AD AD8042AR

a
Dual 160 MHz
Rail-to-Rail Amplifier
AD8042
FEATURES
Single AD8041 and Quad AD8044 also Available
Fully Specified at +3 V, +5 V, and ⴞ5 V Supplies
Output Swings to Within 30 mV of Either Rail
Input Voltage Range Extends 200 mV Below Ground
No Phase Reversal with Inputs 0.5 V Beyond Supplies
Low Power of 5.2 mA per Amplifier
High Speed and Fast Settling on +5 V:
160 MHz –3 dB Bandwidth (G = +1)
200 V/␮s Slew Rate
39 ns Settling Time to 0.1%
Good Video Specifications (RL = 150 ⍀, G = +2)
Gain Flatness of 0.1 dB to 14 MHz
0.02% Differential Gain Error
0.04ⴗ Differential Phase Error
Low Distortion
–64 dBc Worst Harmonic @ 10 MHz
Drives 50 mA 0.5 V from Supply Rails
APPLICATIONS
Video Switchers
Distribution Amplifiers
A/D Driver
Professional Cameras
CCD Imaging Systems
Ultrasound Equipment (Multichannel)
CONNECTION DIAGRAM
8-Lead Plastic DIP and SOIC
OUT1
1
8
+VS
–IN1
2
7
OUT2
+IN1
3
6
–IN2
–VS
4
5
+IN2
AD8042
The output voltage swing extends to within 30 mV of each rail,
providing the maximum output dynamic range. Additionally, it
features gain flatness of 0.1 dB to 14 MHz while offering differential gain and phase error of 0.04% and 0.06° on a single +5 V
supply. This makes the AD8042 useful for professional video
electronics such as cameras, video switchers or any high speed
portable equipment. The AD8042’s low distortion and fast
settling make it ideal for buffering single supply, high speed
A-to-D converters.
The AD8042 offers low power supply current of 12 mA max
and can run on a single +3.3 V power supply. These features are
ideally suited for portable and battery powered applications
where size and power are critical.
PRODUCT DESCRIPTION
The AD8042 is a low power voltage feedback, high speed amplifier designed to operate on +3 V, +5 V or ± 5 V supplies. It
has true single supply capability with an input voltage range
extending 200 mV below the negative rail and within 1 V of the
positive rail.
The wide bandwidth of 160 MHz along with 200 V/µs of slew
rate on a single +5 V supply make the AD8042 useful in many
general purpose, high speed applications where single supplies
from +3.3 V to +12 V and dual power supplies of up to ±6 V
are needed. The AD8042 is available in 8-lead plastic DIP and
SOIC.
15
VS = +5V
G = +1
CL = 5pF
RL = 2kV TO 2.5V
12
5V
2.5V
0V
1V
1ms
9
CLOSED–LOOP GAIN – dB
G=1
RL = 2kV TO +2.5V
6
3
0
–3
–6
–9
–12
–15
Figure 1. Output Swing: Gain = –1, VS = +5 V
1
10
FREQUENCY – MHz
100
500
Figure 2. Frequency Response
REV. A
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1999
AD8042–SPECIFICATIONS (@ T = +25ⴗC, V = +5 V, R = 2 k⍀ to 2.5 V, unless otherwise noted)
A
S
L
Parameter
Conditions
Min
DYNAMIC PERFORMANCE
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p
Bandwidth for 0.1 dB Flatness
Slew Rate
Full Power Response
Settling Time to 1%
Settling Time to 0.1%
G = +1
G = +2, RL = 150 Ω. RF = 200 Ω
G = –1, VO = 2 V Step
VO = 2 V p-p
G = –1, VO = 2 V Step
125
NOISE/DISTORTION PERFORMANCE
Total Harmonic Distortion
Input Voltage Noise
Input Current Noise
Differential Gain Error (NTSC, 100 IRE)
Differential Phase Error (NTSC, 100 IRE)
Worst Case Crosstalk
AD8042A
Typ
130
fC = 5 MHz, VO = 2 V p-p, G = +2, RL = 1 kΩ
f = 10 kHz
f = 10 kHz
G = +2, RL = 150 Ω to 2.5 V
G = +2, RL = 75 Ω to 2.5 V
G = +2, RL = 150 Ω to 2.5 V
G = +2, RL = 75 Ω to 2.5 V
f = 5 MHz, RL = 150 Ω to 2.5 V
DC PERFORMANCE
Input Offset Voltage
MHz
MHz
V/µs
MHz
ns
ns
–73
15
700
0.04
0.04
0.06
0.24
–63
dB
nV/√Hz
fA/√Hz
%
%
Degrees
Degrees
dB
3
12
1.2
TMIN–TMAX
Input Offset Current
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage Swing:
Output Voltage Swing:
Output Current
Short Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current (Per Amplifier)
Power Supply Rejection Ratio
RL = 1 kΩ
TMIN –TMAX
90
VCM = 0 V to 3.5 V
RL = 10 kΩ to 2.5 V
RL = 1 kΩ to 2.5 V
RL = 50 Ω to 2.5 V
TMIN to TMAX, VOUT = 0.5 V to 4.5 V
Sourcing
Sinking
G = +1
68
0.10 to 4.9
0.4 to 4.4
0.2
100
90
OPERATING TEMPERATURE RANGE
72
–40
0.06
0.12
9
12
3.2
4.8
0.5
mV
mV
µV/°C
µA
µA
µA
dB
dB
300
1.5
–0.2 to 4
74
kΩ
pF
V
dB
0.03 to 4.97
0.05 to 4.95
0.36 to 4.45
50
90
100
20
V
V
V
mA
mA
mA
pF
3
VS– = 0 V to –1 V, or VS+ = +5 V to +6 V
Units
160
14
200
30
26
39
TMIN–TMAX
Offset Drift
Input Bias Current
Max
5.2
80
12
6
V
mA
dB
+85
°C
Specifications subject to change without notice.
