AD ADF4360

Integrated Synthesizer and VCO
ADF4360-0
FEATURES
GENERAL DESCRIPTION
Output frequency range: 2400 MHz to 2725 MHz
Divide-by-2 output
3.0 V to 3.6 V power supply
1.8 V logic compatibility
Integer-N synthesizer
Programmable dual-modulus prescaler 16/17, 32/33
Programmable output power level
3-wire serial interface
Analog and digital lock detect
Hardware and software power-down mode
The ADF4360-0 is a fully integrated integer-N synthesizer and
voltage controlled oscillator (VCO). The ADF4360-0 is designed
for a center frequency of 2600 MHz. In addition, a divide-by-2
option is available, whereby the user gets an RF output of between 1200 MHz and 1360 MHz.
Control of all the on-chip registers is through a simple 3-wire
interface. The device operates with a power supply ranging from
3.0 V to 3.6 V and can be powered down when not in use.
APPLICATIONS
Wireless handsets (DECT, GSM, PCS, DCS, WCDMA)
Test equipment
Wireless LANs
CATV equipment
FUNCTIONAL BLOCK DIAGRAM
AVDD
DVDD
CE
RSET
ADF4360-0
MUXOUT
MULTIPLEXER
14-BIT R
COUNTER
REFIN
LOCK
DETECT
CLK
DATA
MUTE
24-BIT
FUNCTION
LATCH
24-BIT
DATA REGISTER
LE
CHARGE
PUMP
CP
PHASE
COMPARATOR
VVCO
VTUNE
CC
CN
INTEGER
REGISTER
RFOUTA
VCO
CORE
13-BIT B
COUNTER
5-BIT A
COUNTER
MULTIPLEXER
N = (BP + A)
RFOUTB
LOAD
LOAD
AGND
DGND
DIVSEL = 1
DIVSEL = 2
÷2
04644-0-001
PRESCALER
P/P+1
OUTPUT
STAGE
CPGND
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
ADF4360-0
TABLE OF CONTENTS
Specifications..................................................................................... 3
VCO ............................................................................................. 10
Timing Characteristics..................................................................... 5
Output Stage................................................................................ 11
Absolute Maximum Ratings............................................................ 6
Latch Structure ........................................................................... 12
Transistor Count........................................................................... 6
Control Latch .............................................................................. 16
ESD Caution.................................................................................. 6
N Counter Latch......................................................................... 17
Pin Configuration and Function Descriptions............................. 7
R Counter Latch ......................................................................... 17
Typical Performance Characteristics ............................................. 8
Applications..................................................................................... 18
Circuit Description........................................................................... 9
Fixed Frequency LO................................................................... 18
Reference Input Section............................................................... 9
Power-Up..................................................................................... 18
Prescaler (P/P + 1)........................................................................ 9
Interfacing ................................................................................... 18
A and B Counters ......................................................................... 9
PCB Design Guidelines for Chip Scale Package........................... 19
R Counter ...................................................................................... 9
Output Matching ........................................................................ 19
PFD and Charge Pump................................................................ 9
Outline Dimensions ....................................................................... 20
MUXOUT and Lock Detect...................................................... 10
Ordering Guide .......................................................................... 20
Input Shift Register..................................................................... 10
REVISION HISTORY
7/04—Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADF4360-0
SPECIFICATIONS1
AVDD = DVDD = VVCO = 3.3 V ± 10%; AGND = DGND = 0 V; TA = TMIN to TMAX, unless otherwise noted.
Table 1.
Parameter
REFIN CHARACTERISTICS
REFIN Input Frequency
REFIN Input Sensitivity
REFIN Input Capacitance
REFIN Input Current
PHASE DETECTOR
Phase Detector Frequency2
CHARGE PUMP
ICP Sink/Source3
High Value
Low Value
RSET Range
ICP Three-State Leakage Current
Sink and Source Current Matching
ICP vs. VCP
ICP vs. Temperature
LOGIC INPUTS
VINH, Input High Voltage
VINL, Input Low Voltage
IINH/IINL, Input Current
CIN, Input Capacitance
LOGIC OUTPUTS
VOH, Output High Voltage
IOH, Output High Current
VOL, Output Low Voltage
POWER SUPPLIES
AVDD
DVDD
VVCO
AIDD4
DIDD4
IVCO4, 5
IRFOUT4
Low Power Sleep Mode4
RF OUTPUT CHARACTERISTICS5
VCO Output Frequency
VCO Sensitivity
Lock Time6
Frequency Pushing (Open Loop)
Frequency Pulling (Open Loop)
Harmonic Content (Second)
Harmonic Content (Third)
Output Power5, 7
Output Power Variation
VCO Tuning Range
VCO Tuning Port Leakage Current
B Version
Unit
Conditions/Comments
10/250
MHz min/max
0.7/AVDD
0 to AVDD
5.0
±100
V p-p min/max
V max
pF max
µA max
For f < 10 MHz, use dc-coupled
CMOS compatible square wave, slew rate > 21 V/µs.
AC-coupled.
CMOS compatible.
8
MHz max
2.5
0.312
2.7/10
0.2
2
1.5
2
mA typ
mA typ
kΩ
nA typ
% typ
% typ
% typ
1.5
0.6
±1
3.0
V min
V max
µA max
pF max
DVDD – 0.4
500
0.4
V min
µA max
V max
3.0/3.6
AVDD
AVDD
10
2.5
19.0
3.5 to 11.0
7
V min/V max
2400/2725
56
250
1
15
−30
−39
−13/−6.5
±3
1.25/2.50
0.2
MHz min/max
MHz/V typ
µs typ
MHz/V typ
kHz typ
dBc typ
dBc typ
dBm typ
dB typ
V min/max
nA typ
With RSET = 4.7 kΩ.
mA typ
mA typ
mA typ
mA typ
µA typ
Rev. 0 | Page 3 of 20
1.25 V ≤ VCP ≤ 2.5 V.
1.25 V ≤ VCP ≤ 2.5 V.
VCP = 2.0 V.
CMOS output chosen.
IOL = 500 µA.
ICORE = 10 mA.
RF output stage is programmable.
ICORE = 15 mA.
To within 10 Hz of final frequency.
Into 2.00 VSWR load.
Programmable in 3 dB steps. See Table 7.
