AD ADL5802

Dual Channel, High IP3,
100 MHz to 6 GHz Active Mixer
ADL5802
FEATURES
APPLICATIONS
Cellular base station receivers
Main and diversity receiver designs
Radio link downconverters
FUNCTIONAL BLOCK DIAGRAM
VPOS RF1+ RF1– GND RF2+ RF2–
24
23
22
21
20
19
GND
1
18
GND
GND
2
17
GND
OP1+
3
16
OP2+
OP1–
4
15
OP2–
GND
5
14
GND
13
VPOS
VPOS
6
IP3
BIAS
ADL5802
7
8
9
10
11
12
ENBL GND LOIP LOIN GND VSET
07882-001
Power conversion gain of 1.6 dB
Wideband RF, LO, and IF ports
SSB noise figure of 11 dB
Input IP3 of 28 dBm
Input P1dB of 12 dBm
Typical LO drive of 0 dBm
Low LO leakage
Single supply operation: 5 V @ 240 mA
Exposed paddle, 4 mm × 4 mm, 24-lead LFCSP package
Figure 1.
GENERAL DESCRIPTION
The ADL5802 uses high linearity, double-balanced, active mixer
cores with integrated LO buffer amplifiers to provide high
dynamic range frequency conversion from 100 MHz to 6 GHz.
The mixers benefit from a proprietary linearization architecture
that provides enhanced input IP3 performance when subject to
high input levels. A bias adjust feature allows the input linearity,
SSB noise figure, and dc current to be optimized using a single
control pin. The high input linearity allows the device to be used
in demanding cellular applications where in-band blocking
signals may otherwise result in degradation in dynamic performance. The balanced active mixer arrangement provides superb
LO to RF and LO to IF leakage, typically better than −30 dBm.
The IF outputs are designed for a 200 Ω source impedance and
provide a typical voltage conversion gain of 7.6 dB when loaded
into a 200 Ω load.
The ADL5802 is fabricated using a SiGe high performance IC
process. The device is available in a compact 4 mm × 4 mm,
24-lead LFCSP package and operates over a −40°C to +85°C
temperature range. An evaluation board is also available.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registeredtrademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
www.analog.com
Tel: 781.329.4700
Fax: 781.461.3113
©2009 Analog Devices, Inc. All rights reserved.
ADL5802
TABLE OF CONTENTS
Features .............................................................................................. 1
Spur Performance ........................................................................21
Applications ....................................................................................... 1
Circuit Description..........................................................................24
Functional Block Diagram .............................................................. 1
LO Amplifier and Splitter...........................................................24
General Description ......................................................................... 1
RF Voltage to Current (V-to-I) Converter ...............................24
Revision History ............................................................................... 2
Mixer Cores ..................................................................................24
Specifications ..................................................................................... 3
Mixer Load ...................................................................................24
Absolute Maximum Ratings ............................................................ 5
Bias Circuit ...................................................................................24
ESD Caution .................................................................................. 5
Applications Information ...............................................................25
Pin Configuration and Function Descriptions ............................. 6
Basic Connections .......................................................................25
Typical Performance Characteristics ............................................. 7
RF and LO Ports ..........................................................................25
Downconverter Mode Using a Broadband Balun .................... 7
IF Port ...........................................................................................26
Downconverter Mode Using a Johanson 2.7 GHz Balun ..... 12
Evaluation Board .............................................................................27
Downconverter Mode Using a Johanson 3.5 GHz Balun ..... 15
Outline Dimensions ........................................................................29
Downconverter Mode Using a Johanson 5.7 GHz Balun ..... 18
Ordering Guide............................................................................29
REVISION HISTORY
11/09—Revision 0: Initial Version
Rev. 0 | Page 2 of 32
ADL5802
SPECIFICATIONS
VS = 5 V, VSET = 4 V, T A = 25°C, fLO = (f RF − 153) MHz, LO power = 0 dBm, Z0 1 = 50 Ω, unless otherwise noted.
Table 1.
