, 500 μA, 750 μA, or 1 mA using
Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 to 0 (internal reference current). In this mode,
no external RSET is required. If Bit DB18 is set to 1, the four nominal charge pump currents (INOMINAL) can be
externally adjusted according to the following equation:
⎛ 217.4 × I CP
R SET = ⎜⎜
⎝ I NOMINAL
6
8
REF_IN
MUXOUT
9
10
DECL2P5
VCC2
12
13
DATA
CLK
14
LE
16
PLL_EN
17, 34
VCC_LO
18, 19
22
IFP, IFN
VCC_MIX
26
RFIN
⎞
⎟ − 37.8 Ω
⎟
⎠
Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz.
Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect
signal. The output is selected by programming the appropriate register.
Decoupling Node for 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground.
Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin
should be decoupled with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched
into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz.
Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the
eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is
automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the
internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be
used to switch modes.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
RF Input (Single-Ended, 50 Ω).
Rev. 0 | Page 7 of 24
ADRF6602
Pin No.
27
Mnemonic
VCC_V2I
29
32, 33
36
IP3SET
NC
LODRV_EN
37, 38
LON, LOP
39
VTUNE
40
EP
DECLVCO
EPAD
Description
Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled
with a 100 pF capacitor and a 0.1 μF capacitor located close to the pin.
Connect a resistor from this pin to a +5 V supply to adjust IIP3. Normally leave open.
No Connection.
LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON
pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin
is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN
pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. External LO drive frequency
must be 1× LO. This pin should not be left floating.
Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO
generation is disabled, an external 1× LO can be applied to these pins.
VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage range on
this pin is 1.5 V to 2.5 V.
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin and ground.
Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.
Rev. 0 | Page 8 of 24
ADRF6602
TYPICAL PERFORMANCE CHARACTERISTICS
CDAC = 0x0, IP3SET = 3.3 V, internally generated LO, RFIN = −10 dBm, fIF = 140 MHz, unless otherwise noted.
45
5
4
40
3
35
+85°C
–40°C
+25°C
1
INPUT IP3 (dBm)
GAIN (dB)
2
+85°C
0
–1
30
–40°C
+25°C
25
20
–2
15
–3
1650
1750
1850
1950
2050
2150
LO FREQUENCY (MHz)
5
1550
08545-014
–5
1550
1650
1750
1850
1950
2050
2150
LO FREQUENCY (MHz)
Figure 4. Gain vs. LO Frequency
08545-017
10
–4
Figure 7. IIP3 vs. LO Frequency, RFIN = −5 dBm
90
20
18
+25°C
80
70
INPUT P1dB (dBm)
INPUT IP2 (dBm)
16
+85°C
60
+25°C
–40°C
50
+85°C
14
–40°C
12
10
8
6
4
40
1650
1750
1850
1950
2050
2150
LO FREQUENCY (MHz)
0
1550
08545-015
30
1550
1850
1950
2050
2150
Figure 8. IP1dB vs. LO Frequency
0
19
–5
LO FEEDTHROUGH AMPLITUDE (dBm)
20
18
17
16
15
+85°C
+25°C
13
–40°C
12
11
–10
–15
–20
–25
–30
–35
–40
–45
–40°C
+85°C
–50
–55
1650
1750
1850
1950
2050
LO FREQUENCY (MHz)
Figure 6. Noise Figure vs. LO Frequency
2150
–60
1550
1650
1750
1850
1950
LO FREQUENCY (MHz)
2050
2150
08545-019
+25°C
10
1550
08545-016
NOISE FIGURE (dB)
1750
LO FREQUENCY (MHz)
Figure 5. IIP2 vs. LO Frequency, RFIN = −5 dBm
14
1650
08545-018
2
Figure 9. LO Feedthrough to IF vs. LO Frequency, LO Output Turned Off
Rev. 0 | Page 9 of 24
ADRF6602
Phase noise measurements made at LO output, unless otherwise noted.