For tuned loads, see Output Matching section.
ADF4360-0
Parameter
NOISE CHARACTERISTICS5
VCO Phase Noise Performance8
Synthesizer Phase Noise Floor9
In-Band Phase Noise10, 11
RMS Integrated Phase Error12
Spurious Signals due to PFD Frequency11, 13
Level of Unlocked Signal with MTLD Enabled
B Version
Unit
Conditions/Comments
−111
−133
−140
−145
−172
−163
−147
−80
1.4
−75
−45
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
dBc/Hz typ
Degrees typ
dBc typ
dBm typ
@ 100 kHz offset from carrier.
@ 1 MHz offset from carrier.
@ 3 MHz offset from carrier.
@ 10 MHz offset from carrier.
@ 25 kHz PFD frequency.
@ 200 kHz PFD frequency.
@ 8 MHz PFD frequency.
@ 1 kHz offset from carrier.
100 Hz to 100 kHz.
1
Operating temperature range is: –40°C to +85°C.
Guaranteed by design. Sample tested to ensure compliance.
3
ICP is internally modified to maintain constant loop gain over the frequency range.
4
TA = 25°C; AVDD = DVDD = VVCO = 3.3 V; P = 32.
5
These characteristics are guaranteed for VCO core power = 10 mA.
6
Jumping from 2.4 GHz to 2.725 GHz. PFD frequency = 200 kHz; loop bandwidth = 10 kHz.
7
Using 50 Ω resistors to VVCO, into a 50 Ω load. For tuned loads, see Output Matching.
8
The noise of the VCO is measured in open-loop conditions.
9
The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log N (where N is the N divider value).
10
The phase noise is measured with the EVAL-ADF4360-xEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for the
synthesizer; offset frequency = 1 kHz.
11
fREFIN = 10 MHz; fPFD = 200 kHz; N = 2600; Loop B/W = 10 kHz.
12
fREFIN = 10 MHz; fPFD = 1 MHz; N = 2600; Loop B/W = 25 kHz.
13
The spurious signals are measured with the EVAL-ADF4360-xEB1 Evaluation Board and the HP8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for
the synthesizer; fREFOUT = 10 MHz @ 0 dBm.
2
Rev. 0 | Page 4 of 20
ADF4360-0
TIMING CHARACTERISTICS
AVDD = DVDD = VVCO = 3.3 V ± 10%; AGND = DGND = 0 V; 1.8 V and 3 V logic levels used; TA = TMIN to TMAX, unless otherwise noted.
Table 2.
Limit at TMIN to TMAX (B Version)
20
10
10
25
25
10
20
Unit
ns min
ns min
ns min
ns min
ns min
ns min
ns min
t4
Test Conditions/Comments
LE Setup Time
DATA to CLOCK Setup Time
DATA to CLOCK Hold Time
CLOCK High Duration
CLOCK Low Duration
CLOCK to LE Setup Time
LE Pulse Width
t5
CLOCK
t2
DATA
DB23 (MSB)
t3
DB22
DB2
DB1
(CONTROL BIT C2)
DB0 (LSB)
(CONTROL BIT C1)
t7
LE
t1
t6
04414-0-002
Parameter
t1
t2
t3
t4
t5
t6
t7
LE
Figure 2. Timing Diagram
Rev. 0 | Page 5 of 20
ADF4360-0
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 3.
Parameter
AVDD to GND1
AVDD to DVDD
VVCO to GND
VVCO to AVDD
Digital I/O Voltage to GND
Analog I/O Voltage to GND
REFIN to GND
Operating Temperature Range
Storage Temperature Range
Maximum Junction Temperature
CSP θJA Thermal Impedance
Paddle Soldered
Paddle Not Soldered
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
1
Rating
−0.3 V to +3.9 V
−0.3 V to +0.3 V
−0.3 V to +3.9 V
−0.3 V to +0.3 V
−0.3 V to VDD + 0.3 V
−0.3 V to VDD + 0.3 V
−0.3 V to VDD + 0.3 V
−40°C to + 85°C
−65°C to +150°C
150°C
50°C/W
88°C/W
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
This device is a high performance RF integrated circuit with an
ESD rating of <1 kV and it is ESD sensitive. Proper precautions
should be taken for handling and assembly.
TRANSISTOR COUNT
12543 (CMOS) and 700 (Bipolar)
215°C
220°C
GND = AGND = DGND = 0 V.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the
human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 6 of 20
ADF4360-0
CE
AGND
DVDD
MUXOUT
LE
22
21
20
19
CP
24
23
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
IDENTIFIER
CPGND 1
AVDD 2
18 DATA
17 CLK
AGND 3
ADF4360-0
RFOUTA 4
TOP VIEW
(Not to Scale)
16 REFIN
15 DGND
RFOUTB 5
14 CN
04644-0-002
CC 12
AGND 11
AGND 10
AGND 9
VTUNE 7
13 RSET
AGND 8
VVCO 6
Figure 3. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
2
Mnemonic
CPGND
AVDD
3, 8 to 11, 22
4
AGND
RFOUTA
5
RFOUTB
6
VVCO
7
VTUNE
12
13
CC
RSET
Function
Charge Pump Ground. This is the ground return path for the charge pump.
Analog Power Supply. This ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane
should be placed as close as possible to this pin. AVDD must have the same value as DVDD.
Analog Ground. This is the ground return path of the prescaler and VCO.
VCO Output. The output level is programmable from −6.5 dBm to −13 dBm. See the Output Matching section
for a description of the various output stages.
VCO Complementary Output. The output level is programmable from −6.5 dBm to −13 dBm. See the Output
Matching section for a description of the various output stages.
Power Supply for the VCO. This ranges from 3.0 V to 3.6 V. Decoupling capacitors to the analog ground plane
should be placed as close as possible to this pin. VVCO must have the same value as AVDD.
Control Input to the VCO. This voltage determines the output frequency and is derived from filtering the CP
output voltage.
Internal Compensation Node. This pin must be decoupled to ground with a 10 nF capacitor.
