AD ADF4219LBRU

a
Dual Low Power
Frequency Synthesizers
ADF4217L/ADF4218L/ADF4219L
FEATURES
Total I DD: 7.1 mA
Bandwidth/RF 3.0 GHz
ADF4217L/ADF4218L, IF 1.1 GHz
ADF4219L, IF 1.0 GHz
2.6 V to 3.3 V Power Supply
1.8 V Logic Compatibility
Separate VP Allows Extended Tuning Voltage
Selectable Dual Modulus Prescaler
Selectable Charge Pump Currents
Charge Pump Current Matching of 1%
3-Wire Serial Interface
Power-Down Mode
GENERAL DESCRIPTION
The ADF4217L/ADF4218L/ADF4219L are low power dual
frequency synthesizers that can be used to implement local
oscillators in the up-conversion and down-conversion sections
of wireless receivers and transmitters. They can provide the LO
for both the RF and IF sections. They consist of a low noise
digital PFD (phase frequency detector), a precision charge pump, a
programmable reference divider, programmable A and B counters,
and a dual modulus prescaler (P/P + 1). The A and B counters,
in conjunction with the dual modulus prescaler (P/P + 1),
implement an N divider (N = BP + A). In addition, the 14-bit
reference counter (R Counter) allows selectable REFIN frequencies at the PFD input. A complete PLL (phase-locked
loop) can be implemented if the synthesizers are used with an
external loop filter and VCOs (voltage controlled oscillators).
APPLICATIONS
Wireless Handsets (GSM, PCS, DCS, CDMA, WCDMA)
Base Stations for Wireless Radio (GSM, PCS, DCS, WCDMA)
Wireless LANs
Communications Test Equipment
Cable TV Tuners (CATV)
Control of all the on-chip registers is via a simple 3-wire interface
with 1.8 V compatibility. The devices operate with a power supply
ranging from 2.6 V to 3.3 V and can be powered down when
not in use.
FUNCTIONAL BLOCK DIAGRAM
ADF4219L ONLY
NC
VDD1
VDD2
VP1
VP2
N = BP + A
11(13)-BIT IF
B COUNTER
IFINA
IFINB
ADF4217L
ADF4218L
ONLY
REFIN
PHASE
COMPARATOR
IF
PRESCALER
6(5)-BIT IF
A COUNTER
DATA
LE
CHARGE
PUMP
CPIF
OUTPUT
MUX
MUXOUT
CHARGE
PUMP
CPRF
IF
LOCK
DETECT
BUFFER
14(15)-BIT IF
R COUNTER
CLOCK
ADF4217L/
ADF4218L/
ADF4219L
22-BIT
DATA
SDOUT
REGISTER
RF
LOCK
DETECT
14(15)-BIT RF
R COUNTER
N = BP + A
11(13)-BIT RF
B COUNTER
RFINA
RFINB
RF
PRESCALER
PHASE
COMPARATOR
6(5)-BIT RF
A COUNTER
FEATURES IN ( ) REFER TO ADF4219L
NC = NO CONNECT
DGNDRF
AGNDRF
DGNDIF
AGNDIF
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
ADF4217L/ADF4218L/ADF4219L–SPECIFICATIONS1
(VDD1 = VDD2 = 2.6 V to 3.3 V; VP1, VP2 = VDD to 5.5 V; AGND = DGND = 0 V; TA = TMIN to TMAX, unless otherwise noted.)
Parameter
B Version
1
BChips2
(Typical)
Unit
RF CHARACTERISTICS
RF Input Frequency (RFIN)
ADF4217L, ADF4218L
ADF4217L, ADF4218L
ADF4219L
RF Input Sensitivity
ADF4217L, ADF4218L
ADF4219L
IF Input Frequency (IFIN)
ADF4217L/ADF4218L
ADF4219L P = 16/17
ADF4219L P = 8/9
IF Input Sensitivity
Maximum Allowable Prescaler
Output Frequency3
REFIN CHARACTERISTICS
Reference Input Frequency
Test Conditions/Comments
Use a square wave for operation
below minimum frequency spec.
0.15/3.0
0.15/2.5
0.8/2.2
0.15/3.0
0.15/2.5
0.8/2.2
GHz min/max
GHz min/max
GHz min/max
–15/0
–20/0
–15/0
–20/0
dBm min/max
dBm min/max
0.045/1.1
0.045/1.0
0.045/0.55
–15/0
0.045/1.1
0.045/1.0
0.045/0.55
–15/0
GHz min/max
GHz min/max
GHz min/max
dBm min/max
188
188
MHz max
10/110
10/110
MHz min/max
Reference Input Sensitivity
0.5
0.5
V p-p min
REFIN Input Capacitance
REFIN Input Current
10
± 100
10
± 100
pF max
µA max
PHASE DETECTOR
Phase Detector Frequency4
56
56
MHz max
CHARGE PUMP
ICP Sink/Source
High Value
Low Value
Absolute Accuracy
ICP Three-State Leakage Current
Sink and Source Current Matching
ICP vs. VCP
ICP vs. Temperature
4
1
1
1
6
5
2
4
1
1
1
6
5
2
mA typ
mA typ
% typ
nA typ
% max
% max
% typ
LOGIC INPUTS
VINH, Input High Voltage
VINL, Input Low Voltage
IINH/IINL, Input Current
CIN, Input Capacitance
Reference Input Current
1.4
0.6
±1
10
± 100
1.4
0.6
±1
10
± 100
V min
V max
µA max
pF max
µA max
LOGIC OUTPUTS
VOH, Output High Voltage
VOL, Output Low Voltage
VDD – 0.4
0.4
VDD – 0.4
0.4
V min
V max
POWER SUPPLIES
VDD1
VDD2
VP1, VP2
IDD (RF + IF)5
(RF only)5
(IF only)5
IP (IP1 + IP2)
Low Power Sleep Mode
2.6/3.3
VDD1
VDD1/5.5 V
10
7
5
0.6
1
2.6/3.3
VDD1
VDD1/5.5 V
10
7
5
0.6
1
V min/V max
–2–
V min/V max
mA max
mA
mA
mA typ
µA typ
–10 dBm minimum input signal
–15 dBm minimum input signal
–20 dBm minimum input signal
–15 dBm minimum input signal
–10 dBm minimum input signal
–10 dBm minimum input signal
For f < 10 MHz, use dc-coupled
square wave, (0 to VDD).
AC-coupled. When dc-coupled,
0 to VDD max.