1.0
0.9
–100
100kHz OFFSET
0.7
–110
0.6
10kHz OFFSET
0.5
–120
1MHz OFFSET
0.4
–130
INTERGRATED PHASE NOISE
0.3
–140
0.2
10MHz OFFSET
–150
–90
LO = 2134.4MHz
PHASE NOISE (dBc/Hz)
0.8
INTEGRATED PHASE NOISE (°rms)
1kHz OFFSET
1650
1750
1850
1950
2050
0
2150
LO FREQUENCY (MHz)
Figure 10. PLL Spot Phase Noise at Various Offsets
and Integrated Phase Noise vs. LO Frequency
–75
1× PFD OFFSET
–85
2× PFD OFFSET
–90
–95
–105
–110
1550
4× PFD
OFFSET
1650
1750
1850
1950
2050
LO FREQUENCY (MHz)
2150
08545-021
SPURS LEVEL (dBc)
–80
0.25× AND
0.5× PFD OFFSET
–110
–120
LO = 1558.4MHz
–130
–140
–160
1k
10k
100k
1M
10M
100M
OFFSET FREQUENCY (Hz)
Figure 12. Phase Noise vs. Offset Frequency and LO Frequency
(LO Frequency Varies from 1550 MHz to 2150 MHz)
–70
–100
–100
–150
0.1
08545-020
SPOT PHASE NOISE (dBc/Hz)
–90
–160
1550
–80
Figure 11. PLL Reference Spurs vs. LO Frequency
Rev. 0 | Page 10 of 24
08545-022
–80
ADRF6602
REGISTER STRUCTURE
This section provides the register maps for the ADRF6602. The three LSBs determine the register that is programmed.
REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)
DIVIDE
MODE
RESERVED
INTEGER DIVIDE RATIO
CONTROL BITS
DB22
DB21
DB20
DB19
DB18
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
0
0
0
0
0
DM
ID6
ID5
ID4
ID3
ID2
ID1
ID0
C3(0)
C2(0)
C1(0)
DM
DIVIDE MODE
0
FRACTIONAL (DEFAULT)
1
INTEGER
ID6
ID5
ID4
ID3
ID2
ID1
ID0
INTEGER DIVIDE RATIO
0
0
1
0
1
0
1
21 (INTEGER MODE ONLY)
0
0
1
0
1
1
0
22 (INTEGER MODE ONLY)
0
0
1
0
1
1
1
23 (INTEGER MODE ONLY)
0
0
1
1
0
0
0
24
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
0
1
1
1
0
0
0
56 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
0
1
1
1
119
1
1
1
1
0
0
0
120 (INTEGER MODE ONLY)
1
1
1
1
0
0
1
121 (INTEGER MODE ONLY)
1
1
1
1
0
1
0
122 (INTEGER MODE ONLY)
1
1
1
1
0
1
1
123 (INTEGER MODE ONLY)
08545-004
DB23
Figure 13. Register 0—Integer Divide Control Register Map
REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)
0
0
MODULUS VALUE
CONTROL BITS
DB21
DB20
DB19
DB18
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
MD10
MD9
MD8
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
C3(0)
C2(0)
C1(1)
MD10
MD9
MD8
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
MODULUS VALUE
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
2
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
0
0
0
0
0
0
0
0
0
1536 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
1
1
1
1
1
1
1
1
1
1
1
2047
Figure 14. Register 1—Modulus Divide Control Register Map
Rev. 0 | Page 11 of 24
08545-005
RESERVED
DB23 DB22
ADRF6602
REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)
RESERVED
CONTROL BITS
FRACTIONAL VALUE
DB22
DB21
DB20
DB19
DB18
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
0
0
0
FD10
FD9
FD8
FD7
FD6
FD5
FD4
FD3
FD2
FD1
FD0
C3(0)
C2(1)
C1(0)
FD10
FD9
FD8
FD7
FD6
FD5
FD4
FD3
FD2
FD1
FD0
FRACTIONAL VALUE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
0
1
1
0
0
0
0
0
0
0
0
768 (DEFAULT)
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
08545-006
DB23
<MDR
FRACTIONAL VALUE MUST BE LESS THAN MODULUS
Figure 15. Register 2—Fractional Divide Control Register Map
REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)
DITHER
DITHER RESTART VALUE
ENABLE
DB20
DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
DEN
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5
DITH1
0
0
DITH0
0
1
DITHER MAGNITUDE
15 (DEFAULT)
7
1
0
3
1
1
1 (RECOMMENDED)
DEN
0
1
CONTROL BITS
DB7 DB6 DB5
DV4 DV3 DV2
DB4 DB3 DB2 DB1 DB0
DV1 DV0 C3(0) C2(1) C1(1)
DITHER ENABLE
DISABLE (RECOMMENDED)
ENABLE (DEFAULT)
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9
DV8
DV7
DV6
DV5
DV4
DV3
DV2
DV1
DV0
DITHER RESTART
VALUE
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
1
...
...
1
0x00001 (DEFAULT)
...
...
0x1FFFF
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
0
...
...