Connecting a resistor between this pin and CPGND sets the maximum charge pump output current for the
synthesizer. The nominal voltage potential at the RSET pin is 0.6 V. The relationship between ICP and RSET is
I CPmax =
14
15
16
CN
DGND
REFIN
17
CLK
18
DATA
19
LE
20
MUXOUT
21
DVDD
23
CE
24
CP
11.75
RSET
Where RSET = 4.7 kΩ, ICPmax = 2.5 mA.
Internal Compensation Node. This pin must be decoupled to VVCO with a 10 µF capacitor.
Digital Ground.
Reference Input. This is a CMOS input with a nominal threshold of VDD/2 and a dc equivalent input resistance of
100 kΩ. See Figure 10. This input can be driven from a TTL or CMOS crystal oscillator or it can be ac-coupled.
Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the
24-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a
high impedance CMOS input.
Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the
four latches, and the relevant latch is selected using the control bits.
This multiplexer output allows either the lock detect, the scaled RF, or the scaled reference frequency to be
accessed externally.
Digital Power Supply. This ranges from 3.0 V to 3.6 V. Decoupling capacitors to the digital ground plane should
be placed as close as possible to this pin. DVDD must have the same value as AVDD.
Chip Enable. A logic low on this pin powers down the device and puts the charge pump into three-state mode.
Taking the pin high powers up the device depending on the status of the power-down bits.
Charge Pump Output. When enabled, this provides ± ICP to the external loop filter, which in turn, drives the
internal VCO.
Rev. 0 | Page 7 of 20
ADF4360-0
0
REFERENCE
LEVEL = –3.5dBm
–10
–20
OUTPUT POWER (dB)
1
2
3
100k
1M
FREQUENCY OFFSET (Hz)
–40
–50
–60
–80.4dBc/Hz
–70
–80
4
10k
–30
VDD = 3.3V, VVCO = 3.3V
ICP = 2.5mA
PFD FREQUENCY = 200kHz
LOOP BANDWIDTH = 10kHz
RES. BANDWIDTH = 30Hz
VIDEO BANDWIDTH = 30Hz
SWEEP = 1.9 SECONDS
AVERAGES = 20
04644-0-009
0
–10
–20
–30
–40
–50
–60
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
–170
1k
–90
04414-0-004
OUTPUT POWER (dB)
TYPICAL PERFORMANCE CHARACTERISTICS
–2kHz
–1kHz
2600MHz
1kHz
2kHz
10M
Figure 7. Close-In Phase Noise at 2600 MHz (200 kHz Channel Spacing)
Figure 4. Open-Loop VCO Phase Noise
–70
0
–75
–20
–95
–30
OUTPUT POWER (dB)
–100
–105
–110
–115
–120
–125
–130
–40
–50
–60
–77dBc
–70
04644-0-007
–140
–145
1000
10k
100k
FREQUENCY OFFSET (Hz)
1M
–90
10M
–0.25MHz
–0.1MHz
2600MHz
0.1MHz
0.25MHz
Figure 8. Reference Spurs at 2600 MHz
(200 kHz Channel Spacing, 10 kHz Loop Bandwidth)
Figure 5. VCO Phase Noise, 2600 MHz, 200 kHz PFD, 10 kHz Loop Bandwidth
–70
0
–75
–10
–80
–20
–95
–30
OUTPUT POWER (dB)
–85
–90
–100
–105
–110
–115
–120
–125
–130
–40
VDD = 3V, VVCO = 3V
ICP = 2.5mA
PFD FREQUENCY = 1MHz
LOOP BANDWIDTH = 25kHz
RES. BANDWIDTH = 10kHz
VIDEO BANDWIDTH = 10kHz
SWEEP = 1.9 SECONDS
AVERAGES = 10
–50
–60
–86dBc/Hz
–70
–80
–135
04644-0-008
OUTPUT POWER (dB)
04644-0-010
–80
–135
–140
–145
–150
100
VDD = 3.3V, VVCO = 3.3V
ICP = 2.5mA
PFD FREQUENCY = 200kHz
LOOP BANDWIDTH = 10kHz
RES. BANDWIDTH = 1kHz
VIDEO BANDWIDTH = 1kHz
AVERAGES = 20
1000
10k
100k
FREQUENCY OFFSET (Hz)
1M
04644-0-011
OUTPUT POWER (dB)
–85
–90
–150
100
REFERENCE
LEVEL = –6dBm
–10
–80
–90
10M
–1MHz
–0.5MHz
2250MHz
0.5MHz
1MHz
Figure 9. Reference Spurs at 2600 MHz
(1 MHz Channel Spacing, 25 kHz Loop Bandwidth)
Figure 6. VCO Phase Noise, 1300 MHz,
Divide-by-2 Enabled 200 kHz PFD, 10 kHz Loop Bandwidth
Rev. 0 | Page 8 of 20
ADF4360-0
CIRCUIT DESCRIPTION
REFERENCE INPUT SECTION
The reference input stage is shown in Figure 10. SW1 and SW2
are normally closed switches. SW3 is normally open. When
power-down is initiated, SW3 is closed, and SW1 and SW2 are
opened. This ensures that there is no loading of the REFIN pin
on power-down.
N = BP + A
13-BIT B
COUNTER
LOAD
PRESCALER
P/P+1
FROM VCO
POWER-DOWN
CONTROL
5-BIT A
COUNTER
MODULUS
CONTROL
100kΩ
N DIVIDER
TO R COUNTER
Figure 11. A and B Counters
SW3
NO
04414-0-010
BUFFER
SW1
R COUNTER
Figure 10. Reference Input Stage
PRESCALER (P/P + 1)
The dual-modulus prescaler (P/P + 1), along with the A and B
counters, enables the large division ratio, N, to be realized (N =
BP + A). The dual-modulus prescaler, operating at CML levels,
takes the clock from the VCO and divides it down to a manageable frequency for the CMOS A and B counters. The prescaler is
programmable. It can be set in software to 8/9, 16/17, or 32/33
and is based on a synchronous 4/5 core. There is a minimum
divide ratio possible for fully contiguous output frequencies;
this minimum is determined by P, the prescaler value, and is
given by (P2 − P).
A AND B COUNTERS
The 14-bit R counter allows the input reference frequency to
be divided down to produce the reference clock to the phase
frequency detector (PFD). Division ratios from 1 to 16,383 are
allowed.