(CMOS compatible)
0.5 V < VCP < VP – 0.5, 1% typ
0.5 V < VCP < VP – 0.5, 0.1% typ
VCP = VP/2
IOH = 1 mA
IOL = 1 mA
7.1 mA typ
4.7 mA typ
3.4 mA typ
TA = 25°C
REV. C
ADF4217L/ADF4218L/ADF4219L
Parameter
BChips2
(Typical)
Unit
Test Conditions/Comments
–171
–163
–167
–159
–171
–163
–167
–159
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
–75
–90
–77
–86
–75
–90
–77
–86
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
@ 30 kHz PFD Frequency
@ 200 kHz PFD Frequency
@ 30 kHz PFD Frequency
@ 200 kHz PFD Frequency
@ VCO Output
1.95 GHz Output; 30 kHz PFD
900 MHz Output; 200 kHz PFD
900 MHz Output; 30 kHz PFD
900 MHz Output; 200 kHz PFD
Measured at Offset of fPFD/2fPFD
–78/–85
–80/–84
–79/–86
–80/–84
–78/–85
–80/–84
–79/–86
–80/–84
dBc typ
dBc typ
dBc typ
dBc typ
B Version
1
6
NOISE CHARACTERISTICS
RF Phase Noise Floor7
IF Phase Noise Floor7
Phase Noise Performance8
RF9
RF10
IF11
IF12
Spurious Signals
RF9
RF10
IF11
IF12
NOTES
1
Operating temperature range is as follows: B Version: –40°C to +85°C.
2
The BChip specifications are given as typical values.
3
This is the maximum operating frequency of the CMOS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency
that is less than this value.
4
Guaranteed by design. Sample tested to ensure compliance.
5
This includes relevant I P.
6
VDD = 3 V; P = 16/32; IF IN /RFIN for ADF4218L, ADF4219L = 540 MHz/900 MHz.
7
The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where N is the N divider value).
8
The phase noise is measured with the EVAL-ADF421xEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN
for the synthesizer. (f REFOUT = 10 MHz @ 0 dBm.)
9
fREFIN = 10 MHz; f PFD = 30 kHz; Offset frequency = 1 kHz; f RF = 1.95 GHz; N = 65000; Loop B/W = 3 kHz
10
fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; f RF = 900 MHz; N = 4500; Loop B/W = 20 kHz
11
fREFIN = 10 MHz; fPFD = 30 kHz; Offset frequency = 1 kHz; f IF = 900 MHz; N = 30000; Loop B/W = 3 kHz
12
fREFIN = 10 MHz; fPFD = 200 kHz; Offset frequency = 1 kHz; f IF = 900 MHz; N = 4500; Loop B/W = 20 kHz
Specifications subject to change without notice.
TIMING CHARACTERISTICS
(VDD1 = VDD2 = 3 V ⴞ 10%, 5 V ⴞ 10%; VDD1, VDD2 ≤ VP1,
VP2 ≤ 6.0 V ; AGNDRF1 = DGNDRF1 = AGNDRF2 = DGNDRF2 = 0 V; TA = TMIN to TMAX, unless otherwise noted.)
Parameter
Limit at
TMIN to TMAX
(B Version)
Unit
Test Conditions/Comments
t1
t2
t3
t4
t5
t6
10
10
25
25
10
50
ns min
ns min
ns min
ns min
ns min
ns min
DATA to CLOCK Setup Time
DATA to CLOCK Hold Time
CLOCK High Duration
CLOCK Low Duration
CLOCK to LE Setup Time
LE Pulsewidth
Guaranteed by design but not production tested.
t3
t4
CLOCK
t1
DATA
DB21 (MSB)
t2
DB20
DB2
DB1
(CONTROL BIT C2)
DB0 (LSB)
(CONTROL BIT C1)
t6
LE
t5
LE
Figure 1. Timing Diagram
REV. C
–3–
ADF4217L/ADF4218L/ADF4219L
TSSOP ␪JA Thermal Impedance . . . . . . . . . . . . . 150.4°C/W
LGA ␪JA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112°C/W
Lead Temperature, Soldering
TSSOP, Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . 215°C
TSSOP, Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . 220°C
LGA, Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . 240°C
LGA, Infrared (20 sec) . . . . . . . . . . . . . . . . . . . . . . . 240°C
ABSOLUTE MAXIMUM RATINGS 1, 2
(TA = 25°C, unless otherwise noted.)
VDD1 to GND3 . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +3.6 V
VDD1 to VDD2 . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V
VP1, VP2 to GND . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.8 V
VP1, VP2 to VDD1 . . . . . . . . . . . . . . . . . . . . –0.3 V to +5.5 V
Digital I/O Voltage to GND . . . . . . . . –0.3 V to VDD + 0.3 V
Analog I/O Voltage to GND . . . . . . . . . –0.3 V to VP + 0.3 V
REFIN, RF1IN (A, B), IFIN (A, B)
to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V
RFINA to RFINB . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 320 mV
Operating Temperature Range
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +85°C
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . 150°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect device reliability.
2
This device is a high performance RF integrated circuit with an ESD rating of
< 2 kV and is ESD sensitive. Proper precautions should be taken for handling and
assembly.
3
GND = AGND = DGND = 0 V.
ORDERING GUIDE
Model
Temperature
Range
Package
Description
Package
Option*
ADF4217L/ADF4218L/ADF4219LBRU
ADF4217L/ADF4218L/ADF4219LBCC
–40°C to +85°C
–40°C to +85°C
Thin Shrink Small Outline Package (TSSOP)
Chip Array CASON (LGA)
RU-20
CC-24
*Contact the factory for chip availability.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate
on the human body and test equipment and can discharge without detection. Although the ADF4217L/
ADF4218L/ADF4219L feature proprietary ESD protection circuitry, permanent damage may occur on
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are
recommended to avoid performance degradation or loss of functionality.
–4–
REV. C
ADF4217L/ADF4218L/ADF4219L
PIN CONFIGURATIONS
TSSOP
TSSOP
VDD1
1
20
VDD2
VDD1
1
20
VP1
2
19
VP2
VP1
2
19
VP2
CPRF
3
18
CPIF
CPRF
3
18
CPIF
DGNDRF
4
17
DGNDIF
DGNDRF
4
17
RFINA
5
16
IFINA
RFINA
5
16
DGNDIF
IFIN
RFINB
AGNDRF
6
15
IFINB
15
AGNDIF
14
AGNDIF
RFINB
AGNDRF
6
7
7
14
NC
REFIN
8
13
LE
REFIN
8
13
DGNDIF
9
12
DGNDIF
9
12
MUXOUT
10
11
DATA
CLK
MUXOUT
10
11
LE
DATA
CLK
ADF4217L/
ADF4218L
ADF4219L
VDD2
CHIP SCALE
1
VP1
2
20
CPIF
CPRF
3
19
DGNDIF
18
IFINA
17
IFINB
21
NC
DGNDRF
4
RFINA
5
RFINB
6
16
AGNDIF
AGNDRF
7
15
LE
ADF4217L/
ADF4218L
DATA
13
NC
10
11
12
CLK
14
9
MUXOUT
8
NC
DGNDIF
REFIN
VP2
23
22
1
21
NC
2
20
CPIF
DGNDIF
IFIN
CPRF
3
19
DGNDRF
4
18
RFINA
5
17
AGNDIF
RFINB
6
16
NC
AGNDRF
7
15
LE
REFIN
8
14
DATA
NC
9
13
NC
ADF4219L
10
11
12
NC = NO INTERNAL CONNECT
NC = NO INTERNAL CONNECT
REV. C
24
NC
VP1
CLK
NC
VDD1
22
VDD2
23
DGNDIF
VDD2
VP2
24
MUXOUT
VDD1
CHIP SCALE
–5–
ADF4217L/ADF4218L/ADF4219L
PIN FUNCTION DESCRIPTIONS
Mnemonic
Function
VDD1
Positive Power Supply for the RF Section. Decoupling capacitors to the analog ground plane should be placed as
close as possible to this pin. VDD1 should have a value of between 2.6 V and 3.3 V. VDD1 must have the same
potential as VDD2.