1
Figure 16. Register 3—Σ-Δ Modulator Dither Control Register Map
Rev. 0 | Page 12 of 24
08545-007
DB23
0
DITHER
MAGNITUDE
DB22
DB21
DITH1
DITH0
ADRF6602
REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)
REF OUPUT
MUX SELECT
DB23
DB22
CP
CURRENT
REF
SOURCE
INPUT REF
PATH
DB21 DB20 DB19
RMS2 RMS1 RMS0
RS1
RS0
PFD PHASE OFFSET
MULTIPLIER
PFD
POL
CP
CURRENT
CP
SRC
DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9
CP
CONTROL
PFD EDGE
DB8
DB18
DB17
DB6
DB5
CPM
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPCT1 CPCT0 PE1
DB7
PE0
PFD ANTI
BACKLASH
DELAY
DB4
DB3
CONTROL BITS
DB2
DB1
DB0
PAB1 PAB0 C3(1)
C2(0)
C1(0)
PAB0 PAB1 PFD ANTI BACKLASH
DELAY
0
0
1
1
PE1
0
1
0
1
0
1
0ns (DEFAULT)
0.5ns
0.75ns
0.9ns
PE0
REFERENCE PATH EDGE
SENSITIVITY
0
1
FALLING EDGE
RISING EDGE (DEFAULT)
DIVIDER PATH EDGE
SENSITIVITY
FALLING EDGE
RISING EDGE (DEFAULT)
CPC1 CPC0 CHARGE PUMP CONTROL
0
0
1
1
0
1
0
1
BOTH ON
PUMP DOWN
PUMP UP
TRISTATE (DEFAULT)
CPS
CHARGE PUMP CONTROL SOURCE
0
1
CONTROL BASED ON STATE OF DB7/DB8 (CP CONTROL)
CONTROL FROM PFD (DEFAULT)
CPP1 CPP0 CHARGE PUMP CURRENT
0
0
1
1
CPM
0
1
0
1
0
1
250µA
500µA (DEFAULT)
750µA
1000µA
CPB4 CPB3 CPB2 CPB1 CPB0
PFD PHASE OFFSET MULTIPLIER
0
0
0
0
1
1
0 × 22.5°/ICPMULT
1 × 22.5°/ICPMULT
4 × 22.5°/ICPMULT (RECOMMENDED)
10 × 22.5°/ICPMULT (DEFAULT)
16 × 22.5°/ICPMULT
31 × 22.5°/ICPMULT
0
0
0
1
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
1
0
0
0
1
CPBD
PFD PHASE OFFSET POLARITY
0
1
NEGATIVE
POSITIVE (DEFAULT)
CHARGE PUMP CURRENT
REFERENCE SOURCE
INTERNAL (DEFAULT)
EXTERNAL
RS0
RS1
INPUT REFERENCE
PATH SOURCE
0
0
1
1
0
1
0
1
2× REFIN
REFIN (DEFAULT)
0.5× REFIN
0.25× REFIN
RMS2 RMS1 RMS0 REF OUTPUT MUX SELECT
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
LOCK DETECT (DEFAULT)
VPTAT
REFIN (BUFFERED)
0.5× REFIN (BUFFERED)
2× REFIN (BUFFERED)
TRISTATE
0.25× REFIN (BUFFERED)
DGND
08545-008
0
0
0
0
1
1
1
1
Figure 17. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map
Rev. 0 | Page 13 of 24
ADRF6602
REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)
CAP DAC
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
0
0
0
0
0
0
0
0
0
0
0
CD3
PLL
EN
LO
DIV1
LO
EXT
LO
DRV
DB7
DB6
DB5
DB4
DB3
0
PLEN
LDV1
LXL
CD2 CD1 CD0
CONTROL BITS
DB2
DB1
DB0
LDRV C3(1) C2(0) C1(1)
CD3
CD2
CD1
CD0
CAPACITOR DAC
CONTROL FOR IIP3
OPTIMIZATION
LDRV
LO OUTPUT DRIVER
ENABLE
0
1
0
1
0
1
0
1
MIN
MAX
0
1
DRIVER OFF (DEFAULT)
DRIVER ON
LXL
EXTERNAL LO DRIVE
ENABLE (PIN 37, PIN 38)
0
1
INTERNAL LO OUTPUT (DEFAULT)
EXTERNAL LO INPUT
LDV1
DIVIDE-BY-2 IN LO CHAIN ENABLE
0
1
DIVIDE BY 1
DIVIDE BY 2 (DEFAULT)
PLEN
PLL ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
08545-009
0
RES
Figure 18. Register 5—PLL Enable and LO Path Control Register Map
REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)
CHARGE
3.3V
VCO LDO VCO
VCO
PUMP
LDO
ENABLE ENABLE ENABLE ENABLE SWITCH
DB23 DB22 DB21
0
0
0
DB20
CPEN
DB19
L3EN
DB18
LVEN
VCO AMPLITUDE
DISABLE
ENABLE (DEFAULT)
L3EN 3.3V LDO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
LVEN
VCO LDO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
VCO BAND SELECT FROM SPI
CONTROL BITS
DB17
DB16 DB15 DB14 DB13 DB12 DB11 DB10
DB9
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
VCO EN VCO SW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)
CPEN CHARGE PUMP ENABLE
0
1
VCO
BW SW
CTRL
VC[5:0]
VCO AMPLITUDE
VBS[5:0]
VCO BAND SELECT FROM SPI
0x00
….