PFD AND CHARGE PUMP
The PFD takes inputs from the R counter and N counter (N =
BP + A) and produces an output proportional to the phase and
frequency difference between them. Figure 12 is a simplified
schematic. The PFD includes a programmable delay element
that controls the width of the antibacklash pulse. This pulse
ensures that there is no dead zone in the PFD transfer function
and minimizes phase noise and reference spurs. Two bits in the
R counter latch, ABP2 and ABP1, control the width of the pulse
(see Table 9).
The A and B CMOS counters combine with the dual-modulus
prescaler to allow a wide range division ratio in the PLL feedback counter. The counters are specified to work when the prescaler output is 300 MHz or less. Thus, with a VCO frequency of
2.5 GHz, a prescaler value of 16/17 is valid, but a value of 8/9 is
not valid.
VP
HI
D1
Q1
CHARGE
PUMP
UP
U1
R DIVIDER
CLR1
Pulse Swallow Function
PROGRAMMABLE
DELAY
The A and B counters, in conjunction with the dual-modulus
prescaler, make it possible to generate output frequencies that
are spaced only by the reference frequency divided by R. The
VCO frequency equation is
ABP1
CLR2
HI
fVCO = [(P × B) + A] × f REFIN / R
D2
Q2
CP
U3
ABP2
DOWN
U2
N DIVIDER
where:
fVCO is the output frequency of the VCO.
P is the preset modulus of the dual-modulus prescaler (8/9,
16/17, and so on).
B is the preset divide ratio of the binary 13-bit counter (3 to 8191).
A is the preset divide ratio of the binary 5-bit swallow counter (0 to 31).
fREFIN is the external reference frequency oscillator.
CPGND
R DIVIDER
N DIVIDER
CP OUTPUT
Figure 12. PFD Simplified Schematic and Timing (In Lock)
Rev. 0 | Page 9 of 20
04414-0-012
SW2
REFIN NC
LOAD
04414-0-011
NC
TO PFD
ADF4360-0
MUXOUT AND LOCK DETECT
Table 5. C2 and C1 Truth Table
The output multiplexer on the ADF4360 family allows the user
to access various internal points on the chip. The state of
MUXOUT is controlled by M3, M2, and M1 in the function
latch. The full truth table is shown in Table 7. Figure 13 shows
the MUXOUT section in block diagram form.
Lock Detect
MUXOUT can be programmed for two types of lock detect:
digital and analog. Digital lock detect is active high. When LDP
in the R counter latch is set to 0, digital lock detect is set high
when the phase error on three consecutive phase detector cycles
is less than 15 ns.
With LDP set to 1, five consecutive cycles of less than 15 ns
phase error are required to set the lock detect. It stays set high
until a phase error of greater than 25 ns is detected on any subsequent PD cycle.
The N-channel open-drain analog lock detect should be operated with an external pull-up resistor of 10 kΩ nominal. When a
lock has been detected, this output is high with narrow lowgoing pulses.
DVDD
Control Bits
C1
0
1
0
1
C2
0
0
1
1
Control Latch
R Counter
N Counter (A and B)
Test Modes Latch
VCO
The VCO core in the ADF4360 family uses eight overlapping
bands, as shown in Figure 14, to allow a wide frequency range to
be covered without a large VCO sensitivity (KV) and resultant
poor phase noise and spurious performance.
The correct band is chosen automatically by the band select
logic at power-up or whenever the N counter latch is updated. It
is important that the correct write sequence be followed at
power-up. This sequence is
1.
R counter latch
2.
Control latch
3.
N counter latch
During band select, which takes five PFD cycles, the VCO VTUNE
is disconnected from the output of the loop filter and connected
to an internal reference voltage.
ANALOG LOCK DETECT
DIGITAL LOCK DETECT
MUX
2.5
MUXOUT
CONTROL
N COUNTER OUTPUT
2.3
SDOUT
2.1
VOLTAGE (V)
04414-0-013
DGND
1.9
Figure 13. MUXOUT Circuit
INPUT SHIFT REGISTER
1.7
1.5
1.3
1.1
The ADF4360 family’s digital section includes a 24-bit input
shift register, a 14-bit R counter, and an 18-bit N counter,
comprised of a 5-bit A counter and a 13-bit B counter. Data is
clocked into the 24-bit shift register on each rising edge of CLK.
The data is clocked in MSB first. Data is transferred from the
shift register to one of four latches on the rising edge of LE. The
destination latch is determined by the state of the two control
bits (C2, C1) in the shift register. These are the two LSBs, DB1
and DB0, as shown in Figure 2.
The truth table for these bits is shown in Table 5. Table 6 shows
a summary of how the latches are programmed. Note that the
test modes latch is used for factory testing and should not be
programmed by the user.
0.9
04644-0-004
R COUNTER OUTPUT
0.7
0.5
2200
2400
2600
FREQUENCY (MHz)
2800
3000
Figure 14. Frequency vs. VTUNE, ADF4360-0
The R counter output is used as the clock for the band select logic
and should not exceed 1 MHz. A programmable divider is provided
at the R counter input to allow division by 1, 2, 4, or 8 and is controlled by Bits BSC1 and BSC2 in the R counter latch. Where the
required PFD frequency exceeds 1 MHz, the divide ratio should be
set to allow enough time for correct band selection.
After band select, normal PLL action resumes. The nominal
value of KV is 56 MHz/V or 28 MHz/V, if divide-by-2 operation
has been selected (by programming DIV2 (DB22) high in the N
counter latch). The ADF4360 family contains linearization circuitry to minimize any variation of the product of ICP and KV.
Rev. 0 | Page 10 of 20
ADF4360-0
OUTPUT STAGE
The RFOUTA and RFOUTB pins of the ADF4360 family are connected to the collectors of an NPN differential pair driven by
buffered outputs of the VCO, as shown in Figure 15. To allow
the user to optimize the power dissipation versus the output
power requirements, the tail current of the differential pair is
programmable via Bits PL1 and PL2 in the control latch. Four
current levels may be set: +3.5 mA, +5 mA, +7.5 mA, and
+11 mA. These levels give output power levels of −13 dBm,
−11 dBm, −8.5 dBm, and −6.5 dBm, respectively, using a 50 Ω
resistor to VDD and ac coupling into a 50 Ω load. Alternatively,
both outputs can be combined in a 1 + 1:1 transformer or a 180°
microstrip coupler (see the Output Matching section).