Power Supply for the RF Charge Pump. This should be greater than or equal to VDD.
Output from the RF Charge Pump. When enabled, this provides ± ICP to the external loop filter, which in turn
drives the external VCO.
Ground Pin for the RF Digital Circuitry
Input to the RF Prescaler. This low level input signal is normally ac-coupled to the external VCO.
Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with a small
bypass capacitor, typically 100 pF.
Ground Pin for the RF Analog Circuitry
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and an equivalent input resistance of
100 kΩ. This input can be driven from a TTL or CMOS crystal oscillator, or can be ac-coupled.
Ground Pin for the IF Digital, Interface, and Control Circuitry
This multiplexer output allows either the IF/RF Lock Detect, the scaled RF, or the scaled Reference Frequency to
be accessed externally (Table V).
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the
22-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a
high impedance CMOS input.
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four
latches; the latch is selected using the control bits.
Ground Pin for the IF Analog Circuitry
This pin is not connected internally (ADF4219L only).
Complementary Input to the IF Prescaler. This point should be decoupled to the ground plane with a small bypass
capacitor, typically 100 pF (ADF4217L/ADF4218L only).
Input to the IF Prescaler. This low level input signal is normally ac-coupled to the external VCO.
Ground Pin for the IF Digital, Interface, and Control Circuitry
Output from the IF Charge Pump. When enabled, this provides ± ICP to the external loop filter, which in turn drives
the external VCO.
Power Supply for the IF Charge Pump. This should be greater than or equal to VDD.
Positive Power Supply for the IF Interface and Oscillator Sections. Decoupling capacitors to the analog ground
plane should be placed as close as possible to this pin. VDD2 should have a value of between 2.6 V and 3.3 V.
VDD2 must have the same potential as VDD1.
VP 1
CPRF
DGNDRF
RFINA
RFINB
AGNDRF
REFIN
DGNDIF
MUXOUT
CLK
DATA
LE
AGNDIF
NC
IFINB
IFINA
DGNDIF
CPIF
VP 2
VDD2
–6–
REV. C
Typical Performance Characteristics–ADF4217L/ADF4218L/ADF4219L
0
0
VDD = 3V
VP = 3V
–5
REFERENCE
LEVEL = –11.2dBm
–10
–20
OUTPUT POWER – dB
RF INPUT POWER – dBm
–10
–15
–20
–25
TA = 25ⴗC
–30
VDD = 3V, VP = 5V
ICP = 4mA
PFD FREQUENCY = 200kHz
RES. BANDWIDTH = 1kHz
VIDEO BANDWIDTH = 1kHz
SWEEP = 2.5 SECONDS
AVERAGES = 10
–40
–50
–60
–78dBc
–70
–30
–80
–35
–90
–100
–40
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
–400kHz
–200kHz
TPC 1. Input Sensitivity, RF Input
200kHz
400kHz
TPC 4. Reference Spurs, RF Side
(1960 MHz, 200 kHz, 20 kHz)
10dB/DIVISION
–40
0
VDD = 3V
VP = 3V
–5
1960MHz
FREQUENCY
RF INPUT FREQUENCY – GHz
RL = –40dBc/Hz
rms NOISE = 1.2ⴗ
–50
PHASE NOISE – dBc/Hz
IF INPUT POWER – dBm
–60
–10
–15
–20
–25
–30
1.2ⴗ rms
–70
–80
–90
–100
–110
–120
–35
–130
–140
100Hz
–40
0.1
0.6
1.1
IF INPUT FREQUENCY – GHz
1.6
TPC 2. Input Sensitivity, IF Input
0
–20
–30
–40
VDD = 3V, VP = 5V
ICP = 4.0mA
PFD FREQUENCY = 200kHz
RES. BANDWIDTH = 10Hz
VIDEO BANDWIDTH = 10Hz
SWEEP = 1.9 SECONDS
AVERAGES = 20
–20
–50
–60
–83dBc/Hz
–70
REFERENCE
LEVEL = –4.2dBm
–10
OUTPUT POWER – dB
REFERENCE
LEVEL = –11.2dBm
–10
OUTPUT POWER – dB
1MHz
TPC 5. Integrated Phase Noise, RF Side
(1960 MHz, 200 kHz, 20 kHz)
0
–30
VDD = 3V, VP = 5V
ICP = 4mA
PFD FREQUENCY = 200kHz
RES. BANDWIDTH = 10Hz
VIDEO BANDWIDTH = 10Hz
SWEEP = 1.9 SECONDS
AVERAGES = 20
–40
–50
–60
–87dBc/Hz
–70
–80
–80
–90
–90
–100
–100
–2kHz
–1kHz
1960MHz
FREQUENCY
1kHz
2kHz
–2kHz
–1kHz
900MHz
1kHz
2kHz
FREQUENCY
TPC 3. Phase Noise, RF Side (1960 MHz, 200 kHz, 20 kHz)
REV. C
FREQUENCY OFFSET FROM 1960MHz CARRIER
TPC 6. Phase Noise, IF Side (900 MHz, 200 kHz, 20 kHz)
–7–
ADF4217L/ADF4218L/ADF4219L
0
–120
OUTPUT POWER – dB
–20
–30
–40
VDD = 3V
VP = 5V
VDD = 3V, VP = 5V
ICP = 4.0mA
PFD FREQUENCY = 200kHz
LOOP BANDWIDTH = 20kHz
RES. BANDWIDTH = 10kHz
VIDEO BANDWIDTH = 10kHz
SWEEP = 1.9 SECONDS
AVERAGES = 20
–130
PHASE NOISE – dBc/Hz
REFERENCE
LEVEL = –4.2dBm
–10
–50
–60
–70
–140
–150
–160
–83dBc
–80
–170
–90
–100
–400kHz
–200kHz
900MHz
FREQUENCY
200kHz
–180
400kHz
TPC 7. Reference Spurs, IF Side
(900 MHz, 200 kHz, 20 kHz)
10dB/DIVISION
–40
RL = –40dBc/Hz
10
100
1000
PHASE DETECTOR FREQUENCY – kHz
1
10000
TPC 10. Phase Noise Referred to CP Output vs.
PFD Frequency, IF Side
rms NOISE = 0.9ⴗ
–60
VDD = 3V
VP = 5V
–50
–70
PHASE NOISE – dBc/Hz
PHASE NOISE – dBc/Hz
–60
–70
–80
–90
–100
–110
–80
–90
–120
–130
–140
100Hz
FREQUENCY OFFSET FROM 900MHz CARRIER
–100
–40
1MHz
TPC 8. Integrated Phase Noise, IF Side
(900 MHz, 200 kHz, 20 kHz)
–20
0
20
40
TEMPERATURE – ⴗC
60
100
TPC 11. Phase Noise vs. Temperature, RF Side
(1960 MHz, 200 kHz, 20 kHz)
–120
–60
VDD = 3V
VP = 5V
VDD = 3V
VP = 5V
PHASE NOISE – dBc/Hz
–130
PHASE NOISE – dBc/Hz
80
–140
–150
–160
–70
–80
–90
–170
–180
1
10
100
1000
PHASE DETECTOR FREQUENCY – kHz
–100
–40
10000
TPC 9. Phase Noise Referred to CP Output vs.