–2–
REV. A
AD8042
SPECIFICATIONS (@ T = +25ⴗC, V = +3 V, R = 2 k⍀ to 1.5 V, unless otherwise noted)
A
S
L
Parameter
Conditions
Min
DYNAMIC PERFORMANCE
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p
Bandwidth for 0.1 dB Flatness
Slew Rate
Full Power Response
Settling Time to 1%
Settling Time to 0.1%
G = +1
G = +2, RL = 150 Ω, RF = 200 Ω
G = –1, VO = 2 V Step
VO = 2 V p-p
G = –1, VO = 1 V Step
120
NOISE/DISTORTION PERFORMANCE
Total Harmonic Distortion
Input Voltage Noise
Input Current Noise
Differential Gain Error (NTSC, 100 IRE)
Differential Phase Error (NTSC, 100 IRE)
Worst Case Crosstalk
AD8042A
Typ
120
fC = 5 MHz, VO = 2 V p-p, G = –1, RL = 100 Ω
f = 10 kHz
f = 10 kHz
G = +2, RL = 150 Ω to 1.5 V, Input VCM = 1 V
RL = 75 Ω to 1.5 V, Input VCM = 1 V
G = +2, RL = 150 Ω to 1.5 V, Input VCM = 1 V
RL = 75 Ω to 1.5 V, Input VCM = 1 V
f = 5 MHz, RL = 1 kΩ to 1.5 V
DC PERFORMANCE
Input Offset Voltage
MHz
MHz
V/µs
MHz
ns
ns
–56
16
500
0.10
0.10
0.12
0.27
–68
dB
nV/√Hz
fA/√Hz
%
%
Degrees
Degrees
dB
3
12
1.2
TMIN –TMAX
Input Offset Current
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage Swing:
Output Voltage Swing:
Output Current
Short Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current (Per Amplifier)
Power Supply Rejection Ratio
RL = 1 kΩ
TMIN –TMAX
90
VCM = 0 V to 1.5 V
RL = 10 kΩ to 1.5 V
RL = 1 kΩ to 1.5 V
RL = 50 Ω to 1.5 V
TMIN to TMAX, VOUT = 0.5 V to 2.5 V
Sourcing
Sinking
G = +1
0.1 to 2.9
0.3 to 2.6
0.2
100
90
VS– = 0 V to –1 V, or VS+ = +3 V to +4 V
68
0
Specifications subject to change without notice.
–3–
9
12
3.2
4.8
0.6
mV
mV
µV/°C
µA
µA
µA
dB
dB
300
1.5
–0.2 to 2
74
kΩ
pF
V
dB
0.03 to 2.97
0.05 to 2.95
0.25 to 2.65
50
50
70
17
V
V
V
mA
mA
mA
pF
3
OPERATING TEMPERATURE RANGE
REV. A
66
Units
140
11
170
25
30
45
TMIN –TMAX
Offset Drift
Input Bias Current
Max
5.0
80
12
6
V
mA
dB
+70
°C
AD8042–SPECIFICATIONS (@ T = +25ⴗC, V = ⴞ5 V, R = 2 k⍀ to 0 V, unless otherwise noted)
A
S
L
Parameter
Conditions
Min
DYNAMIC PERFORMANCE
–3 dB Small Signal Bandwidth, VO < 0.5 V p-p
Bandwidth for 0.1 dB Flatness
Slew Rate
Full Power Response
Settling Time to 1%
Settling Time to 0.1%
G = +1
G = +2, RL = 150 Ω, RF = 200 Ω
G = –1, VO = 2 V Step
VO = 2 V p-p
G = –1, VO = 2 V Step
125
NOISE/DISTORTION PERFORMANCE
Total Harmonic Distortion
Input Voltage Noise
Input Current Noise
Differential Gain Error (NTSC, 100 IRE)
Differential Phase Error (NTSC, 100 IRE)
Worst Case Crosstalk
AD8042A
Typ
145
fC = 5 MHz, VO = 2 V p-p, G = +2, RL = 1 kΩ
f = 10 kHz
f = 10 kHz
G = +2, RL = 150 Ω
G = +2, RL = 75 Ω
G = +2, RL = 150 Ω
G = +2, RL = 75 Ω
f = 5 MHz, RL = 150 Ω
DC PERFORMANCE
Input Offset Voltage
MHz
MHz
V/µs
MHz
ns
ns
–78
15
700
0.02
0.02
0.04
0.12
–63
dB
nV/√Hz
fA/√Hz
%
%
Degrees
Degrees
dB
3
12
1.2
TMIN –TMAX
Input Offset Current
Open-Loop Gain
INPUT CHARACTERISTICS
Input Resistance
Input Capacitance
Input Common-Mode Voltage Range
Common-Mode Rejection Ratio
OUTPUT CHARACTERISTICS
Output Voltage Swing
Output Voltage Swing:
Output Voltage Swing:
Output Current
Short Circuit Current
Capacitive Load Drive
POWER SUPPLY
Operating Range
Quiescent Current (Per Amplifier)
Power Supply Rejection Ratio
RL = 1 kΩ
TMIN –TMAX
90
VCM = –5 V to 3.5 V
RL = 10 kΩ
RL = 1 kΩ
RL = 50 Ω
TMIN to TMAX, VOUT = –4.5 V to 4.5 V
Sourcing
Sinking
G = +1
66
–4.8 to +4.8
–4 to +3.2
0.2
94
86
68
–40
OPERATING TEMPERATURE RANGE
0.05
0.10
9.8
14
3.2
4.8
0.6
mV
mV
µV/°C
µA
µA
µA
dB
dB
300
1.5
–5.2 to 4
74
kΩ
pF
V
dB
–4.97 to +4.97
–4.9 to +4.9
–4.2 to +3.5
50
100
100
25
V
V
V
mA
mA
mA
pF
12
7
V
mA
dB
+85
°C
3
VS– = –5 V to –6 V, or VS+ = +5 V to +6 V
Units
170
18
225
35
22
32
TMIN –TMAX
Offset Drift
Input Bias Current
Max
6
80
Specifications subject to change without notice.
–4–
REV. A
AD8042
ABSOLUTE MAXIMUM RATINGS 1
While the AD8042 is internally short circuit protected, this may
not be sufficient to guarantee that the maximum junction
temperature (+150°C) is not exceeded under all conditions.
To ensure proper operation, it is necessary to observe the
maximum power derating curves.
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +12.6 V
Internal Power Dissipation2
Plastic DIP Package (N) . . . . . . . . . . . . . . . . . . . 1.3 Watts
Small Outline Package (R) . . . . . . . . . . . . . . . . . . 0.9 Watts
Input Voltage (Common Mode) . . . . . . . . . . . . . . ± VS ± 0.5 V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . ± 3.4 V
Output Short Circuit Duration
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves
Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C
Lead Temperature Range (Soldering 10 sec) . . . . . . . . +300°C
MAXIMUM POWER DISSIPATION – Watts
2.0
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
2
Specification is for the device in free air:
8-Lead Plastic DIP Package: θJA = 90°C/W
8-Lead SOIC Package: θJA = 155°C/W
8-LEAD PLASTIC-DIP PACKAGE
TJ = +1508C
1.5
1.0
8-LEAD SOIC PACKAGE
0.5
0
–50 –40 –30 –20 –10 0 10 20 30 40 50 60
AMBIENT TEMPERATURE – 8C
MAXIMUM POWER DISSIPATION
The maximum power that can be safely dissipated by the
AD8042 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature
of the plastic, approximately +150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a
change in the stresses exerted on the die by the package.
Exceeding a junction temperature of +175°C for an extended
period can result in device failure.
70 80 90
Figure 3. Maximum Power Dissipation vs. Temperature
ORDERING GUIDE
Model
AD8042AN
AD8042AN
AD8042AR
AD8042AR
AD8042AR-REEL
AD8042AR-REEL7
AD8042ACHIPS
Supply
Voltages
Temperature
Range
Package
Description
Package
Option
+5 V, ± 5 V
+3 V
+5 V, ± 5 V
+3 V
–40°C to +85°C
0°C to +70°C
–40°C to +85°C
0°C to +70°C
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
8-Lead Plastic DIP
8-Lead Plastic DIP
8-Lead Plastic SOIC
8-Lead Plastic SOIC
13" Tape and REEL
7" Tape and REEL
Die
N-8
N-8
SO-8
SO-8
SO-8
SO-8
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the AD8042 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
REV. A
–5–
WARNING!