0x18
….
0x2B
….
0x3F
0
….
24 (DEFAULT)
….
43 (RECOMMENDED)
….
63
0x00
0x01
….
0x3F
DEFAULT 0x20
VCO SW
VCO SWITCH CONTROL FROM SPI
0
1
REGULAR (DEFAULT)
BAND CAL
VCO EN
VCO ENABLE
0
1
DISABLE
ENABLE (DEFAULT)
VBSRC VCO BW CAL AND SW SOURCE CONTROL
0
1
BAND CAL (DEFAULT)
SPI
08545-010
RESERVED
Figure 19. Register 6—VCO Control and VCO Enable Register Map
REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)
RES
MIXER
XVCO B_EN
RESERVED
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8
0
XVCO MBE
0
0
0
0
0
0
0
0
0
0
0
0
0
CONTROL BITS
DB7 DB6 DB5
0
0
0
DB4 DB3 DB2 DB1 DB0
0
0 C3(1) C2(1) C1(1)
MBE MIXER BIAS ENABLE
DISABLE
0
ENABLE (DEFAULT)
1
EXTERNAL VCO
INTERNAL VCO (DEFAULT)
EXTERNAL VCO
08545-011
XVCO
0
1
Figure 20. Register 7—Mixer Bias Enable and External VCO Enable Register Map
Rev. 0 | Page 14 of 24
ADRF6602
THEORY OF OPERATION
The ADRF6602 integrates a high performance downconverting
mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the
fractional-N PLL functions and the mixer optimization functions,
as well as allowing for an externally applied LO or VCO.
The mixer core within the ADRF6602 is the next generation of
an industry leading family of mixers from Analog Devices, Inc.
The RF input is converted to a current and then mixed down to
IF using high performance NPN transistors. The mixer output
currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB,
with a very low output noise floor for excellent dynamic range.
Over the specified frequency range, the ADRF6602 typically
provides IF input P1dB of 14.5 dBm and IIP3 of 30 dBm.
Improved performance at specific frequencies can be achieved
with the use of the internal capacitor DAC (CDAC), which is
programmable via the SPI port, and through the use of a resistor
to a +5 V supply from the IP3SET pin (Pin 29). Adjustment of
the capacitor DAC allows increments in phase shift at internal
nodes in the ADRF6602, thus allowing cancellation of thirdorder distortion with no change in supply current. Connecting
a resistor to a +5 V supply from the IP3SET pin increases the
internal mixer core current, thereby improving overall IIP2 and
IIP3, as well as IP1dB. Using the IP3SET pin for this purpose
increases the overall supply current.
The fractional divide function of the PLL allows the frequency
multiplication value from REF_IN to LO output to be a fractional value rather than be restricted to an integer value as
in traditional PLLs. In operation, this multiplication value is
INT + (FRAC/MOD), where INT is the integer value, FRAC
is the fractional value, and MOD is the modulus value, all
programmable via the SPI port. In other fractional-N PLL
designs, fractional multiplication is achieved by periodically
changing the fractional value in a deterministic way. The
disadvantage of this approach is often spurious components
close to the fundamental signal. In the ADRF6602, a Σ-Δ
modulator is used to distribute the fractional value randomly,
thus significantly reducing the spurious content due to the
fractional function.
PROGRAMMING THE ADRF6602
The ADRF6602 is programmed via a 3-pin SPI port. The timing
requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of
the device. The register functions are listed in Table 7.
Table 7. ADRF6602 Register Functions
Register
Register 0
Register 1
Register 2
Register 3
Register 4
Register 5
Register 6
Register 7
Function
Integer divide control for the PLL
Modulus divide control for the PLL
Fractional divide control for the PLL
Σ-Δ modulator dither control
PLL charge pump, PFD, reference path control
PLL enable and LO path control
VCO control and VCO enable
Mixer bias enable and external VCO enable
Note that internal calibration for the PLL must be run when the
ADRF6602 is initialized at a given frequency. This calibration is
run automatically whenever Register 0, Register 1, or Register 2 is
programmed. Because the other registers affect PLL performance,
Register 0, Register 1, and Register 2 should always be programmed
last and in this order: Register 0, Register 1, Register 2.