PFD Frequency, RF Side
–20
0
20
40
TEMPERATURE – ⴗC
60
80
100
TPC 12. Phase Noise vs. Temperature, IF Side
(900 MHz, 200 kHz, 20 kHz)
–8–
REV. C
ADF4217L/ADF4218L/ADF4219L
6
VP = 5V
ICP = 4mA
4
ICP – mA
2
0
–2
–4
–6
0
0.5
1.0
1.5
2.0
2.5
3.0
VCP – V
3.5
4.0
4.5
5.0
TPC 13. Charge Pump Output Characteristics
CIRCUIT DESCRIPTION
Reference Input Section
Prescaler
The reference input stage is shown in Figure 2. SW1 and SW2
are normally closed switches; SW3 is normally open. When
power-down is initiated, SW3 is closed and SW1 and SW2 are
opened. This ensures that there is no loading of the REFIN pin
on power-down.
The prescaler is selectable. On the IF side, it can be set to either 8/9
(DB20 of the IF AB Counter Latch set to 0) or 16/17 (DB20 set
to 1). On the RF side of the ADF4217L/ADF4218L, it can be set
to 64/65 or 32/33. On the ADF4219L, the RF prescaler can be
set to 16/17 or 32/33. See Tables V, VI, VIII, and IX.
POWER-DOWN
CONTROL
50k⍀
NC
The dual modulus prescaler (P/P + 1), along with the A and
B counters, enables the large division ratio, N, to be realized
(N = BP + A). This prescaler, operating at CML levels, takes
the clock from the IF/RF input stage and divides it down to a
manageable frequency for the CMOS A and B counters. It is
based on a synchronous 4/5 core.
SW2
REFIN NC
BUFFER
SW1
TO R
COUNTER
SW3
NO
NC = NORMALLY CLOSED
NO = NORMALLY OPEN
Figure 2. Reference Input Stage
A AND B COUNTERS
The A and B CMOS counters combine with the dual modulus
prescaler to allow a wide ranging division ratio in the PLL feedback counter. The devices are guaranteed to work when the
prescaler output is 188 MHz or less. Typically they will work
with 250 MHz output from the prescaler.
IF/RF Input Stage
The IF/RF input stage is shown in Figure 3. It is followed by a
two-stage limiting amplifier to generate the CML clock levels
needed for the prescaler.
N = BP + A
11(13)-BIT
B COUNTER
TO PFD
LOAD
1.6V
BIAS
GENERATOR
FROM IF/RF
INPUT STAGE
AVDD
500⍀
PRESCALER
P/P+1
MODULUS
CONTROL
500⍀
LOAD
6(5)-BIT
A COUNTER
RFINA
Figure 4. Reference Input Stage, A and B Counters
RFINB
AGND
Figure 3. IF/RF Input Stage
REV. C
–9–
ADF4217L/ADF4218L/ADF4219L
The A and B counters, in conjunction with the dual modulus
prescaler, make it possible to generate output frequencies that
are spaced only by the Reference Frequency divided by R. The
equation for the VCO frequency is as follows:
[
MUXOUT AND LOCK DETECT
The output multiplexer on the ADF4217L family allows the user
to access various internal points on the chip. The state of MUXOUT
is controlled by P3, P4, P11, and P12. See Tables IV and VII.
Figure 6 shows the MUXOUT section in block diagram form.
]
fVCO = (P × B) + A × fREFIN / R
DVDD
fVCO = Output frequency of external voltage controlled oscillator
(VCO).
P
= Preset modulus of dual modulus prescaler (8/9, 16/17, and
so on).
IF ANALOG LOCK DETECT
IF R COUNTER OUTPUT
B
A
= Preset divide ratio of binary 11-bit counter (ADF4217L/
ADF4218L), binary 13-bit counter (ADF4219L).
IF N COUNTER OUTPUT
IF/RF ANALOG LOCK DETECT
MUX
MUXOUT
CONTROL
RF R COUNTER OUTPUT
= Preset divide ratio of binary 6-bit A counter (ADF4217L/
ADF4218L), binary 5-bit counter (ADF4219L).
RF N COUNTER OUTPUT
RF ANALOG LOCK DETECT
fREFIN = Output frequency of the external reference frequency
oscillator.
R
= Preset divide ratio of binary 14-bit programmable reference
counter (1 to 16383). The ADF4219L has an R divide
of 15 bits.
DGND
Figure 6. MUXOUT Circuit
Lock Detect
R COUNTER
The 14-bit R counter allows the input reference frequency to be
divided down to produce the reference clock to the phase frequency
detector (PFD). Division ratios from 1 to 16,383 are allowed. The
extra R15 bit on the ADF4219L allows ratios from 1 to 32767.
MUXOUT can be programmed for analog lock detect. The
N-channel open-drain analog lock detect should be operated
with an external pull-up resistor of 10 kΩ nominal. When lock
has been detected, it is high with narrow low going pulses.
INPUT SHIFT REGISTER
PHASE FREQUENCY DETECTOR (PFD) AND
CHARGE PUMP
The PFD takes inputs from the R counter and N counter and
produces an output proportional to the phase and frequency
difference between them. Figure 5 is a simplified schematic.
VP
HI
D1
Q1
CHARGE
PUMP
UP
U1
R DIVIDER
CLR1
DELAY
ELEMENT
HI
The functional block diagram for the ADF4217L family is shown
on page 1. The main blocks include a 22-bit input shift register,
a 14-bit R counter, and an N counter. The N counter is comprised
of a 6-bit A counter and an 11-bit B counter for the ADF4217L
and the ADF4218L. The 18-bit N counter on the ADF4219L
is comprised of a 13-bit B counter and a 5-bit A counter. Data
is clocked into the 22-bit shift register on each rising edge of
CLK. The data is clocked in MSB first. Data is transferred from
the shift register to one of four latches on the rising edge of LE.
The destination latch is determined by the state of the two control bits (C2, C1) in the shift register. These are the two LSBs,
DB1 and DB0, as shown in the timing diagram of Figure 1. The
truth table for these bits is shown in Table I.