Parameter
RF INPUT INTERFACE
Return Loss
Input Impedance
RF Frequency Range
OUTPUT INTERFACE
Output Impedance
IF Frequency Range
DC Bias Voltage2
LO INTERFACE
LO Power
Return Loss
Input Impedance
LO Frequency Range
POWER INTERFACE
Supply Voltage
Quiescent Current
Disable Current
Enable Time
Disable Time
DYNAMIC PERFORMANCE at fRF = 900 MHz/1900 MHz
Power Conversion Gain3
Voltage Conversion Gain4
SSB Noise Figure
SSB Noise Figure Under Blocking5
Input Third Order Intercept6
Input Second Order Intercept7
Input 1 dB Compression Point
LO to IF Output Leakage
LO to RF Input Leakage
RF to IF Output Isolation
RFI1 to RFI2 Channel Isolation
IF/2 Spurious8
IF/3 Spurious8
IF/2 Spurious8
IF/3 Spurious8
DYNAMIC PERFORMANCE at fRF = 2500 MHz9
Power Conversion Gain10
Voltage Conversion Gain4
SSB Noise Figure
SSB Noise Figure Under Blocking11
Input Third Order Intercept6
Test Conditions/Comments
Min
Tunable to >20 dB over a limited bandwidth
Typ
VS
0
18
50
100
4.75
fRF = 900 MHz
fRF = 1900 MHz
fRF = 900 MHz
fRF = 1900 MHz
fCENT = 900 MHz
fCENT = 1900 MHz
fCENT = 900 MHz
fCENT = 1900 MHz
fCENT = 890 MHz
fCENT = 1890 MHz
fCENT = 890 MHz
fCENT = 1890 MHz
fRF = 900 MHz
fRF = 1900 MHz
Unfiltered IF output
6000
dB
Ω
MHz
600
5.25
Ω
MHz
V
240
LF
4.75
−10
Resistor programmable
ENBL pin low
Time from ENBL pin low to power-up
Time from ENBL pin high to power-down
Unit
18
50
100
Differential impedance, f = 200 MHz
Can be matched externally to 3000 MHz
Externally generated
Max
+10
6000
5
220
170
182
28
5.25
300
dBm
dB
Ω
MHz
V
mA
mA
ns
ns
0 dBm input power, fRF = 900 MHz
0 dBm input power, fRF = 900 MHz
0 dBm input power, fRF = 1900 MHz
0 dBm input power, fRF = 1900 MHz
1.5
1.6
7.5
7.6
10
11
18
22
26
28
60
45
12
12
−35
−30
25
45
−68
−67
−53
−59
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc
dBc
dBc
dBc
fCENT = 2145 MHz
fCENT = 2500 MHz
−0.5
5.67
11.5
18
30
dB
dB
dB
dB
dBm
Rev. 0 | Page 3 of 32
ADL5802
Parameter
Input Second Order Intercept7
Input 1 dB Compression Point
LO to IF Output Leakage
LO to RF Input Leakage
RF to IF Output Isolation
RFI1 to RFI2 Channel Isolation
IF/2 Spurious8
IF/3 Spurious8
DYNAMIC PERFORMANCE at fRF = 3500 MHz12
Power Conversion Gain13
Voltage Conversion Gain4
SSB Noise Figure
SSB Noise Figure Under Blocking14
Input Third Order Intercept5
Input Second Order Intercept7
Input 1 dB Compression Point
LO to IF Output Leakage
LO to RF Input Leakage
RF to IF Output Isolation
RFI1 to RFI2 Channel Isolation
IF/2 Spurious8
IF/3 Spurious8
DYNAMIC PERFORMANCE at fRF = 5500 MHz15
Power Conversion Gain16
Voltage Conversion Gain4
SSB Noise Figure
SSB Noise Figure Under Blocking17
Input Third Order Intercept5
Input Second Order Intercept7
Input 1 dB Compression Point
LO to IF Output Leakage
LO to RF Input Leakage
RF to IF Output Isolation
RFI1 to RFI2 Channel Isolation
IF/2 Spurious8
IF/3 Spurious8
Test Conditions/Comments
fCENT = 2500 MHz
Unfiltered IF output
0 dBm input power
0 dBm input power
fCENT = 3500 MHz
fCENT = 3500 MHz
fCENT = 3500 MHz
Unfiltered IF output
0 dBm input power
0 dBm input power
fCENT = 5800 MHz
fCENT = 5500 MHz
fCENT = 5500 MHz
Unfiltered IF output
0 dBm input power
0 dBm input power
1
Min
Typ
47
13
36
31
26
42
−52
−56
Max
−0.5
5.5
12.5
18
25
39
13
33
28
31
39
−46
−63
dB
dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc
dBc
−3
5.67
14
17
23
35
13
42
27
50
33
−49
−64
dB
dB
dB
dB
dBm
dBm
dBm
dBm
dBm
dBc
dBc
dBc
dBc
Z0 is the characteristic impedance assumed for all measurements and the PCB.