To program the frequency of the ADRF6602, the user typically
programs only Register 0, Register 1, and Register 2. However,
if registers other than these are programmed first, a short delay
should be inserted before programming Register 0. This delay
ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.
Software is available on the product page of the Analog Devices
website (www.analog.com) that allows easy programming from
a PC running Windows XP or Vista.
INITIALIZATION SEQUENCE
To ensure proper power-up of the ADRF6602, it is important to
reset the PLL circuitry after the VCC supply rail settles to 5 V ±
0.25 V. Resetting the PLL ensures that the internal bias cells are
properly configured, even under poor supply start-up conditions.
To ensure that the PLL is reset after power-up, follow this
procedure:
1.
2.
3.
Disable the PLL by setting the PLEN bit to 0 (Register 5,
Bit DB6).
Disable the VCO LDO internal node by setting the LVEN
bit to 0 (Register 6, Bit DB18).
After a delay of >100 ms, set the PLEN and LVEN bits to 1.
After this procedure, the other registers can be programmed, in
order, from Register 7 to Register 3, and then from Register 0 to
Register 2, as described in the Programming the ADRF6602
section.
Rev. 0 | Page 15 of 24
ADRF6602
LO SELECTION LOGIC
The downconverting mixer in the ADRF6602 can be used
without the internal PLL by applying an external differential
LO to Pin 37 and Pin 38 (LON and LOP). In addition, when
using an LO generated by the internal PLL, the LO signal can
be accessed directly at these same pins. This function can be
used for debugging purposes, or the internally generated LO
can be used as the LO for a separate mixer.
The operation of the LO generation and whether LOP and LON
are inputs or outputs are determined by the logic levels applied
at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3
(LDRV) and Bit DB6 (PLEN) in Register 5. The combination of
externally applied logic and internal bits required for particular
LO functions is given in Table 8.
Table 8. LO Selection Logic
Pin 16 (PLL_EN)
0
0
1
1
1
1
1
Pins1
Pin 36 (LODRV_EN)
X
X
X
0
X
1
Register 5 Bits1
Bit DB6 (PLEN)
Bit DB3 (LDRV)
0
X
1
X
0
X
1
0
1
1
1
X
X = don’t care.
Rev. 0 | Page 16 of 24
Output Buffer
Disabled
Disabled
Disabled
Disabled
Enabled
Enabled
Outputs
LO
External
External
External
Internal
Internal
Internal
ADRF6602
APPLICATIONS INFORMATION
shown in Figure 21. The reference signal, or a divided-down
version of the reference signal, can be brought back off chip at
the multiplexer output pin (MUXOUT). A lock detect signal
and a voltage proportional to the ambient temperature can also
be selected on the multiplexer output pin.
BASIC CONNECTIONS FOR OPERATION
Figure 21 shows the schematic for the ADRF6602 evaluation
board. The six power supply pins should be individually
decoupled using 100 pF and 0.1 μF capacitors located as
close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should
be decoupled with the capacitor values shown in Figure 21.
The loop filter is connected between the CP and VTUNE pins.
When connected in this way, the internal VCO is operational.
For information about the loop filter components, see the
Evaluation Board Configuration Options section.
The RF input is internally ac-coupled and needs no external
bias. The IF outputs are open collector, and a bias inductor
is required from these outputs to VCC.
Operation with an external VCO is also possible. In this case,
the loop filter components should be referred to ground. The
output of the loop filter is connected to the input voltage pin of
the external VCO. The output of the VCO is brought back into
the device on the LOP and LON pins, using a balun if necessary.