ESD SENSITIVE DEVICE
AD8042–Typical Performance Characteristics
100
100
VS = +5V
T = +258C
140 PARTS, SIDE A & B
MEAN = –1.52mV
STD DEVIATION = 1.15
SAMPLE SIZE = 280
(140 AD8042S)
80
FREQUENCY
70
60
95
OPEN-LOOP GAIN – dB
90
50
40
30
20
90
85
VS = +5V
T = +258C
80
75
10
0
–6
–5
–4
–3
–2
–1 0
1
VOS – mV
2
3
4
5
70
6
250
500
750
1000 1250
1500
LOAD RESISTANCE – V
1750
2000
Figure 7. Open-Loop Gain vs. RL to +2.5 V
Figure 4. Typical Distribution of VOS
100
30
VS = +5V
MEAN = –12.6mV/8C
STD DEV = 2.02mV/8C
SAMPLE SIZE = 60
98
OPEN-LOOP GAIN – dB
25
20
FREQUENCY
0
15
10
VS = +5V
RL = 1kV
96
94
92
90
5
88
0
–18
–16
–14
–12 –10
–8
–6
VOS DRIFT – mV/8C
–4
–2
86
–40
0
Figure 5. VOS Drift Over –40 °C to +85 °C
0
20
40
TEMPERATURE – 8C
60
80
Figure 8. Open-Loop Gain vs. Temperature
0
100
VS = +5V
VCM = 0V
–0.2
RL = 500V TO 2.5V
VS = +5V
90
–0.4
OPEN-LOOP GAIN – dB
INPUT BIAS CURRENT – mA
–20
–0.6
–0.8
–1
–1.2
–1.4
–1.6
80
RL = 50V TO 2.5V
70
60
50
–1.8
–2
–40 –30 –20 –10
40
0
10
20
30
40
50
60
70
80
90
TEMPERATURE – 8C
0
0.5
1
1.5
2
2.5
3
3.5
OUTPUT VOLTAGE – Volts
4
4.5
5
Figure 9. Open-Loop Gain vs. Output Voltage
Figure 6. IB vs. Temperature
–6–
REV. A
AD8042
0.04
DIFFERENTIAL
GAIN ERROR – %
300
100
30
0.02
3
1
10
1k
100
10k
100k
1M
10M
100M
0.04
0.03
0
–0.01
0
1G
10
20
30
40
50
60
70
80
MODULATING RAMP LEVEL – IRE
90
100
Figure 13. Differential Gain and Phase Errors
–30
0.6
0.4
VS = +5V, AV = +2,
RL = 100V TO 2.5V
–50
VS = +5V, AV = +1,
RL = 100V TO 2.5V
–60
–70
–80
VS = +5V, AV = +2,
RL = 1kV TO 2.5V
0.3
0.2
0.1
0
14MHz
–0.1
–0.2
VS = +5V, AV = +1,
RL = 1kV TO 2.5V
–90
VS = +5V
G = +2
RF = 200V
RL = 150V TO 2.5V
0.5
VS = +3V, AV = –1,
RL = 100V TO 1.5V
–40
NORMALIZED GAIN – dB
–0.3
–0.4
2
4
5
6
3
FUNDAMENTAL FREQUENCY – MHz
1
7 8 9 10
1
10
FREQUENCY – MHz
100
500
Figure 14. 0.1 dB Gain Flatness
Figure 11. Total Harmonic Distortion
120
–30
VS = +5V
G = +2
RF = 200V
RL = 150V TO 2.5V
100
–40
OPEN–LOOP GAIN – dB
10MHz
–50
–60
5MHz
–70
–80
1MHz
80
GAIN
60
45
40
0
20
–45
–90
0
PHASE
–20
–135
–40
–180
–60
–225
–90
VS = +5V, G = +2,
RL = 1kV TO 2.5V
–100
–110
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
–80
0.01
5.0
OUTPUT VOLTAGE – V p-p
Figure 12. Worst Harmonic vs. Output Voltage
REV. A
0.1
1
10
FREQUENCY – MHz
100
Figure 15. Open-Loop Gain and Phase
vs. Frequency
–7–
–270
500
PHASE– Degrees
TOTAL HARMONIC DISTORTION – dBc
VS = 65V
G = +2
RL = 150V
0.01
Figure 10. Input Voltage Noise vs. Frequency
WORST HARMONIC – dBc
VS = +5V
G = +2
RL = 150V TO 2.5V
0.02
FREQUENCY – Hz
–100
VS = 65V
G = +2
RL = 150V
0.00
–0.01
0.05
10
VS = +5V
G = +2
RL = 150V TO 2.5V
0.01
DIFFERENTIAL
PHASE ERROR – deg
INPUT VOLTAGE NOISE – nV/√ Hz
NTSC Subcarrier (3.579 MHz)
0.03
AD8042–Typical Performance Characteristics
10
60
VS = +5V
G = +1
CL = 5pF
RL = 2kV TO 2.5V
8
CLOSED–LOOP GAIN – dB
6
G = –1
RL = 2kV TO MIDPOINT
CL = 5pF
55
T = +858C
VS = +3V, 0.1%
50
SETTING TIME – ns
4
T = +258C
2
T = –408C
0
–2
–4
45
VS = +3V, 1%
40
VS = +5V, 0.1%
35
VS = 65V, 0.1%
30
–6
–10
VS = +5V, 1%
25
–8
1
10
FREQUENCY – MHz
100
VS = 65V, 1%
20
0.5
500
1
1.5
BIPOLAR INPUT STEP – V