Supply voltage must be applied from an external circuit through choke inductors.
3
Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (TC1-1-13M+), and PCB loss.
4
ZSOURCE = 50 Ω, differential; ZLOAD = 200 Ω, differential 5 dBm; ZSOURCE is the impedance of the source instrument; ZLOAD is the load impedance at the output.
5
fRF1 = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = 0 dBm.
6
fRF1 = (fCENT − 1) MHz, fRF2 = fCENT, fLO = (fCENT − 153) MHz, each RF tone at −10 dBm.
7
fRF1 = fCENT, fRF2 = (fCENT + 100) MHz, fLO = (fCENT − 153) MHz, each RF tone at −10 dBm.
8
For details, see the Spur Performance section.
9
VS = 5 V, VSET = 4.5 V, TA = 25°C, fLO = (fRF − 211) MHz, LO power = 0 dBm, Z0 = 50 Ω.
10
Excluding 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (2500BL14M050), and PCB loss.
11
fRF1 = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 235) MHz, blocker level = 0 dBm.
12
VS = 5 V, VSET = 5 V, TA = 25°C, fLO = (fRF − 153) MHz, LO power = 0 dBm, Z0 = 50 Ω.
13
Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (3600BL14M050), and PCB loss.
14
fRF1 = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 153) MHz, blocker level = −20 dBm.
15
VS = 5 V, VSET = 4.8 V, TA = 25°C, fLO = (fRF − 380) MHz, LO power = 0 dBm, Z0 = 50 Ω.
16
Including 4:1 IF port transformer (TC4-1W+), RF and LO port transformers (5400BL15B050), and PCB loss.
17
fRF1 = fCENT, fBLOCKER = (fCENT − 5) MHz, fLO = (fCENT − 300) MHz, blocker level = −20 dBm.
2
Rev. 0 | Page 4 of 32
Unit
dBm
dBm
dBm
dBm
dBc
dBc
dBc
dBc
ADL5802
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage, VPOS
VSET, ENBL
OP1+, OP1−, OP2+, OP2−
RF Input Power
Internal Power Dissipation
θJA (Exposed Paddle Soldered Down)1
θJC (at Exposed Paddle)
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
1
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rating
5.5 V
5.5 V
5.5 V
20 dBm
1.6 W
26.5°C/W
8.7°C/W
150°C
−40°C to +85°C
−65°C to +150°C
ESD CAUTION
As measured on the evaluation board. For details, see the Evaluation Board
section.
Rev. 0 | Page 5 of 32
ADL5802
24
23
22
21
20
19
VPOS
RF1+
RF1–
GND
RF2+
RF2–
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
PIN 1
INDICATOR
ADL5802
TOP VIEW
(Not to Scale)
18
17
16
15
14
13
GND
GND
OP2+
OP2–
GND
VPOS
07882-002
1
2
3
4
5
6
ENBL 7
GND 8
LOIP 9
LOIN 10
GND 11
VSET 12
GND
GND
OP1+
OP1–
GND
VPOS
NOTES
1. THERE IS AN EXPOSED PADDLE THAT
MUST BE SOLDERED TO GROUND.