CP
U3
Table I. C2, C1 Truth Table
CLR2
DOWN
D2
Q2
U2
N DIVIDER
CPGND
Control Bits
C2 C1
Data Latch
0
0
1
1
IF R Counter
IF AB Counter (and Prescaler Select)
RF R Counter
RF AB Counter (and Prescaler Select)
0
1
0
1
R DIVIDER
N DIVIDER
CP OUTPUT
Figure 5. PFD Simplified Schematic
–10–
REV. C
ADF4217L/ADF4218L/ADF4219L
Table II. ADF4217L/ADF4218L Family Latch Summary
NOT
USED
IF PD
POLARITY
IF CP
GAIN
THREE-STATE
CPIF
IF LOCK
DETECT
IF FO
IF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P4
P3
P2
P5
P1
CONTROL
BITS
14-BIT REFERENCE COUNTER, R
R14
R13
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (0) C1 (0)
IF
PRESCALER
IF
POWER-DOWN
IF AB COUNTER LATCH
NOT
USED
11-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P7
P6
B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
DB9
DB8
CONTROL
BITS
6-BIT A COUNTER
DB7
DB6
DB5
DB4
DB3
DB2
A6
A5
A4
A3
A2
A1
B1
DB1
DB0
C2 (0) C1 (1)
NOT
USED
RF PD
POLARITY
RF CP
GAIN
THREE-STATE
CPIF
RF LOCK
DETECT
RF FO
RF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P12
P11
P10
P13
P9
CONTROL
BITS
14-BIT REFERENCE COUNTER, R
R14
R13
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (1) C1 (0)
RF
PRESCALER
RF
POWER-DOWN
RF AB COUNTER LATCH
NOT
USED
11-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P16
REV. C
P14
B11
B10
B9
B8
B7
B6
B5
B4
B3
B2
–11–
DB9
B1
DB8
CONTROL
BITS
6-BIT A COUNTER
DB7
DB6
DB5
DB4
DB3
DB2
A6
A5
A4
A3
A2
A1
DB1
DB0
C2 (1) C1 (1)
ADF4217L/ADF4218L/ADF4219L
Table III. ADF4219L Family Latch Summary
IF PD
POLARITY
IF CP
GAIN
THREE-STATE
CPIF
IF LOCK
DETECT
IF FO
IF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P4
P3
P2
P5
P1
CONTROL
BITS
15-BIT REFERENCE COUNTER, R
R15
R14
R13
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (0) C1 (0)
IF
PRESCALER
IF
POWER-DOWN
IF AB COUNTER LATCH
13-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P7
P6
B13
B12
B11
B10
B9
B8
B7
B6
CONTROL
BITS
5-BIT A COUNTER
B5
B4
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B3
B2
B1
A5
A4
A3
A2
A1
DB1
DB0
C2 (0) C1 (1)
RF PD
POLARITY
RF CP
GAIN
THREE-STATE
CPIF
RF LOCK
DETECT
RF FO
RF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P12
P11
P10
P13
P9
CONTROL
BITS
15-BIT REFERENCE COUNTER, R
R15
R14
R13
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (1) C1 (0)
RF
PRESCALER
RF
POWER-DOWN
RF AB COUNTER LATCH
13-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P16
P14
B13
B12
B11
B10
B9
B8
B7
B6
CONTROL
BITS
5-BIT A COUNTER
B5
B4
–12–
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B3
B2
B1
A5
A4
A3
A2
A1
DB1
DB0
C2 (1) C1 (1)
REV. C
ADF4217L/ADF4218L/ADF4219L
Table IV. ADF4217L/ADF4218L/ADF4219L IF Reference Counter Latch Map
ADF4219L
ONLY
IF PD
POLARITY
IF CP
GAIN
THREE-STATE
CPIF
IF FO
IF LOCK
DETECT
IF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P4
REV. C
P3
P2
P5
P1
R15
R14
R13
P1
PD POLARITY
0
1
NEGATIVE
POSITIVE
P5
ICP
0
1
1.0mA
4.0mA
P2
CHARGE PUMP
OUTPUT
0
1
NORMAL
THREE-STATE
CONTROL
BITS
14-BIT REFERENCE COUNTER, R
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (0) C1 (0)
R15
R14
R13
R12
..........
R3
R2
R1
DIVIDE RATIO
0
0
0
0
..........
0
0
1
1
0
0
0
0
..........
0
1
0
2
0
0
0
0
..........
0
1
1
3
0
0
0
0
..........
1
0
0
4
.
.
.
.
..........
.
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
.
..........
.
.
.
.
0
1
1
1
..........
1
0
0
16380
0
1
1
1
..........
1
0
1
16381
0
1
1
1
..........
1
1
0
16382
0
1
1
1
..........
1
1
1
16383
.
.
.
.
..........
.
.
.
.
1
1
1
1
..........
1
1
1
32767
P12
P11
FROM RF R LATCH
P4
P3
MUXOUT
0
0
0
0
LOGIC LOW STATE
0
0
0
1
IF ANALOG LOCK DETECT
0
X
1
0
IF REFERENCE DIVIDER OUTPUT
0
X
1
1
IF N DIVIDER OUTPUT
0
1
0
0
RF ANALOG LOCK DETECT
0
1
0
1
RF/IF ANALOG LOCK DETECT
1
X
0
0
RF REFERENCE DIVIDER
1
X
0
1
RF N DIVIDER
1
0
1
0
FAST LOCK OUTPUT SWITCH ON
AND CONNECTED TO MUXOUT
1
0
1
1
IF COUNTER RESET
1
1
1
0
RF COUNTER RESET
1
1
1
1
IF AND RF COUNTER RESET
–13–
ADF4217L/ADF4218L/ADF4219L
Table V. ADF4217L/ADF4218L IF AB Counter Latch Map
IF
PRESCALER
IF
POWER-DOWN
IF AB COUNTER LATCH
NOT
USED
11-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P7
P6
B11
B10
B9
B8
B7
B6
B5
B4
B3
DB9
B2
DB8
DB7
DB6
DB5
DB4
DB3
DB2
A6
A5
A4
A3
A2
A1
B1
A5
A4
A3
A2
A1
A COUNTER DIVIDE RATIO
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
2
0
0
0
0
1
1
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
0
62
1
1
1
1
1
1
63
B10
B9
..........
B3
B2
B1
B COUNTER DIVIDE RATIO
0
0
..........
0
0
1
NOT ALLOWED
0
0
0
..........
0
1
0
NOT ALLOWED
0
0
0
..........
0
1
1
3
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
1
1
1
..........
1
0
0
2044
1
1
1
..........
1
0
1
2045
1
1
1
..........
1
1
0
2046
1
1
1
..........
1
1
1
2047
IF PRESCALER
8/9
16/17
P7
IF SECTION
0
1
NORMAL OPERATION
POWER-DOWN
DB0
0
0
0
1
DB1
C2 (0) C1 (1)
A6
B11
P6
CONTROL
BITS
6-BIT A COUNTER
N = BP + A, P IS PRESCALER VALUE SET BY P6. B MUST BE
GREATER THAN OR EQUAL TO A. TO ENSURE CONTINUOUSLY
ADJACENT VALUES OF N, NMIN IS (P2 – P).
–14–
REV. C
ADF4217L/ADF4218L/ADF4219L
Table VI. ADF4219L IF AB Counter Latch Map
IF
PRESCALER
IF
POWER-DOWN
IF AB COUNTER LATCH
13-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P7
P6
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B3
B2
B1
A5
A4
A3
A2
A1
A3
A2
A1
A COUNTER DIVIDE RATIO
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
2
0
0
0
1
1
3
.
1
.
1
.
1
.
1
.
0
.
30
1
1
1
1
1
31
B11
..........
B3
B2
B1
B COUNTER DIVIDE RATIO
0
0
..........
0
0
1
NOT ALLOWED
0
0
0
..........
0
1
0
NOT ALLOWED
0
0
0
..........
0
1
1
3
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
1
1
1
..........
1
0
0
8188
1
1
1
..........