Figure 16. Closed-Loop Frequency Response
vs. Temperature
2
Figure 19. Settling Time
12
0
COMMON MODE REJECTION – dB
8
CLOSED–LOOP GAIN – dB
VS = +3V
RL & CL TO 1.5V
G = +1
CL = 5pF
RL = 2kV
10
VS = +5V
RL & CL TO 2.5V
6
TEST CIRCUIT:
–10
VS = 65V
1.02kV 1.02kV
–30
2
OUT
INCM
–20
4
Vs = +5V
1.02kV
1.02kV
–40
–50
0
–2
–60
–70
–4
–6
–90
10k
–8
1
10
FREQUENCY – MHz
100
–80
500
Figure 17. Closed-Loop Frequency Response vs. Supply
1M
10M
FREQUENCY – Hz
100k
100M
500M
Figure 20. CMRR vs. Frequency
0.80
VS = +5V
OUTPUT SATURATION VOLTAGE – V
OUTPUT RESISTANCE – V
100
RBT = 50V
10
VS = +5V
G = +1
RBT = 0
RBT
1
VOUT
0.1
0.01
0.70
+5V – VOH (+1258C)
+5V – VOH (+258C)
0.60
+5V – VOH (–558C)
0.50
0.40
0.30
0.20
+VOL (+1258C)
+VOL (+258C)
0.10
+VOL (–558C)
0
0.01
0.1
1
10
FREQUENCY – MHz
100
500
0
Figure 18. Output Resistance vs. Frequency
5
10
15
35
20
25
30
LOAD CURRENT – mA
40
45
50
Figure 21. Output Saturation Voltage vs. Load Current
–8–
REV. A
AD8042
12
50
VS = 65V
VS = +5V
VOUT = 100mV STEP
11.5
10.5
VS = +5V
10
VS = +3V
% OVERSHOOT
SUPPLY CURRENT – mA
40
11
9.5
G = +2
30
20
G = +3
9
10
8.5
8
–40 –30 –20 –10
0
10
20
30
40
50
60
70
80
0
90
0
20
40
60
80 100 120
140
LOAD CAPACITANCE – pF
TEMPERATURE – 8C
160
180
200
Figure 25. % Overshoot vs. Load Capacitance
Figure 22. Supply Current vs. Temperature
6
VS = +5V
0
5
–10
4
NORMALIZED GAIN – dB
PSRR – dB
–20
–30
–40
–PSRR
–50
–60
+PSRR
–70
VS = +5V
RF = 2kV
RL = 2kV TO +2.5V
3
G = +2
2
1
0
G = +2
RF = 200V
–1
G = +10
–2
G = +5
–80
–3
–90
10k
100k
1M
10M
FREQUENCY – Hz
100M
–4
500M
1
Figure 23. PSRR vs. Frequency
–20
VS = 65V
RL = 2kV
G = –1
8
–30
7
CROSSTALK – dB
OUTPUT VOLTAGE – V p-p
500
–10
9
6
5
4
3
2
VS = +5V
VIN = 0.6V p-p
G = +2
RF = 1kV
–40
VOUT 1
–50
VOUT 2
VOUT 1
–60
VOUT 2
, RL = 1kV TO +2.5V
, RL = 150V TO +2.5V
–70
VOUT2
–80
VOUT1
–90
1
VOUT2
–100
1.0
10.0
FREQUENCY – MHz
–110
0.1
100.0
Figure 24. Output Voltage Swing vs. Frequency
REV. A
100
Figure 26. Frequency Response vs. Closed-Loop Gain
10
0
0.1
10
FREQUENCY – MHz
VOUT1
1
, RL = 150V TO +2.5V
, RL = 1kV TO +2.5V
10
FREQUENCY – MHz
100
200
Figure 27. Crosstalk (Output-to-Output) vs. Frequency
–9–
AD8042–Typical Performance Characteristics
5V
4.770V
4V
VS = +5V
G = –1
RL = 150V TO +2.5V
AV = +1
+2.6V
VS = +5V
VIN = 100mV p-p
RL = 1kV TO 2.5V
CL = 5pF
3V
+2.5V
2V
1V
+2.4V
0.160V
25mV
200ms
0.5V
0V
Figure 28a. Output Swing with Load Reference to Supply
Midpoint
10ns
Figure 30. 100 mV Pulse Response, VS = +5 V
5V
4.59V
4V
G = –1
RL = 2kV TO +1.5V
VS= +5V
G = –1
RL= 150V TO GND
3V
3V
1.5V
2V
1V
0V
0.035V
0.5V
200ms
1ms
0.5V
0V
Figure 28b. Output Swing with Load Reference to Negative
Supply
4.5V
Figure 31. Rail-to-Rail Output Swing, VS = +3 V
AV = +2
VS = +5V
CL = 5pF
RL = 1kV TO +2.5V
VIN = 1V p-p
3.5V
VIN = 100mV p-p
+1.6V
RL = 1kV TO 1.5V
VS = +3V
CL = 5pF
AV = +1V
+1.5V
2.5V
1.5V
+1.4V
0.5V
10ns
25mV
10ns
0.5V
Figure 29. One Volt Pulse Response, VS = +5 V
Figure 32. 100 mV Pulse Response, VS = +3 V
–10–
REV. A
AD8042
Overdrive Recovery
This circuit topology allows the AD8042 to drive 40 mA of
output current with the outputs within 0.5 V of the supply rails.