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
Mnemonic
Function
GND
Device Common (DC Ground).
1, 2, 5, 8, 11,
14, 17, 18, 21
3, 4
OP1+, OP1−
Channel 1 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or
the center tap of the IF transformer.
6, 13, 24
VPOS
Positive Supply Voltage. 5.0 V nominal.
7
ENBL
Device Enable. Pull low or leave disconnected to enable the device; pull high to disable the device.
9, 10
LOIP, LOIN
Differential LO Input Terminals. Internally matched to 50 Ω; must be ac-coupled.
12
VSET
High Input IP3 Bias Control. For high input IP3 performance, apply ~4 V to 5 V. Improved noise figure (NF)
performance and lower supply current can be set by applying ~2 V to 3 V to the VSET pin. A resistor can be
connected to the supply to raise the voltage, whereas a resistor to GND lowers the voltage.
15, 16
OP2−, OP2+
Channel 2 Mixer Differential Output Terminals. Bias must be applied through pull-up choke inductors or
the center tap of the IF transformer.
19, 20
RF2−, RF2+
Differential RF Input Terminals for Channel 2. Internally matched to 50 Ω; must be ac-coupled.
22, 23
RF1−, RF1+
Differential RF Input Terminals for Channel 1. Internally matched to 50 Ω; must be ac-coupled.
EPAD
Exposed Paddle. Must be soldered to ground.
Rev. 0 | Page 6 of 32
ADL5802
TYPICAL PERFORMANCE CHARACTERISTICS
DOWNCONVERTER MODE USING A BROADBAND BALUN
VS = 5 V, TA = 25°C, VSET = 4 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side local oscillator (LO), unless
otherwise noted. Insertion loss of input and output baluns (TC1-1-13M+, TC4-1W+) is extracted from the gain measurement.
6
4.0
39.96
3.5
33.30
3.0
26.64
TA = –40°C
3
TA = +25°C
GAIN (dB)
GAIN (dB)
2
1
0
TA = +85°C
2.5
2.0
–1
–2
19.98
GAIN = 900MHz
GAIN = 1900MHz
INPUT IP3 = 900MHz
INPUT IP3 = 1900MHz
13.32
6.66
07882-003
1.5
–3
–4
0
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
0
1.0
–15
3500
Figure 3. Power Conversion Gain vs. RF Frequency
–10
–5
0
5
LO POWER (dBm)
10
07882-006
4
15
Figure 6. Power Conversion Gain and Input IP3 vs. LO Power
4.0
100
MEAN = 1.5
SD = 0.039
3.5
80
FREQUENCY (%)
3.0
GAIN (dB)
2.5
2.0
900MHz
1.5
1900MHz
60
40
1.0
07882-004
1.96
1.88
1.80
1.72
1.64
1.56
1.48
1.40
0
250
1.32
200
1.24
100
150
IF FREQUENCY (MHz)
1.16
50
1.00
0
1.08
0
07882-007
20
0.5
GAIN (dB)
Figure 4. Power Conversion Gain vs. IF Frequency
Figure 7. Power Conversion Gain Distribution
3.0
0.30
2.5
0.25
2.5
TA = –40°C
GAIN = 900MHz
GAIN = 1900MHz
IPOS = 900MHz
IPOS = 1900MHz
0.5
0
0
1
2
3
VSET (V)
4
5
TA = +85°C
1.0
0.5
0.05
0
1.5
6
Figure 5. Power Conversion Gain and IPOS vs. VSET
0
4.7
07882-008
0.10
1.0
07882-005
GAIN (dB)
0.15