1
0
1
8189
1
1
1
..........
1
1
0
8190
1
1
1
..........
1
1
1
8191
8/9
16/17
P7
IF SECTION
0
1
NORMAL OPERATION
POWER-DOWN
N = BP + A, P IS PRESCALER VALUE SET BY P6.
B MUST BE GREATER THAN OR EQUAL TO A.
FOR CONTIGUOUS VALUES OF N, NMIN IS (P2– P).
REV. C
C2 (0) C1 (1)
A4
B12
IF PRESCALER
DB0
0
0
0
1
DB1
A5
B13
P6
CONTROL
BITS
5-BIT A COUNTER
–15–
ADF4217L/ADF4218L/ADF4219L
Table VII. RF Reference Counter Latch Map
ADF4129L
ONLY
RF PD
POLARITY
RF CP
GAIN
RF FO
RF LOCK
DETECT
THREE-STATE
CPIF
RF REFERENCE COUNTER LATCH
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P12
P11
P10
P13
P9
R15
0
1
NEGATIVE
POSITIVE
ICP
1.0mA
4.0mA
P10
CHARGE PUMP
OUTPUT
0
1
NORMAL
THREE-STATE
P11
0
0
0
R13
PD POLARITY
0
1
P12
0
R14
P9
P13
CONTROL
BITS
14-BIT REFERENCE COUNTER, R
P4
P3
FROM RF R LATCH
R12
R11
R10
R9
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (1) C1 (0)
R15
R14
R13
R12
..........
R3
R2
R1
DIVIDE RATIO
0
0
0
0
..........
0
0
1
1
0
0
0
0
..........
0
1
0
2
0
0
0
0
..........
0
1
1
3
0
0
0
0
..........
1
0
0
4
.
.
.
.
..........
.
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
.
..........
.
.
.
.
0
1
1
1
..........
1
0
0
16380
0
1
1
1
..........
1
0
1
16381
0
1
1
1
..........
1
1
0
16382
0
1
1
1
..........
1
1
1
16383
.
.
.
.
..........
.
.
.
.
1
1
1
1
..........
1
1
1
32767
0
0
MUXOUT
LOGIC LOW STATE
0
0
1
IF ANALOG LOCK DETECT
X
1
0
IF REFERENCE DIVIDER OUTPUT
0
X
1
1
IF N DIVIDER OUTPUT
0
1
0
0
RF ANALOG LOCK DETECT
0
1
0
1
RF/IF ANALOG LOCK DETECT
1
X
0
0
RF REFERENCE DIVIDER
1
X
0
1
RF N DIVIDER
1
0
1
0
FAST LOCK OUTPUT SWITCH ON
AND CONNECTED TO MUXOUT
1
0
1
1
IF COUNTER RESET
1
1
1
0
RF COUNTER RESET
1
1
1
1
IF AND RF COUNTER RESET
–16–
REV. C
ADF4217L/ADF4218L/ADF4219L
Table VIII. ADF4217L/ADF4218L RF AB Counter Latch Map
RF
PRESCALER
RF
POWER-DOWN
RF AB COUNTER LATCH
NOT
USED
11-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P16
P14
B11
B10
B9
B8
B7
B6
B5
B4
B3
DB9
B2
DB8
DB7
DB6
DB5
DB4
DB3
DB2
A6
A5
A4
A3
A2
A1
B1
A4
A3
A2
A1
A COUNTER DIVIDE RATIO
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
0
2
0
0
0
0
1
1
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
1
1
1
1
0
62
1
1
1
1
1
1
63
B9
B2
B1
B COUNTER DIVIDE RATIO
0
..........
..........
B3
0
0
0
1
NOT ALLOWED
0
0
0
..........
0
1
0
NOT ALLOWED
0
0
0
..........
0
1
1
3
0
0
0
..........
1
0
0
4
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
1
1
1
..........
1
0
0
2044
1
1
1
..........
1
0
1
2045
1
1
1
..........
1
1
0
2046
1
1
1
..........
1
1
1
2047
0
1
64/65
32/33
32/33
64/65
P16
RF SECTION
0
1
NORMAL OPERATION
POWER-DOWN
C2 (1) C1 (1)
A5
B10
RF PRESCALER
ADF4218L
N = BP + A, P IS PRESCALER VALUE SET BY P6, B MUST BE
GREATER THAN OR EQUAL TO A. TO ENSURE CONTINUOUSLY
ADJACENT VALUES OF NⴛFREF , N MIN IS (P2 – P).
REV. C
–17–
DB0
0
0
RF PRESCALER
ADF4217L
DB1
A6
B11
P14
CONTROL
BITS
6-BIT A COUNTER
ADF4217L/ADF4218L/ADF4219L
Table IX. ADF4219L RF AB Counter Latch Map
RF
PRESCALER
RF
POWER-DOWN
RF AB COUNTER LATCH
13-BIT B COUNTER
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P16
P14
B13
B12
B11
B10
B9
B8
B7
B6
B5
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B3
B2
B1
A5
A4
A3
A2
A1
B4
A4
A3
A2
A1
A COUNTER DIVIDE RATIO
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
0
2
0
0
0
1
1
3
.
.
.
.
.
.
1
1
1
1
0
30
1
1
1
1
1
31
B12
B11
..........
B3
B2
B1
B COUNTER DIVIDE RATIO
0
0
..........
0
0
1
NOT ALLOWED
0
0
0
..........
0
1
0
NOT ALLOWED
0
0
0
..........
0
1
1
3
0
0
0
..........
1
0
0
4
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
.
.
.
..........
.
.
.
.
1
1
1
..........
1
0
0
8188
1
1
1
..........
1
0
1
8189
1
1
1
..........
1
1
0
8190
1
1
1
..........
1
1
1
8191
IF PRESCALER
16/17
32/33
P16
IF SECTION
0
1
NORMAL OPERATION
POWER-DOWN
DB0
0
0
0
1
DB1
C2 (1) C1 (1)
A5
B13
P14
CONTROL
BITS
5-BIT A COUNTER
N = BP + A, P IS PRESCALER VALUE SET BY P14.
B MUST BE GREATER THAN OR EQUAL TO A.
FOR CONTIGUOUS VALUES OF N, NMIN IS (P2–P).
A MUST BE LESS THAN P.
–18–
REV. C
ADF4217L/ADF4218L/ADF4219L
PROGRAM MODES
Tables IV and VII show how to set up the program modes in the
ADF4217L family. The following should be noted:
The REFIN oscillator circuit is only disabled if both the IF and
RF power-downs are set.
The input register and latches remain active and are capable of
loading and latching data during all the power-down modes.
1. IF and RF Analog Lock Detect indicate when the PLL is in
lock. When the loop is locked, and either IF or RF Analog
Lock Detect is selected, the MUXOUT pin will show a logic
high with narrow low-going pulses. When the IF/RF Analog
Lock Detect is chosen, the locked condition is indicated only
when both IF and RF loops are locked.
The IF/RF section of the devices will return to normal powered-up
operation immediately upon LE latching a “0” to the appropriate
power-down bit.