The reference frequency for the PLL should be from 12 MHz
to 160 MHz and should be applied to the REF_IN pin, which
should be ac-coupled and terminated with a 50 Ω resistor as
1
2
3
4
5
6
VCC
S2
LO IN/OUT
R41
0Ω
(0402)
LODRV_EN
LON
4
3
5
1
C20
0.1µF
(0402)
C19
0.1µF
(0402)
C32
OPEN
(0402)
R45
OPEN
(0402)
R6
0Ω
(0402)
C8
100pF
(0402)
R27
0Ω
(0402)
C26
100pF
(0402)
R26
0Ω
(0402)
C24
100pF
(0402)
R25
0Ω
(0402)
C22
100pF
(0402)
R24
0Ω
(0402)
C21
100pF
(0402)
R17
0Ω
(0402)
C18
100pF
(0402)
C30
OPEN
(0402)
R42
OPEN
(0402)
VCC_LO
22
VCC2
17
VCC1
10
1
16
R73
49.9Ω
(0402)
37
14
DIVIDER
÷2
BUFFER
BUFFER
DECL2P5
FRACTION
REG
MODULUS
DIV
BY
4, 2, 1
2:1
MUX
INTEGER
REG
26
THIRD-ORDER
FRACTIONAL
INTERPOLATOR
×2
6
N COUNTER
21 TO 123
TEMP
SENSOR
8
4
7
11 15 20 21 23 24 25 28 30 31 35
RSET
R2
R37 OPEN
0Ω (0402)
(0402)
CP
TEST
POINT
(ORANGE)
R38
0Ω
(0402)
29
5
R10
1.6kΩ
(0603)
C15
5.6nF
(1206)
3
39
CP
R11
OPEN
(0402)
C43
10µF
(0603)
C2
OPEN
(0402)
40
18
VTUNE DECLVCO
R1
0Ω
(0402)
C11
0.1µF
(0402)
C41
OPEN
(0603)
IP3SET
C40
OPEN
(0603)
IFN
VCC
+5V
VTUNE
R63
OPEN
(0402)
RFIN
C27
0.1µF
(0402)
19
IFP
R62
0Ω
(0402)
C13
27pF
(0603)
C12
R8
100pF 0Ω
(0402) (0402)
R27
0Ω
(0402)
R9 18kΩ R65 0Ω
(0402)
(0402)
C14
270pF
(0603)
C42
10µF
(0603)
R22
0Ω
(0402)
CHARGE PUMP
250µA,
500µA (DEFAULT),
750µA,
1000µA
–
PHASE
+ FREQUENCY
DETECTOR
C17
0.1µF
(0402)
RFIN
VCO
CORE
PRESCALER
÷2
MUX
C16
R18
100pF 0Ω
(0402) (0402)
DECL3P3
2
ADRF6602
÷2
MUXOUT
R16
0Ω
(0402)
12
9
÷4
REFOUT
13
SPI
INTERFACE
C5
1nF LOP 38
(0402)
C13
1nF
(0402) REF_IN
REF_IN
VCC_MIX
27
LE
VCC_V2I
DATA
C23
0.1µF
(0402)
CLK
C25
0.1µF
(0402)
36
T8
TC1-1-13+ C6
1nF
(0402)
R44
OPEN
(0402)
C27
0.1µF
(0402)
PLL_EN
VCC_LO
C31
OPEN
(0402)
C7
0.1µF
(0402)
34
R40
0Ω
(0402)
P1
9-PIN
DSUB
9
R47
10kΩ
(0402)
VCC
RED
+5V
VCC1
RED
R39
OPEN
(0402)
S1
OPEN
8
R36
0Ω
R30
(0402)
0Ω
(0402) R48
0Ω
(0402)
R35
0Ω
(0402)
R19
0Ω
R20 (0402)
0Ω
(0402)
R43
10kΩ
(0402)
7
1
4
2
R27
0Ω 3
(0402)
5
RFOUT
R43
0Ω
(0402)
C29
0.1µF
(0402)
R12
0Ω
(0402)
C1
100pF
(0402)
Figure 21. Basic Connections for Operation of the ADRF6602
Rev. 0 | Page 17 of 24
08545-024
A peak-to-peak differential swing on RFIN of 1 V (0.353 V rms
for a sine wave input) results in an IF output power of 3.8 dBm.
ADRF6602
EVALUATION BOARD
Figure 24 shows the schematic of the RoHS-compliant evaluation board for the ADRF6602. This board has four layers and
was designed using Rogers 4350 hybrid material to minimize
high frequency losses. FR4 material is also adequate if the design
can accept the slightly higher trace loss of this material.
The evaluation board is designed to operate using the internal
VCO of the device (the default configuration) or with an
external VCO. To use an external VCO, R62 and R12 should
be removed. Place 0 Ω resistors in R63 and R11. The input of
the external VCO should be connected to the VTUNE SMA
connector, and the external VCO output should be connected
to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to
enable operation with an external VCO (see the Register 6—
VCO Control and VCO Enable (Default: 0x1E2106) section).
Additional configuration options for the evaluation board are
described in Table 9.