1.5
TA = +25°C
GAIN (dB)
0.20
SUPPLY CURRENT (A)
2.0
2.0
4.8
4.9
5.0
SUPPLY (V)
5.1
5.2
Figure 8. Power Conversion Gain vs. Supply Voltage
Rev. 0 | Page 7 of 32
INPUT IP3 (dBm)
5
5.3
ADL5802
80
40
TA = –40°C
TA = +25°C
70
35
TA = +85°C
60
30
15
50
40
30
10
20
5
10
0
0
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
TA = +25°C
07882-012
INPUT IP2 (dBm)
TA = –40°C
20
07882-009
INPUT IP3 (dBm)
TA = +85°C
25
0
0
3500
Figure 9. Input IP3 vs. RF Frequency
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
3500
Figure 12. Input IP2 vs. RF Frequency
40
80
70
35
900MHz
30
INPUT IP2 (dBm)
INPUT IP3 (dBm)
60
1900MHz
25
900MHz
50
1900MHz
40
30
20
20
15
10
0
50
100
150
IF FREQUENCY (MHz)
200
07882-013
07882-010
10
0
0
250
50
100
150
IF FREQUENCY (MHz)
200
250
Figure 13. Input IP2 vs. IF Frequency
Figure 10. Input IP3 vs. IF Frequency
80
35
70
30
900MHz
60
INPUT IP2 (dBm)
20
15
10
50
40
1900MHz
30
20
5
0
0
1
2
3
VSET (V)
10
4
5
07882-014
INPUT IP3 = 900MHz
INPUT IP3 = 1900MHz
NF = 900MHz
NF = 1900MHz
07882-011
INPUT IP3 (dBm)
25
0
0
6
1
2
3
VSET (V)
4
Figure 14. Input IP2 vs. VSET
Figure 11. Input IP3, Noise Figure vs. VSET
Rev. 0 | Page 8 of 32
5
6
ADL5802
25
20
18
20
TA = –40°C
14
TA = +85°C
NOISE FIGURE (dB)
12
10
TA = +25°C
8
6
NF vs. IF, RF = 1900MHz
15
10
NF vs. IF, RF = 900MHz
5
07882-015
4
2
0
0
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
07882-018
INPUT P1dB (dBm)
16
0
0
3500
Figure 15. Input P1dB vs. RF Frequency
100
200
300
400
500
IF FREQUENCY (MHz)
600
700
Figure 18. SSB Noise Figure vs. IF Frequency
20
30
18
25
14
NOISE FIGURE (dB)
900MHz
12
1900MHz
10
8
6
20
NF, RF 1846MHz,
IF 153MHz, BLOCKER 1841MHz
15
10
NF, RF 951MHZ,
IF 153MHz, BLOCKER 946MHz
4
0
0
50
100
150
IF FREQUENCY (MHz)
200
0
–30
250
18
20
16
18
NOISE FIGURE (dB)
TA = +25°C
12
10
TA = –40°C
8
–20
–15
–10
–5
BLOCKER LEVEL (dBm)
0
5
10
16
TA = +85°C
14
–25
Figure 19. SSB Noise Figure vs. Blocker Level
6
4
14
12
1900MHz
10
900MHz
8
6
4
2
07882-017
NOISE FIGURE (dB)
Figure 16. Input P1dB vs. IF Frequency
07882-019
07882-016
5
2
0
0
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
07882-020
INPUT P1dB (dBm)
16
2
0
–15
3500
–10
–5
0
5
LO LEVEL (dBm)
Figure 20. SSB Noise Figure vs. LO Drive
Figure 17. SSB Noise Figure vs. RF Frequency
Rev. 0 | Page 9 of 32
10
15
ADL5802
–10
–0
RF RETURN LOSS 5500MHz BALUN:
5400BL15B050 3pF INPUT CAPACITANCE
–15
–5
LO TO IF LEAKAGE (dBm)
–20
RETURN LOSS (dB)
–10
–15
–20
RF RETURN LOSS 3500MHz BALUN:
3600BL14M050 1.5pF INPUT CAPACITANCE
–25
RF RETURN LOSS 2500MHz BALUN:
2500BL14M050 3pF INPUT CAPACITANCE
–30
TA = –40°C
–25
TA = +25°C
–30
–35
–40
TA = +85°C
–45
07882-021