If the outputs are used individually, the optimum output stage
consists of a shunt inductor to VDD.
Another feature of the ADF4360 family is that the supply current
to the RF output stage is shut down until the part achieves lock as
measured by the digital lock detect circuitry. This is enabled by the
Mute-Till-Lock Detect (MTLD) bit in the control latch.
Rev. 0 | Page 11 of 20
RFOUTA
VCO
RFOUTB
BUFFER/
DIVIDE BY 2
04414-0-015
The operating current in the VCO core is programmable in four
steps: 5 mA, 10 mA, 15 mA, and 20 mA. This is controlled by
Bits PC1 and PC2 in the control latch.
Figure 15. Output Stage ADF4360-0
ADF4360-0
LATCH STRUCTURE
Table 6 shows the three on-chip latches for the ADF4360 family. The two LSBs decide which latch is programmed.
Table 6. Latch Structure
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P2
P1
PD2
PD1
CPI6
CPI5
CPI4 CPI3
CPI2
CPI1
PL2
PL1 MTLD CPG
MUXOUT
CONTROL
COUNTER
RESET
CP
THREESTATE
PHASE
DETECTOR
POLARITY
OUTPUT
POWER
LEVEL
CURRENT
SETTING 1
CP GAIN
CURRENT
SETTING 2
MUTE-TILLLD
POWERDOWN 1
PRESCALER
VALUE
POWERDOWN 2
CONTROL LATCH
CORE
POWER
LEVEL
CONTROL
BITS
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
CP
PDP
M3
M2
M1
CR
PC2
PC1 C2 (0) C1 (0)
DB1
DB0
RESERVED
CP GAIN
DIVIDEBY-2
DIVIDE-BY2 SELECT
N COUNTER LATCH
13-BIT B COUNTER
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
DIVSEL DIV2
CPG
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
B3
CONTROL
BITS
5-BIT A COUNTER
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B2
B1
RSV
A5
A4
A3
A2
A1
DB1
DB0
C2 (1) C1 (0)
ANTIBACKLASH
PULSE
WIDTH
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
RSV
RSV BSC2 BSC1 TMB
LDP ABP2 ABP1
CONTROL
BITS
14-BIT REFERENCE COUNTER
R14
R13
R12
R11
R10
R9
Rev. 0 | Page 12 of 20
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
DB1
DB0
C2 (0) C1 (1)
04414-0-026
BAND
SELECT
CLOCK
TEST
MODE
BIT
LOCK
DETECT
PRECISION
RESERVED
RESERVED
R COUNTER LATCH
ADF4360-0
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
P2
P1
PD2
PD1
CPI6
CPI5
CPI4 CPI3
CPI2
CPI1
PL2
PL1 MTLD CPG
COUNTER
RESET
OUTPUT
POWER
LEVEL
CP
THREESTATE
PHASE
DETECTOR
POLARITY
CURRENT
SETTING 1
CP GAIN
CURRENT
SETTING 2
MUTE-TILLLD
POWERDOWN 1
PRESCALER
VALUE
POWERDOWN 2
Table 7. Control Latch
MUXOUT
CONTROL
CORE
POWER
LEVEL
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
CP
PDP
M3
M2
M1
CR
PC2
PC1 C2 (0) C1 (0)
PC2
0
0
1
1
CPI6
CPI5
CPI4
ICP(mA)
CPI3
0
0
0
0
1
1
1
1
CPI2
0
0
1
1
0
0
1
1
CPI1
0
1
0
1
0
1
0
1
4.7kΩ
0.31
0.62
0.93
1.25
1.56
1.87
2.18
2.50
PDP
0
1
CP
0
1
CPG
0
1
MTLD
0
1
PL2
0
0
1
1
P2
0
0
1
1
P1
0
1
0
1
PD2
X
X
0
1
PD1
X
0
1
1
PRESCALER VALUE
8/9
16/17
32/33
32/33
OUTPUT POWER LEVEL
0
1
0
1
CURRENT
3.5mA
5.0mA
7.5mA
11.0mA
PHASE DETECTOR
POLARITY
NEGATIVE
POSITIVE
PC1
0
1
0
1
DB1
DB0
CORE POWER LEVEL
5mA
10mA
15mA
20mA
COUNTER
OPERATION
CR
0
1
NORMAL
R, A, B COUNTERS
HELD IN RESET
CHARGE PUMP
OUTPUT
NORMAL
THREE-STATE
CP GAIN
CURRENT SETTING 1
CURRENT SETTING 2
MUTE-TILL-LOCK DETECT
DISABLED
ENABLED
POWER INTO 50Ω (USING 50Ω TO VVCC)
–13dBm
–11dBm
–8.5dBm
–6.5dBm
MODE
ASYNCHRONOUS POWER-DOWN
NORMAL OPERATION
ASYNCHRONOUS POWER-DOWN
SYNCHRONOUS POWER-DOWN
04436-0-013
CE PIN
0
1
1
1
PL1
CONTROL
BITS
Rev. 0 | Page 13 of 20
M3
0
0
M2
0
0
M1
0
1
0
0
1
1
0
1
1
1
0
0
0
1
1
1
1
1
0
1
OUTPUT
THREE-STATE OUTPUT
DIGITAL LOCK DETECT
(ACTIVE HIGH)
N DIVIDER OUTPUT
DVDD
R DIVIDER OUTPUT
N-CHANNEL OPEN-DRAIN
LOCK DETECT
SERIAL DATA OUTPUT
DGND
ADF4360-0
RESERVED
CP GAIN
DIVIDEBY-2
DIVIDE-BY2 SELECT
Table 8. N Counter Latch
13-BIT B COUNTER
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
DIVSEL DIV2
CPG
B13
B12
B11
B10
B9
B8
B7
B6
B5
B4
B3
CONTROL
BITS
5-BIT A COUNTER
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
B2
B1
RSV
A5
A4
A3
A2
A1
DB1
DB0
C2 (1) C1 (0)
THIS BIT IS NOT USED
BY THE DEVICE AND
IS A DON'T CARE BIT.
A5
0
0
0
0
.
.
.
1
1
1
1
B12
0
0
0
0
.
.
.
1
1
1
1
B11
0
0
0
0
.
.
.