Overdrive of an amplifier occurs when the output and/or input
range are exceeded. The amplifier must recover from this overdrive condition. As shown in Figure 33, the AD8042 recovers
within 30 ns from negative overdrive and within 25 ns from
positive overdrive.
On the input side, the device can handle voltages from 0.2 V
below the negative rail to within 1.2 V of the positive rail. Exceeding these values will not cause phase reversal; however, the
input ESD devices will begin to conduct if the input voltages
exceed the rails by greater than 0.5 V.
DRIVING CAPACITIVE LOADS
The capacitive load drive of the AD8042 can be increased by
adding a low valued resistor in series with the load. Figure 35
shows the effects of a series resistor on capacitive drive for varying voltage gains. As the closed-loop gain is increased, the larger
phase margin allows for larger capacitive loads with less overshoot. Adding a series resistor with lower closed-loop gains
accomplishes this same effect. For large capacitive loads, the
frequency response of the amplifier will be dominated by the
roll-off of the series resistor and capacitive load.
+5V
+2.5V
VS = +5V
VIN= +5V p-p
G = +2
RL = 1kV TO +2.5V
0V
1V
50ns
1000
Figure 33. Overdrive Recovery
VS = +5V
200mV STEP WITH 30% OVERSHOOT
The AD8042 is fabricated on Analog Devices’ proprietary
eXtra-Fast Complementary Bipolar (XFCB) process which
enables the construction of PNP and NPN transistors with
similar fTs in the 2 GHz–4 GHz region. The process is dielectrically isolated to eliminate the parasitic and latch-up problems
caused by junction isolation. These features allow the construction of high frequency, low distortion amplifiers with low supply
currents. This design uses a differential output input stage to
maximize bandwidth and headroom (see Figure 34). The
smaller signal swings required on the first stage outputs (nodes
S1P, S1N) reduce the effect of nonlinear currents due to
junction capacitances and improve the distortion performance.
With this design harmonic distortion of better than –77 dB
@ 1 MHz into 100 Ω with VOUT = 2 V p-p (Gain = +2) on a
single 5 volt supply is achieved.
VCC
I1
I10
R26
I2
R39
Q4
Q36
Q5
Q51
Q22
SIP
C3
Q31
Q21
VINN
VEE
R23 R27
Q7
Q17
VOUT
Q27
C9
SIN
Q2
Q8
Q11
Q3
C7
I5
Q39
Q23
VEE
Q13
I9
Q50
Q40
R15 R2
VINP
I 3 Q25
R5
Q24
R21
R3
I7
I8
Q47
VCC
VEE
Figure 34. AD8042 Simplified Schematic
The AD8042’s rail-to-rail output range is provided by a
complementary common-emitter output stage. High output
drive capability is provided by injecting all output stage
predriver currents directly into the bases of the output devices
Q8 and Q36. Biasing of Q8 and Q36 is accomplished by I8 and
I5, along with a common-mode feedback loop (not shown).
REV. A
CAPACITIVE LOAD – pF
Circuit Description
RS = 5V
RS
CL
RS = 0
100
RS = 20V
10
1
2
3
4
CLOSED-LOOP GAIN – V/V
5
Figure 35. Capacitive Load Drive vs. Closed-Loop Gain
Single Supply Composite Video Line Driver
The two op amps of an AD8042 can be configured as a single
supply dual line driver for composite video. The wide signal
swing of the AD8042 enables this function to be performed
without using any type of clamping or dc restore circuit which
can cause signal distortion.
Figure 36 shows a schematic for a circuit that is driven by a
single composite video source that is ac coupled, level shifted
and applied to both + inputs of the two amplifiers. Each op amp
provides a separate 75 Ω composite video output. To obtain
single supply operation, ac coupling is used throughout. The
large capacitor values are required to ensure that there is minimal tilting of the video signals due to their low frequency
(30 Hz) signal content. The circuit shown was measured to have
a differential gain of 0.06% and a differential phase of 0.06°.
The input is terminated in 75 Ω and ac coupled via CIN to a
voltage divider that provides the dc bias point to the input.
Setting the optimal bias point requires some understanding of
the nature of composite video signals and the video performance
of the AD8042.
–11–
AD8042
To test this, the differential gain and differential phase were
measured for the AD8042 while the supplies were varied. As the
lower supply is raised to approach the video signal, the first
effect to be observed is that the sync tips become compressed
before the differential gain and differential phase are adversely
affected. Thus, there must be adequate swing in the negative
direction to pass the sync tips without compression.
+5V
4.99kV
0.1µF
4.99kV
10mF
10mF
3
COMPOSITE
VIDEO
IN
8
1
2
RF
1kV
75V
10kV
75V
COAX
1000mF
RT
75V
0.1mF
VOUT
RL
75V
RG
1kV
As the upper supply is lowered to approach the video, the differential gain and differential phase were not significantly adversely
affected until the difference between the peak video output and
the supply reached 0.6 V. Thus, the highest video level should
be kept at least 0.6 V below the positive supply rail.
220mF
5
1000mF
7
6
RT
75V
4
0.1mF
RG
1kV
VOUT
RL
75V
Taking the above into account, it was found that the optimal
point to bias the noninverting input is at 2.2 V dc. Operating at
this point, the worst case differential gain is measured at 0.06%
and the worst case differential phase is 0.06°.