EVALUATION BOARD CONTROL SOFTWARE
Software to program the ADRF6602 is available for download
from www.analog.com. To install the software, download and
extract the zip file. Then run the following installation file:
ADRF6x0x_3p0p0_XP_install.exe
To connect the evaluation board to a USB port, a USB adapter
board (Part No. EVAL-ADF4XXXZ-USB) must be purchased
from www.analog.com. This board connects to the PC using a
standard USB cable with USB mini-connector at one end. An
additional 25-pin male to 9-pin female adapter is required to
mate the ADF4XXXZ-USB board to the 9-pin D-Sub connector
on the ADRF6602 evaluation board.
08545-025
The evaluation board can be connected to the PC using a PC
parallel port or a USB port. These options are selectable from
the opening menu of the software interface (see Figure 22). The
evaluation board is shipped with a 25-pin parallel port cable
for connection to the PC parallel port.
Figure 22. Control Software Opening Menu
Figure 23 shows the main menu of the control software with the
default settings displayed.
Rev. 0 | Page 18 of 24
08545-026
ADRF6602
Figure 23. Main Screen of the ADRF6602 Evaluation Board Software
Rev. 0 | Page 19 of 24
3P3V_LDO
AG ND
REFIN
OSC_3P3V
AG N D
AG ND
AG ND
AG ND
R70
49.9
1
1000PF
C31
10PF
22000
PF
C3
C4
0
R15
0.1UF
OSC_3P3V
C11
AG N D
100PF
C12
AG N D
AG N D
0
100PF
R8
C10
0
VCC_LO
0.1UF
10UF
1
R29
R7
0
0
10UF
VCC_BB
AG N D
C28
1000PF
C14
AGN D
DNI
R49
0
R16
VCO_LDO
R11
2P5V_LDO
REFOUT
R37
0
C9
3P3V1
1
C41
VCC
VCC4
CP
DNI
1
AG ND
0.1UF
C2
0
R1
VCC
AG ND
C42
10UF
1
AG ND
AG ND
C18
100PF
AG ND
C19
0.1UF
AG ND
0
100PF
0.1UF
R17
0
R18
C16
AG N D
C17
VCC2
1
2P5V
AG N D
AG ND
100PF
C1
0
1K
P1-1
10UF
C43
VCO_LDO
R65
C13
470PF
AG ND
1
AG N D
GND1
R9
0.022UF
C15
VCC_SENSE
R12
R32
R38
0
R2
9
8
7
6
5
4
3
2
1
P1
R63
100K
P1-6
40
P1-6
R36
R57
R30
0
0
0
DIG_GND
0
R19
1
37
100PF DNI
1
Z1
AG N D
16
AG N D
R53
10K
15
35
2
AG ND
100PF DNI
C34
AG ND
36
VCC
34
AG ND
17
1
VCC5
1
VCC
R54
10K
33
AG N D
R56
10K
P3-T7
3
1
18
32
30
21
22
23
AG ND
AGN D
C20
0.1UF
1
VCC_LO1
C21
0
R24
VCC_LO
R25
AG N D
VCC_BB1
AG ND
C25
0.1UF
0
R26
1
VCC_RF
VCC_BB
C24
AG ND
0.1UF
C27
100PF
TBD
R27
R58
DNI
VCC
VCC
AG N D
TBD
L2
TBD
AG N D
C23
0.1UF
L1
0
C22
100PF
1
DNI
C36
DNI
C35
VCC_BB
0
R48
0
R47
0
R60
TBD
IP3SET
OUTPUT_EN
R28
AG ND
1
IP3SET
VCC_LO
AG N D
LO
24
AG N D
IP3SET
AG ND
0
R69
25
26
27
28
29
E-PAD PAD
GND
VCC_MIX
GND
GND
GND
RFIN
VCC_V2I
GND
IP3SET
GND
AG ND
AG ND
0.1UF
100PF
1
VCC_LO
C7
0
R6
AGN D
P1-T7
AG N D
C8
NC
4
2
5
P4-T7
P4-T7
100PF
AG ND
20
T8
4A
5A
4
3
2A
3A
6A
5
2
6
1A
OUTPUT_EN
19
31
LO_EXTERN
P3-T7
P3-T7
P4-T7
3
LE
14
DATA
13
1
VCC1
S2
R52
1K DNI
38
C33
12
R51
1K DNI
AG N D
39
1NF
R55
10K
C5
C6
1NF
11
100PF DNI
C32
VCC2
9 DECL2P5
8 MUXOUT
7 GND
6 REF_IN
5 R
SET
4 GND
3 CP
2 DECL3P3
1 VCC1
10
P1-1
R50
1K DNI
CLK
DNI
1
AMP745781
-4
C40
TBD
AG ND
VTUNE
1
GND2
0
0
VCC_RF
1
DNI
AG ND
SNS
R10
R71
R72
R62
SNS1
0
806
TBD
3
1
1
P1-T7
IFP
GND
LE
AG N D
IFN
VCC
PLL_EN
R33
NC
0
NC
0
R31
Y1
R14
DECLVCO
GND
VTUNE
DATA
VCC_LO
VCC_LO
T7
AG N D
AG N D
IFN
IFP
VCC_RF
AGN D
RFIN
0
R67
0 DNI
R68
VCO_LDO
VCC
AGND
VCC_SENSE
AGND
3P3V_LDO
2P5V_LDO
LO_EXTERN
0
1
R43
1
LOP
R35
LON
0
GND
GND
S1
LODRV_EN
GND
T3
4
1
VCC
CLK
1
AG N D
OUT
DNI
R44
AG ND
0.1UF
C29
2
2
GND
R20
Rev. 0 | Page 20 of 24
0
R34
Figure 24. Evaluation Board Schematic