1
1
1
1
F4 (FUNCTION LATCH)
CP GAIN
FASTLOCK ENABLE
0
0
0
1
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
B3
0
0
0
1
.
.
.
1
1
1
1
B2
0
0
1
1
.
.
.
0
0
1
1
B1
0
1
0
1
.
.
.
0
1
0
1
..........
A2
A1
0
0
0
0
.
.
.
1
1
1
1
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
0
0
1
1
.
.
.
0
0
1
1
0
1
0
1
.
.
.
0
1
0
1
A COUNTER
DIVIDE RATIO
0
1
2
3
.
.
.
28
29
30
31
B COUNTER DIVIDE RATIO
NOT ALLOWED
NOT ALLOWED
NOT ALLOWED
3
.
.
.
8188
8189
8190
8191
OPERATION
CHARGE PUMP CURRENT SETTING 1
IS PERMANENTLY USED
CHARGE PUMP CURRENT SETTING 2
IS PERMANENTLY USED
N = BP + A; P IS PRESCALER VALUE SET IN THE CONTROL LATCH.
B MUST BE GREATER THAN OR EQUAL TO A. FOR CONTINUOUSLY
ADJACENT VALUES OF (N × FREF), AT THE OUTPUT, NMIN IS (P2–P).
DIV2
0
1
DIVSEL
0
1
DIVIDE-BY-2
FUNDAMENTAL OUTPUT
DIVIDE-BY-2
DIVIDE-BY-2 SELECT (PRESCALER INPUT)
FUNDAMENTAL OUTPUT SELECTED
DIVIDE-BY-2 SELECTED
Rev. 0 | Page 14 of 20
04414-0-018
B13
0
0
0
0
.
.
.
1
1
1
1
A4
ADF4360-0
TEST
MODE
BIT
LOCK
DETECT
PRECISION
RESERVED
RESERVED
Table 9. R Counter Latch
BAND
SELECT
CLOCK
ANTIBACKLASH
PULSE
WIDTH
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10
RSV BSC2 BSC1 TMB
THESE BITS ARE NOT
USED BY THE DEVICE
AND ARE DON'T CARE
BITS.
LDP ABP2 ABP1
TEST MODE
BIT SHOULD
BE SET TO 0
FOR NORMAL
OPERATION.
LDP
0
1
BSC1
0
1
0
1
R13
R12
R11
R10
R14
0
0
0
0
.
.
.
1
1
1
1
ABP2
0
0
1
1
BSC2
0
0
1
1
R14
ABP1
0
1
0
1
ANTIBACKLASH PULSE WIDTH
3.0ns
1.3ns
6.0ns
3.0ns
LOCK DETECT PRECISION
THREE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.
FIVE CONSECUTIVE CYCLES OF PHASE DELAY LESS THAN
15ns MUST OCCUR BEFORE LOCK DETECT IS SET.
BAND SELECT CLOCK DIVIDER
1
2
4
8
04414-0-017
RSV
CONTROL
BITS
14-BIT REFERENCE COUNTER
Rev. 0 | Page 15 of 20
R9
R13
0
0
0
0
.
.
.
1
1
1
1
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
R8
R7
R6
R5
R4
R3
R2
R1
R12
0
0
0
0
.
.
.
1
1
1
1
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
R3
0
0
0
1
.
.
.
1
1
1
1
R2
0
1
1
0
.
.
.
0
0
1
1
R1
0
1
0
1
.
.
.
0
1
0
1
DB1
DB0
C2 (0) C1 (1)
DIVIDE RATIO
1
2
3
4
.
.
.
16380
16381
16382
16383
ADF4360-0
CONTROL LATCH
With (C2, C1) = (0, 0), the control latch is programmed. Table 7
shows the input data format for programming the control latch.
Charge Pump Currents
Prescaler Value
CPI3, CPI2, and CPI1 in the ADF4360 family determine
Current Setting 1.
In the ADF4360 family, P2 and P1 in the control latch set the
prescaler values.
CPI6, CPI5, and CPI4 determine Current Setting 2. See the
truth table in Table 7.
Power-Down
Output Power Level
DB21 (PD2) and DB20 (PD1) provide programmable powerdown modes.
Bits PL1 and PL2 set the output power level of the VCO. See the
truth table in Table 7.
In the programmed asynchronous power-down, the device
powers down immediately after latching a 1 into Bit PD1, with
the condition that PD2 has been loaded with a 0. In the programmed synchronous power-down, the device power-down is
gated by the charge pump to prevent unwanted frequency
jumps. Once the power-down is enabled by writing a 1 into
Bit PD1 (on the condition that a 1 has also been loaded to PD2),
the device goes into power-down on the second rising edge of
the R counter output, after LE goes high. When the CE pin is
low, the device is immediately disabled regardless of the state of
PD1 or PD2.
Mute-Till-Lock Detect
When a power-down is activated (either synchronous or
asynchronous mode), the following events occur:
DB11 of the control latch in the ADF4360 family is the Mute-TillLock Detect bit. This function, when enabled, ensures that the RF
outputs are not switched on until the PLL is locked.
CP Gain
DB10 of the control latch in the ADF4360 family is the Charge
Pump Gain bit. When it is programmed to a 1, Current Setting 2
is used. When it is programmed to a 0, Current Setting 1 is used.
Charge Pump Three-State
This bit puts the charge pump into three-state mode when
programmed to a 1. It should be set to 0 for normal operation.
Phase Detector Polarity
The PDP bit in the ADF4360 family sets the phase detector
polarity. The positive setting enabled by programming a 1 is
used when using the on-chip VCO with a passive loop filter or
with an active non-inverting filter. It can also be set to 0. This is
required, if an active inverting loop filter is used.
• All active dc current paths are removed.
• The R, N, and timeout counters are forced to their load
state conditions.
• The charge pump is forced into three-state mode.
MUXOUT Control
• The digital lock detect circuitry is reset.
The on-chip multiplexer is controlled by M3, M2, and M1. See
the truth table in Table 7.
• The RF outputs are debiased to a high impedance state.
Counter Reset
• The reference input buffer circuitry is disabled.
• The input register remains active and capable of loading and
latching data.
DB4 is the counter reset bit for the ADF4360 family. When this
is 1, the R counter and the A, B counters are reset. For normal
operation, this bit should be 0.