RF
1kV
220mF
Figure 36. Single Supply Composite Video Line Driver
Using AD8042
Signals of bounded peak-to-peak amplitude that vary in duty
cycle require larger dynamic swing capability than their peak-topeak amplitude after ac coupling. As a worst case, the dynamic
signal swing required will approach twice the peak-to-peak
value. The two bounding cases are for a duty cycle that is mostly
low, but occasionally goes high at a fraction of a percent duty
cycle and vice versa.
Composite video is not quite this demanding. One bounding
extreme is for a signal that is mostly black for an entire frame,
but has a white (full intensity), minimum width spike at least
once per frame.
The ac coupling capacitors used in the circuit at first glance
appear quite large. A composite video signal has a lower frequency band edge of 30 Hz. The resistances at the various ac
coupling points—especially at the output—are quite small. In
order to minimize phase shifts and baseline tilt, the large value
capacitors are required. For video system performance that is
not to be of the highest quality, the value of these capacitors can
be reduced by a factor of up to five with only a slightly observable change in the picture quality.
Single-Ended-to-Differential Driver
Using a cross-coupled single-ended-to-differential converter, the
AD8042 makes a good general purpose differential line driver.
This can be used for applications such as driving category 5
twisted pair wire which is becoming common for data communications in buildings. Figure 37 shows a configuration for a circuit that performs this function that can be used for video
transmission over a differential pair or various data communication purposes.
The other extreme is for a video signal that is full white everywhere. The blanking intervals and sync tips of such a signal will
have negative going excursions in compliance with composite
video specifications. The combination of horizontal and vertical
blanking intervals limit such a signal to being at its highest level
(white) for only about 75% of the time.
As a result of the duty cycle variations between the two extremes
presented above, a 1 V p-p composite video signal that is multiplied by a gain of two requires about 3.2 V p-p of dynamic voltage swing at the output for an op amp to pass a composite video
signal of arbitrary duty cycle without distortion.
VIN
49.9V
3
8
2 AMP1
10mF
RF
1 1kV
60.4V
RA
1kV
Some circuits use a sync tip clamp along with ac coupling to
hold the sync tips at a relatively constant level in order to lower
the amount of dynamic signal swing required. However, these
circuits can have artifacts like sync tip compression unless they
are driven by sources with very low output impedance.
The AD8042 not only has ample signal swing capability to
handle the dynamic range required without using a sync tip
clamp, but also has good video specifications like differential
gain and differential phase when buffering these signals in an
ac-coupled configuration.
RIN
1kV
0.1mF
AD8042
RB
1kV
6
50m
RB
1kV
121V
VOUT
RA
1kV
5 AMP2
4
7
60.4V
0.1mF
10mF
100V
–5V
Figure 37. Single-Ended-to-Differential Twisted Pair Line
Driver
–12–
REV. A
AD8042
Each of the AD8042’s op amps is configured as a unity gain
follower by the feedback resistors (RA). Each op amp output
also drives the other as a unity gain inverter via the two RBs,
creating a totally symmetrical circuit.
+5V
+5V
0.1mF
If the + input to Amp 2 is grounded and a small positive signal
is applied to the + input of Amp 1, the output of Amp 1 will be
driven to saturation in the positive direction and the input of
Amp 2 driven to saturation in the negative direction. This is
similar to the way a conventional op amp behaves without any
feedback.
0.1mF
1kV
VIN
3
1kV
8
1
2
+5V
1kV
AD8042
0.1mF
1kV
1kV
+5V
If a resistor (RF) is connected from the output of Amp 2 to the
+ input of Amp 1, negative feedback is provided which closes
the loop. An input resistor (RI) will make the circuit look like a
conventional inverting op amp configuration with differential
outputs.
6
+5V
+5V
0.1mF
15
DVDD
AVDD
AVDD
14
OTR
13
BIT1
12
BIT2
11
BIT3
10
BIT4
9
BIT5
8
BIT6
7
BIT7
6
BIT8
5
BIT9
4
BIT10
3
BIT11
2
BIT12
VINA
1kV
7
2.49kV
VINB
5
4
2.49kV
0.1mF
CAPT
0.1mF
10/16
The gain of this circuit from input to either output will be ± RF/
RI. Or the single-ended-to-differential gain will be 2 × RF/RI.
This gives the circuit the advantage of being able to adjust its
gain by changing a single resistor.
0.1mF
18
0.1mF
17
AD9220
CAPB
VREF
SENSE
22
CML
0.1mF
1
0.1mF
26
28
The cable has a characteristic impedance of about 120 Ω. Each
driver output is back terminated with a pair of 60.4 Ω resistors
to make the source look like 120 Ω. The receive end is terminated with 121 Ω, and the signal is measured differentially with
a pair of scope probes. One channel on the oscilloscope is inverted and then the signals are added.
Figure 39. AD8042 Differential Driver for the AD9220
12-Bit, 10 MSPS A/D Converter
The scope photo in Figure 38 shows a 10 MHz, 2 V p-p input
signal driving the circuit with 50 m of category 5 twisted pair
wire.