2. The IF Counter Reset Mode resets the R and N counters in
the IF section and also puts the IF charge pump into threestate. The RF Counter Reset Mode resets the R and N counters
in the RF section and also puts the RF charge pump into
three-state. The IF and RF Counter Reset Mode does both
of the above.
If control bits C2, C1 are 0, 0, then the data is transferred from
the input shift register to the 14-bit IF R counter. Table IV shows
the input shift register data format for the IF R counter and the
possible divide ratios.
Upon removal of the reset bits, the N counter resumes counting
in close alignment with the R counter (maximum error is one
prescaler output cycle).
3. The Fastlock Mode uses MUXOUT to switch a second loop
filter damping resistor to ground during Fastlock operation.
Activation of Fastlock occurs whenever RF CP Gain in the
RF Reference counter is set to 1.
POWER-DOWN
It is possible to program the ADF4217L family for either synchronous or asynchronous power-down on either the IF or RF side.
Synchronous IF Power-Down
Programming a “1” to P7 of the ADF4217L family will initiate a
power-down. If P2 of the ADF4217L family has been set to “0”
(normal operation), then a synchronous power-down is conducted.
The device will automatically put the charge pump into threestate and then complete the power-down.
Asynchronous IF Power-Down
IF SECTION
Programmable IF Reference (R) Counter
IF Phase Detector Polarity
P1 sets the IF phase detector polarity. When the IF VCO characteristics are positive, this should be set to “1.” When they are
negative, it should be set to “0.” See Table IV.
IF Charge Pump Three-State
P2 puts the IF charge pump into three-state mode when programmed
to a “1.” It should be set to “0” for normal operation. See Table IV.
IF Charge Pump Currents
P5 sets the IF charge pump current. With P5 set to “0,” ICP is
1.0 mA. With P5 set to “1,” ICP is 4.0 mA. See Table IV.
Programmable IF AB Counter
If control bits C2, C1 are 0, 1, the data in the input register is
used to program the IF AB counter. For the ADF4217L/ADF4218L,
the AB counter consists of a 6-bit swallow counter (A counter)
and 11-bit programmable counter (B counter). Table V shows
the input register data format for programming the IF AB counter
and the possible divide ratios. The ADF4219L N counter consists
of an 13-bit B counter and 5-bit A counter. Table VI shows the
input register data format for programming the ADF4219L.
If P2 of the ADF4217L family has been set to “1” (three-state the
IF charge pump) and P7 is subsequently set to “1,” an asynchronous power-down is conducted. The device will go into power-down
on the rising edge of LE, which latches the “1” to the IF PowerDown Bit (P7).
IF Prescaler Value
Synchronous RF Power-Down
Tables IV, V, and VI show the power-down bits in the ADF4217L
family. See the Power-Down section for a functional description.
Programming a “1” to P16 of the ADF4217L family will initiate a
power-down. If P10 of the ADF4217L family has been set to “0”
(normal operation), a synchronous power-down is conducted. The
device will automatically put the charge pump into three-state
and then complete the power-down.
Asynchronous RF Power-Down
If P10 of the ADF4217L family has been set to “1” (three-state
the RF charge pump) and P16 is subsequently set to “1,” an
asynchronous power-down is conducted. The device will go into
power-down on the rising edge of LE, which latches the “1” to
the RF Power-Down Bit (P16).
Activation of either synchronous or asynchronous power-down
forces the IF/RF loop’s R and N dividers to their load state
conditions, and the IF/RF input section is debiased to a high
impedance state.
REV. C
P6 in the IF AB counter latch sets the IF prescaler value. For
the ADF4217L family, 8/9 or 16/17 prescalers are available. See
Table V and Table VI.
IF Power-Down
RF SECTION
Programmable RF Reference (R) Counter
If control bits C2, C1 are 1, 0, the data is transferred from the
input shift register to the 14-bit RF R counter. Table VII shows the
input shift register data format for the RF R counter and the
possible divide ratios.
RF Phase Detector Polarity
P9 sets the RF phase detector polarity. When the RF VCO
characteristics are positive, this should be set to “1.” When they
are negative, it should be set to “0.” See Table VII.
RF Charge Pump Three-State
P10 puts the RF charge pump into three-state mode when programmed
to a “1.” It should be set to “0” for normal operation. See Table VII.
–19–
ADF4217L/ADF4218L/ADF4219L
RF Program Modes
program the new frequency and to initiate Fastlock. To come
out of Fastlock, the RF CP Gain Bit should be returned to “0”
and the extra damping resistor switched out.
Tables IV and VII show how to set up the RF program modes.
RF Charge Pump Currents
P13 sets the RF charge pump current. With P13 set to “0,” ICP is
1.0 mA. With P13 set to “1,” ICP is 4.0 mA. See Table VII.
Programmable RF AB Counter
If control bits C2, C1 are 1, 1, the data in the input register is used
to program the RF AB counter. For the ADF4217L/ADF4218L,
the AB counter consists of a 6-bit swallow counter (A counter)
and 11-bit programmable counter (B counter). Table VIII shows
the input register data format for programming the RF AB counter
and the possible divide ratios. The ADF4219L N counter consists
of a 13-bit B counter and 5-bit A counter. Table IX shows the
input register data format for programming the ADF4219L.
RF Prescaler Value
P14 in the RF AB counter latch sets the RF prescaler value. For
the ADF4217L and ADF4218L family, 32/33 or 64/65 prescalers
are available. See Table VIII. For the ADF4219L, the prescaler
may be 16/17 or 32/33. See Table IX.
RF Power-Down
Tables VII, VIII, and IX show the power-down bits (Charge
Pump Bit used for asynchronous in the ADF4217L family). See
the Power-Down section for a functional description.
RF Fastlock
The RF CP Gain Bit (P13) of the RF N Register in the ADF4217L
family is the Fastlock Enable Bit. The loop filter should be
designed for the lower current setting. When Fastlock is enabled,
the RF CP current is set to maximum value. Also, an extra loop
filter damping resistor to ground is switched in using the
MUXOUT pin, thus compensating for the change of loop
dynamics when in Fastlock Mode. Since the RF CP Gain Bit is
contained in the RF N counter, only one write is needed to
APPLICATIONS SECTION
Local Oscillator for GSM Handset Receiver
The diagram in Figure 7 shows the ADF4217L/ADF4218L/
ADF4219L being used in a classic superheterodyne receiver to
provide the required LOs (local oscillators). In this circuit, the
reference input signal is applied to the circuit at fREFIN and is
being generated by a 13 MHz temperature controlled crystal
oscillator. In order to have a channel spacing of 200 kHz (the GSM
standard), the reference input must be divided by 65, using the
on-chip reference counter.
The RF output frequency range is 1050 MHz to 1085 MHz.
Loop filter component values are chosen so that the loop bandwidth is 20 kHz. The synthesizer is set up for a charge pump
current of 4.0 mA, and the VCO sensitivity is 15.6 MHz/V.
The IF output is fixed at 125 MHz. The IF loop bandwidth is
chosen to be 20 kHz with a channel spacing of 200 kHz. Loop
filter component values are chosen accordingly.
Local Oscillator for WCDMA Receiver
Figure 8 shows the ADF4217L/ADF4218L/ADF4219L being
used to generate the local oscillator frequencies in a wideband
CDMA (WCDMA) system.