Core Power Level
PC1 and PC2 set the power level in the VCO core. The recommended setting is 10 mA. See the truth table in Table 7.
Rev. 0 | Page 16 of 20
ADF4360-0
N COUNTER LATCH
R COUNTER LATCH
With (C2, C1) = (1, 0), the N counter latch is programmed.
Table 8 shows the input data format for programming the
N counter latch.
With (C2, C1) = (0, 1), the R counter latch is programmed.
Table 9 shows the input data format for programming the
R counter latch.
A Counter Latch
R Counter
A5 to A1 program the 5-bit A counter. The divide range is 0
(00000) to 31 (11111).
R1 to R14 set the counter divide ratio. The divide range is 1
(00......001) to 16383 (111......111).
Reserved Bits
Antibacklash Pulse Width
DB7 is a spare bit and has been designated as Reserved. It
should be programmed to 0.
DB16 and DB17 set the antibacklash pulse width.
B Counter Latch
DB18 is the lock detect precision bit. This bit sets the number of
reference cycles with less than 15 ns phase error for entering the
locked state. With LDP at 1, five cycles are taken; with LDP at 0,
three cycles are taken.
Lock Detect Precision
B13 to B1 program the B counter. The divide range is 3
(00.....0011) to 8191 (11....111).
Overall Divide Range
The overall divide range is defined by ((P × B) + A), where P is
the prescaler value.
CP Gain
DB21 of the N counter latch in the ADF4360 family is the
charge pump gain bit. When this is programmed to 1, Current
Setting 2 is used. When programmed to 0, Current Setting 1 is used.
This bit can also be programmed through DB10 of the control
latch. The bit always reflects the latest value written to it, whether
this is through the control latch or the N counter latch.
Divide-by-2
DB22 is the divide-by-2 bit. When set to 1, the output divide-by-2
function is chosen. When it is set to 0, normal operation occurs.
Divide-by-2 Select
Test Mode Bit
DB19 is the test mode bit (TMB) and should be set to 0. With
TMB = 0, the contents of the test mode latch are ignored and
normal operation occurs as determined by the contents of the
control latch, R counter latch, and N counter latch. Note that
test modes are for factory testing only and should not be programmed by the user.
Band Select Clock
These bits set a divider for the band select logic clock input. The
output of the R counter is by default the value used to clock the
band select logic, but, if this value is too high (>1 MHz), a
divider can be switched on to divide the R counter output to a
smaller value (see Table 9).
Reserved Bits
DB23 is the divide-by-2 select bit. When programmed to 1, the
divide-by-2 output is selected as the prescaler input. When set
to 0, the fundamental is used as the prescaler input. For example, using the output divide-by-2 feature and a PFD frequency
of 200 kHz, the user needs a value of N = 13,000 to generate
1,500 MHz. With the divide-by-2 select bit high, the user may
keep N = 6,500.
DB23 to DB22 are spare bits that have been designated as
Reserved. They should be programmed to 0.
Rev. 0 | Page 17 of 20
ADF4360-0
APPLICATIONS
ADuC812 Interface
Figure 16 shows the ADF4360-0 used as a fixed frequency LO at 2.6
GHz. The low-pass filter was designed using ADIsimPLL for a
channel spacing of 8 MHz and an open-loop bandwidth of 40 kHz.
The maximum PFD frequency of the ADF4360-0 is 8 MHz. Since
using a larger PFD frequency allows users to use a smaller N, the
in-band phase noise is reduced to as low as possible, –100 dBc/Hz.
The 40 kHz bandwidth is chosen to be just greater than the point at
which the open-loop phase noise of the VCO is –100 dBc/Hz, thus
giving the best possible integrated noise. The typical rms phase
noise (100 Hz to 100 kHz) of the LO in this configuration is 0.35°.
The reference frequency is from a 16 MHz TCXO from Fox; thus,
an R value of 2 is programmed. Taking into account the high PFD
frequency and its effect on the band select logic, the band select
clock divider is enabled. In this case, a value of 8 is chosen. A very
simple pull-up resistor and dc blocking capacitor complete the RF
output stage.
6
10µF
FOX
801BE-160
16MHz
2
23
3kΩ
8.2nF
560pF
ADF4360-0
12 CC
51Ω
13 RSET
51Ω
100pF
RFOUTA 4
4.7kΩ
AGND
3
8
9
10
LE
I/O PORTS
ADF4360-x
CE
MUXOUT
(LOCK DETECT)
22
15
I/O port lines on the ADuC812 are also used to control powerdown (CE input) and detect lock (MUXOUT configured as lock
detect and polled by the port input). When operating in the
described mode, the maximum SCLOCK rate of the ADuC812
is 4 MHz. This means that the maximum rate at which the output frequency can be changed is 166 kHz.
ADSP-2181 Interface
DGND RF
OUTB 5
11
100pF
04644-0-003
SPI COMPATIBLE SERIAL BUS
VVCO
19 LE
1
270pF
1.5kΩ
CPGND
SCLK
SDATA
Figure 17. ADuC812 to ADF4360-x Interface
17 CLK
1nF
ADuC812
20
VVCO DVDD AVDD CE MUXOUT VTUNE 7
14 CN
CP 24
1nF 1nF
16 REFIN
51Ω
18 DATA
MOSI
LOCK
DETECT
VVDD
21
SCLOCK
Figure 16. Fixed Frequency LO
POWER-UP
Figure 18 shows the interface between the ADF4360 family and
the ADSP-21xx digital signal processor. The ADF4360 family
needs a 24-bit serial word for each latch write. The easiest way
to accomplish this using the ADSP-21xx family is to use the
autobuffered transmit mode of operation with alternate framing. This provides a means for transmitting an entire block of
serial data before an interrupt is generated.
After power-up, the part needs three writes for normal operation. The correct sequence is to the R counter latch, followed by
the control latch, and N counter latch.
SCLOCK
MOSI
TFS
INTERFACING
ADSP-21xx
The ADF4360 family has a simple SPI® compatible serial interface for writing to the device. CLK, DATA, and LE control the
data transfer. When LE goes high, the 24 bits that have been
clocked into the appropriate register on each rising edge of CLK
are transferred to the appropriate latch. See Figure 2 for the
timing diagram and Table 5 for the latch truth table.