0
6
3
P1-T7
TC4-1W
VCC
R59
0
J1 1
J1 2
J1 3
J1 4
J1 5
J1 6
J1 7
J1 8
J1 9
J1 10
AG ND
ADRF6602
SCHEMATICS AND ARTWORK
08545-023
R66
0
08545-012
08545-013
ADRF6602
Figure 25. Evaluation Board Layout (Bottom)
Figure 26. Evaluation Board Layout (Top)
Rev. 0 | Page 21 of 24
ADRF6602
EVALUATION BOARD CONFIGURATION OPTIONS
Table 9.
Component
S1, R55, R56, R33
Description
LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in
combination with internal register settings, determines whether the LOP and LON pins
function as inputs or outputs (see the LO Selection Logic section for more information).
LO IN/OUT
SMA Connector
REFIN
SMA Connector
REFOUT
SMA Connector
LO input/output. An external 1× LO or 2× LO can be applied to this single-ended input
connector.
Reference input. The input reference frequency for the PLL is applied to this connector.
Input impedance is 50 Ω.
Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The
on-board multiplexer can be programmed to bring out the following signals:
REFIN, 2× REFIN, REFIN/2, REFIN/4.
Temperature sensor output voltage.
Lock detect indicator.
Charge pump test point. The unfiltered charge pump signal can be probed at this test
point. Note that the CP pin should not be probed during critical measurements such as
phase noise.
Loop filter. Loop filter components.
CP Test Point
R37, C14, R9, R10,
C15, C13, R65, C40
R11, R12
R62, R63, VTUNE
SMA Connector
R2
RFIN SMA Connector
T3
Loop filter return. When the internal VCO is used, the loop filter components should be
returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used,
the loop filter components can be returned to ground by installing a 0 Ω resistor in R11.
Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are
connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62.
To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63,
and the voltage input of the VCO should be connected to the VTUNE SMA connector. The
output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.
RSET pin. This pin is unused and should be left open.
RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of
the ADRF6602 is ac-coupled, so no bias is necessary.
IF output. The differential IF output signals from the ADRF6602 (IFP and IFN) are converted
to a single-ended signal by T3.
Rev. 0 | Page 22 of 24
Default Condition/
Option Settings
S1 = R55 = open
(not installed)
R56 = R33 = 0 Ω
LODRV_EN = 0 V
LO input
Lock detect
R12 = 0 Ω (0402)
R11 = open (0402)
R62 = 0 Ω (0402)
R63 = open (0402)
R2 = open (0402)
R3 = R23 = open (0402)
ADRF6602
OUTLINE DIMENSIONS
6.00
BSC SQ
0.60 MAX
0.60 MAX
TOP
VIEW
0.50
BSC
5.75
BSC SQ
0.50
0.40
0.30
12° MAX
0.80 MAX
0.65 TYP
0.30
0.23
0.18
1
4.25
4.10 SQ
3.95
EXPOSED
PAD
(BOT TOM VIEW)
21
20
11
10
0.25 MIN
4.50
REF
0.05 MAX
0.02 NOM
SEATING
PLANE
40
0.20 REF
COPLANARITY
0.08
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2
072108-A
PIN 1
INDICATOR
1.00
0.85
0.80
PIN 1
INDICATOR
31
30
Figure 27. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
6 mm × 6 mm Body, Very Thin Quad
(CP-40-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADRF6602ACPZ-R7
ADRF6602-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 23 of 24
Package Option
CP-40-1
ADRF6602
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08545-0-1/10(0)
Rev. 0 | Page 24 of 24