The circuit was tested with a 1 MHz input signal and clocked at
10 MHz. An FFT response of the digital output is shown in
Figure 40.
1V
200mV
50ns
100
VIN
CLOCK
CLK
REFCOM DVSS AVSS AVSS
19
27
25
16
Pin 5 is biased at 2.5 V by the voltage divider and bypassed.
This biases each output at 2.5 V. VIN is ac coupled such that VIN
going positive makes VINA go positive and VINB go in the negative direction. The opposite happens for a negative going VIN.
90
VERTICAL SCALE – 15dB/DIV
1
VOUT
10
0%
200mV
Figure 38. Differential Driver Frequency Response
9
3
7
2
8
6
5
4
Single Supply Differential A/D Driver
The single-ended-to-differential converter circuit is also useful
as a differential driver for video speed, single-ended, differential
input A/D converters. Figure 39 is a schematic that shows such
a circuit differentially driving an AD9220, a 12-bit, 10 MSPS
A/D converter.
FUND FRQ 1000977
SMPL FRQ 10000000
THD
SNR
SINAD
SFDR
–82.00
71.13
70.79
–86.74
HARMONICS (dBc)
2nd –88.34 6th –99.47
3rd –86.74 7th –91.16
4th –99.26 8th –97.25
5th –90.67 9th –91.61
Figure 40. FFT of AD9220 Output When Driven by AD8042
REV. A
–13–
AD8042
HDSL Line Driver
Layout Considerations
HDSL or high-bit-rate digital subscriber line is becoming popular as a means to provide data communication at DS1 rates
(1.544 MBPS) over moderate distances via conventional telephone twisted pair wires. In these systems, the transceiver at the
customer’s end is sometimes powered via the twisted pair from a
power source at the central office. It is sometimes required to
raise the dc voltage of the power source to compensate for IR
drops in long lines or lines with narrow gauge wires.
The specified high speed performance of the AD8042 requires
careful attention to board layout and component selection.
Proper RF design techniques and low-pass parasitic component
selection are necessary.
Because of this, it is highly desirable to keep the power consumption of the customer’s transceiver as low as possible. One
means to realize significant power savings is to run the transceiver from a ± 5 V supply instead of the more conventional
± 12 V.
Chip capacitors should be used for the supply bypassing.
One end should be connected to the ground plane and the
other within 1/8 inch of each power pin. An additional large
(0.47 µF–10 µF) tantalum electrolytic capacitor should be connected in parallel, but not necessarily so close, to supply current
for fast, large signal changes at the output.
The high output swing and current drive capability of the
AD8042 make it ideally suited to this application. Figure 41
shows a circuit for the analog portion of an HDSL transceiver
using the AD8042 as the line driver.
2kV
232V
The feedback resistor should be located close to the inverting
input pin in order to keep the stray capacitance at this node to a
minimum. Capacitance variations of less than 1 pF at the inverting input will significantly affect high speed performance.
3kV
6
ATT
2718AF
93DJ39
7
1/2
AD8042
2kV
1
4
10
5
2
7
9
6
Stripline design techniques should be used for long signal traces
(greater than about 1 inch). These should be designed with a
characteristic impedance of 50 Ω or 75 Ω and be properly terminated at each end.
VOUT
5
VIN
The PCB should have a ground plane covering all unused portions of the component side of the board to provide a low impedance path. The ground plane should be removed from the
area near the input pins to reduce the stray capacitance.
3kV
2
1
3
0.001mF
1/2
AD8042
912V
0.0027mF
34V
2kV
2kV
2
2kV
2kV
1
3
2kV
249V
VREC
1/4
AD8044
0.001mF
Figure 41. HDSL Line Driver
–14–
REV. A
AD8042
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
8-Lead Plastic DIP
(N-8)
8
0.25
(6.35)
PIN 1
1
0.31
(7.87)
4
0.30 (7.62)
REF
0.39 (9.91) MAX
0.035±0.01
(0.89±0.25)
0.165±0.01
(4.19±0.25)
0.011±0.003
(0.28±0.08)
0.18±0.03
(4.57±0.76)
0.125
(3.18)
MIN
0.018±0.003
(0.46±0.08)
0.033
(0.84)
NOM
0.10
(2.54)
BSC
C2082a–0–9/99
5
15°
0°
SEATING
PLANE
8-Lead Plastic SOIC
(SO-8)
8
5
1
4
0.1574 (4.00)
0.1497 (3.80)
PIN 1
0.2440 (6.20)
0.2284 (5.80)
0.1968 (5.00)
0.1890 (4.80)
0.0098 (0.25)
0.0040 (0.10)
0.0196 (0.50)
x 45°
0.0099 (0.25)
0.0688 (1.75)
0.0532 (1.35)
0.0098 (0.25)
0.0075 (0.19)
8°
0°
0.0500 (1.27)
0.0160 (0.41)
PRINTED IN U.S.A.
0.0500 0.0192 (0.49)
(1.27) 0.0138 (0.35)
BSC
REV. A
–15–