The maximum allowable serial clock rate is 20 MHz. This
means that the maximum update rate possible is 833 kHz or
one update every 1.2 µs. This is more than adequate for systems
that have typical lock times in hundreds of microseconds.
I/O PORTS
SCLK
SDATA
LE
ADF4360-x
CE
MUXOUT
(LOCK DETECT)
04437-0-015
VVCO
Figure 17 shows the interface between the ADF4360 family and
the ADuC812 MicroConverter®. Since the ADuC812 is based on
an 8051 core, this interface can be used with any 8051 based
microcontroller. The MicroConverter is set up for SPI master
mode with CPHA = 0. To initiate the operation, the I/O port
driving LE is brought low. Each latch of the ADF4360 family
needs a 24-bit word, which is accomplished by writing three 8bit bytes from the MicroConverter to the device. When the third
byte has been written, the LE input should be brought high to
complete the transfer.
04437-0-014
FIXED FREQUENCY LO
Figure 18. ADSP-21xx to ADF4360-x Interface
Set up the word length for 8 bits and use three memory locations for each 24-bit word. To program each 24-bit latch, store
the 8-bit bytes, enable the autobuffered mode, and write to the
transmit register of the DSP. This last operation initiates the
autobuffer transfer.
Rev. 0 | Page 18 of 20
ADF4360-0
The leads on the chip scale package (CP-24) are rectangular.
The printed circuit board pad for these should be 0.1 mm
longer than the package lead length and 0.05 mm wider than
the package lead width. The lead should be centered on the pad
to ensure that the solder joint size is maximized.
Experiments have shown that the circuit shown in Figure 20
provides an excellent match to 50 Ω over the operating range of
the ADF4360-0. This gives approximately −4 dBm output power
across the frequency range of the ADF4360-0. Both singleended architectures can be examined using the EVALADF4360-0EB1 evaluation board.
VVCO
The bottom of the chip scale package has a central thermal pad.
The thermal pad on the printed circuit board should be at least
as large as this exposed pad. On the printed circuit board, there
should be a clearance of at least 0.25 mm between the thermal
pad and the inner edges of the pad pattern to ensure that shorting is avoided.
47nH
1.5pF 3.9nH
RFOUT
50Ω
04414-0-021
PCB DESIGN GUIDELINES FOR CHIP SCALE PACKAGE
Figure 20. Differential ADF4360-0 Output Stage
If the user does not need the differential outputs available on
the ADF4360-0, the user may either terminate the unused output or combine both outputs using a balun. The circuit in
Figure 21 shows how best to combine the outputs.
VVCO
The user should connect the printed circuit thermal pad to
AGND. This is internally connected to AGND.
1nH
RFOUTA
OUTPUT MATCHING
There are a number of ways to match the output of the
ADF4360-0 for optimum operation; the most basic is to use a
50 Ω resistor to VVCO. A dc bypass capacitor of 100 pF is connected in series, as shown in Figure 19. Because the resistor is
not frequency dependent, this provides a good broadband
match. The output power in the circuit below typically gives
−6.5 dBm output power into a 50 Ω load.
VVCO
51Ω
50Ω
04414-0-020
100pF
RFOUT
Figure 19. Simple ADF4360-1 Output Stage
A better solution is to use a shunt inductor (acting as an RF
choke) to VVCO. This gives a better match than a resistor and,
therefore, more output power. Additionally, a series inductor is
added after the dc bypass capacitor to provide a resonant LC
circuit. This tunes the oscillator output and provides approximately 10 dB additional rejection of the second harmonic. The
shunt inductor needs to be a relatively low value (<10 nH).
3.6nH
47nH
1.5pF
10pF
3.6nH
RFOUTB
50Ω
1nH
1.5pF
04414-0-022
Thermal vias may be used on the printed circuit board thermal
pad to improve thermal performance of the package. If vias are
used, they should be incorporated in the thermal pad at 1.2 mm
pitch grid. The via diameter should be between 0.3 mm and
0.33 mm, and the via barrel should be plated with 1 ounce of
copper to plug the via.
Figure 21. Balun for Combining ADF4360-0 RF Outputs
The circuit in Figure 21 is a lumped lattice type LC balun. It is
designed for a center frequency of 2.6 GHz and outputs −1 dBm
at this frequency. The series 1 nH inductor is used to tune out
any parasitic capacitance due to the board layout from each
input, and the remainder of the circuit is used to shift the
output of one RF input by +90° and the second by −90°, thus
combining the two. The action of the 3.6 nH inductor and the
1.5 pF capacitor accomplishes this. The 12 nH is used to provide
an RF choke to feed the supply voltage, and the 10 pF capacitor
provides the necessary dc block. To ensure good RF performance, the circuits in Figure 19 and Figure 21 are implemented
with Coilcraft 0402/0603 inductors and AVX 0402 thin-film
capacitors.
Alternatively, instead of the LC balun shown in Figure 21, both
outputs may be combined using a 180° rat-race coupler.
Rev. 0 | Page 19 of 20
ADF4360-0
OUTLINE DIMENSIONS
0.60 MAX
4.00
BSC SQ
PIN 1
INDICATOR
0.60 MAX
TOP
VIEW
3.75
BSC SQ
0.50
BSC
0.50
0.40
0.30
1.00
0.85
0.80
12° MAX
PIN 1
INDICATOR
19
18
24 1
2.25
2.10 SQ
1.95
BOTTOM
VIEW
13
12
7
6
0.25 MIN
2.50 REF
0.80 MAX
0.65 TYP
0.05 MAX
0.02 NOM
SEATING
PLANE
0.30
0.23
0.18
0.20 REF
COPLANARITY
0.08
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-2
Figure 22. 24-Lead Lead Frame Chip Scale Package [LFCSP]
(CP-24-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model
Temperature Range
Frequency Range
Package Option
ADF4360-0BCP
ADF4360-0BCPRL
ADF4360-0BCPRL7
EVAL-ADF4360-0EB1
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
2400 MHz to 2725 MHz
2400 MHz to 2725 MHz
2400 MHz to 2725 MHz
CP-24-1
CP-24-1
CP-24-1
Evaluation Board
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D04644–0–7/04(0)
Rev. 0 | Page 20 of 20