The RF output range needed is 1720 MHz to 1780 MHz. The
VCO190-1750T from Varil-L will accomplish that. Channel spacing
is 200 kHz, the loop bandwidth of the loop filter is 20 kHz, and the
VCO sensitivity is 32 MHz/V. A charge pump current of 4.0 mA
is used and the desired phase margin for the loop is 45 degrees.
The IF output is fixed at 200 MHz. The VCO190-200T is used.
It has a sensitivity of 11.5 MHz/V. Channel spacing and loop
bandwidth are chosen the same as the RF side.
RFOUT
IFOUT
VP
VDD
VP
100pF
18⍀
100pF
VDD2 VDD1
620pF
9k⍀
VP1
3.3k⍀
400pF
620pF
ADF4217L/
ADF4218L/
ADF4219L
3.9nF
5.8k⍀
MUXOUT
VDD
10MHz
TCXO
VCO190-1068U
620pF
18⍀
18⍀
18⍀
LOCK
DETECT
100pF
RFIN
IFIN
REFIN
100pF
6nF
100pF
51⍀
VCC
CPRF
CPIF
VCO190-125T
18⍀
VP2
3.3k⍀
VCC
DGNDRF
AGNDRF
DGNDIF
AGNDIF
18⍀
100pF
CLK
DATA
LE
51⍀
SPI COMPATIBLE SERIAL BUS
DECOUPLING CAPACITORS (22␮F/10pF) ON VDD, VP OF THE ADF4217L/ADF4218L/ADF4219L.
THE TCXO AND ON V CC OF THE VCOs HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.
Figure 7. Local Oscillator Design for GSM Receiver
–20–
REV. C
ADF4217L/ADF4218L/ADF4219L
RFOUT
IFOUT
VP
VDD
VP
100pF
18⍀
100pF
18⍀
100pF
VDD2 VDD1
450pF
1.5k⍀
VP1
3.3k⍀
2.4pF
760pF
4.7k⍀
ADF4217L/
ADF4218L/
ADF4219L
24nF
MUXOUT
DGNDRF
AGNDRF
DGNDIF
AGNDIF
10MHz
TCXO
VCO190-1750T
690pF
18⍀
18⍀
LOCK
DETECT
100pF
RFIN
IFIN
REFIN
18⍀
7.5nF
100pF
51⍀
100pF
VCC
CPRF
CPIF
VCO190-200T
18⍀
VP2
3.3k⍀
VCC
CLK
DATA
LE
51⍀
SPI COMPATIBLE SERIAL BUS
DECOUPLING CAPACITORS (22␮F/10pF) ON VDD , VP OF THE ADF4217L/ADF4218L/ADF4219L.
THE TCXO AND ON V CC OF THE VCOs HAVE BEEN OMITTED FROM THE DIAGRAM TO AID CLARITY.
Figure 8. Local Oscillator Design for WCDMA System
In this circuit, the reference input signal is applied to the circuit
at REFIN by a 10 MHz TCXO (temperature controlled crystal
oscillator).
SCLK
CLK
MOSI
DATA
LE ADF4217L/
ADuC812
INTERFACING
The ADF4217L/ADF4218L/ADF4219L family has a simple
SPI® compatible serial interface for writing to the device. SCLK,
SDATA, and LE control the data transfer. When LE (latch
enable) goes high, the 22 bits that have been clocked into the
input register on each rising edge of SCLK will get transferred
to the appropriate latch. See Figure 1 for the timing diagram
and Table I for the latch truth table.
The maximum allowable serial clock rate is 20 MHz. This means
that the maximum update rate possible for the device is 909 kHz
or one update every 1.1 µs. This is certainly more than adequate
for systems that will have typical lock times in hundreds of
microseconds.
ADuC812 Interface
Figure 9 shows the interface to the ADuC812 MicroConverter®.
Since the ADuC812 is based on an 8051 core, this interface can
be used with any 8051 based microcontroller. The MicroConverter
is set up for SPI Master Mode with CPHA = 0. To initiate the
operation, the I/O port driving LE is brought low. Each latch of
the ADF421xL family needs a 22-bit word. This is accomplished
by writing three 8-bit bytes from the MicroConverter to the
device. When the third byte has been written, the LE input should
be brought high to complete the transfer.
MUXOUT
(LOCK DETECT)
Figure 9. ADuC812 to ADF421xL Interface
ADSP2181 Interface
Figure 10 shows the interface between the ADF4217L family and
the ADSP-21xx digital signal processor. As previously discussed,
the ADF4217L family needs a 22-bit serial word for each latch
write. The easiest way to accomplish this using the ADSP-21xx
family is to use the autobuffered transmit mode of operation
with alternate framing. This provides a means for transmitting
an entire block of serial data before an interrupt is generated.
Set up the word length for eight bits and use three memory locations for each 22-bit word. To program each 22-bit latch, store
the three 8-bit bytes, enable the Autobuffered Mode, and then
write to the transmit register of the DSP. This last operation
initiates the autobuffer transfer.
SCLK
DT
TFS
ADSP-21xx
On first applying power to the ADF4217L family, it needs four
writes (one each to the R counter latch and the AB counter latch
for both RF1 and RF2 side) for the output to become active.
I/O FLAG
When operating in the mode described, the maximum SCLOCK
rate of the ADuC812 is 4 MHz. This means that the maximum
rate at which the output frequency can be changed will be about
180 kHz.
REV. C
ADF4218L/
ADF4219L
I/O PORTS
CLK
DATA
LE ADF4217L/
ADF4218L/
ADF4219L
MUXOUT
(LOCK DETECT)
Figure 10. ADSP-21xx to ADF421xL Interface
–21–
ADF4217L/ADF4218L/ADF4219L
OUTLINE DIMENSIONS
20-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-20)
Dimensions shown in millimeters
6.60
6.50
6.40
20
11
4.50
4.40
4.30
1
6.40 BSC
10
PIN 1
0.65
BSC
1.20
MAX
0.15
0.05
0.20
0.09
0.30
COPLANARITY 0.19
0.10
SEATING
PLANE
0.75
0.60
0.45
8ⴗ
0ⴗ
COMPLIANT TO JEDEC STANDARDS MO-153AC
24-Leadless Chip Array CASON [LGA]
(CC-24)
Dimensions shown in millimeters
SEATING PLANE
1.20 MAX
4.50 BSC
VIEW A
3.50 BSC
TOP VIEW
PIN 1
INDEX AREA
1.15
0.90
0.50 BSC
TYP
0.05 MAX
0.10 TYP
1
0.60
0.40
24
BOTTOM VIEW
0.33
0.30
0.25
VIEW A
COMPLIANT TO JEDEC STANDARDS MO-208, ECEA-1
–22–
REV. C
ADF4217L/ADF4218L/ADF4219L
Revision History
Location
Page
5/03—Data Sheet changed from REV. B to REV. C.
Change to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Change to TPC 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Change to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7/02—Data Sheet changed from REV. A to REV. B.
Change to ADF4219L SENSITIVITY SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
6/02—Data Sheet changed from REV. 0 to REV. A.
Changes to FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Changes to CASON package drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
REV. C
–23–
–24–
C02655–0–5/03(C)