RF RETURN LOSS 900MHz AND 1900MHz BALUN:
TC1-1-13M+ 100pF INPUT CAPACITANCE
–40
0
1000
2000
3000
4000
5000
FREQUENCY (MHz)
6000
07882-024
–50
–35
–55
–60
7000
0
LO RETURN LOSS 2500MHz BALUN:
2500BL14M050 3pF
LO RETURN LOSS 5500MHz BALUN:
INPUT CAPACITANCE
5400BL15B050 3pF
INPUT CAPACITANCE
3500
–15
–20
LO TO RF LEAKAGE (dBm)
–5
–10
–15
LO RETURN LOSS BALUN:
TC1-1-13M+ 100pF
INPUT CAPACITANCE
–20
TA = +85°C
–25
TA = +25°C
–30
–35
TA = –40°C
–40
–45
–50
–25
07882-022
LO RETURN LOSS 3500MHz BALUN:
3600BL14M050 1.5pF
INPUT CAPACITANCE
–30
0
1000
2000
3000
4000
5000
FREQUENCY (MHz)
6000
07882-025
RETURN LOSS (dB)
3000
–10
0
–55
–60
0
7000
Figure 22. LO Return Loss Measured Differentially at the LO Port
6
300
4
RESISTANCE
200
2
CAPACITANCE
100
0
100
IF FREQUENCY (MHz)
1000
3000
3500
–2
3000
–10
–20
TA = +25°C
–30
TA = +85°C
–40
TA = –40°C
–50
07882-026
400
1000
1500
2000
2500
LO FREQUENCY (MHz)
0
RF TO IF OUTPUT ISOLATION (dBc)
8
CAPACITANCE (pF)
500
500
Figure 25. LO to RF Leakage vs. LO Frequency
07882-023
RESISTANCE (Ω)
1000
1500
2000
2500
LO FREQUENCY (MHz)
Figure 24. LO to IF Leakage vs. LO Frequency
Figure 21. RF Return Loss Measured Differentially at the RF Port
0
10
500
–60
0
Figure 23. IF Differential Output Impedance (R Parallel C Equivalent)
Rev. 0 | Page 10 of 32
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
Figure 26. RF to IF Output Isolation vs. RF Frequency
3500
ADL5802
65
60
TA = –40°C
55
TA = +25°C
50
45
TA = +85°C
40
35
30
07882-027
CHANNEL-TO-CHANNEL ISOLATION (dB)
70
25
20
0
500
1000
1500
2000
2500
RF FREQUENCY (MHz)
3000
3500
Figure 27. RF Channel Isolation
Rev. 0 | Page 11 of 32
ADL5802
DOWNCONVERTER MODE USING A JOHANSON 2.7 GHZ BALUN
VS = 5 V, TA = 25°C, VSET = 4.5 V, IF = 211 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.
Insertion loss of input and output baluns (2500BL14M050, TC4-1W+) is included in the gain measurement.
5
35
4
30
3
25
INPUT IP3 (dBm)
GAIN (dB)
2
TA = –40°C
1
TA = +25°C
0
–1
–2
INPUT IP3
20
15
NOISE FIGURE
10
TA = +85°C
–3
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
0
0
3100
5
0.30
4
0.27
0.18
0.15
–1
0.12
–2
0.09
–3
0.06
–4
0.03
0
–5
3
VSET (V)
4
5
TA = –40°C
50
45
TA = +25°C
40
30
1900
6
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
3100
5
6
Figure 32. Input IP2 vs. RF Frequency
Figure 29. Power Conversion Gain and IPOS vs. VSET
35
6
35
07882-029
GAIN
2
5
TA = +85°C
INPUT IP2 (dBm)
1
1
4
55
SUPPLY CURRENT (A)
0.21
50
TA = +85°C
TA = +25°C
48
30
46
25
44
INPUT IP2 (dBm)
TA = –40°C
20
15
42
40
38
36
10
0
1900
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
07882-033
34
5
07882-030
INPUT IP3 (dBm)
GAIN (dB)
2
0
3
VSET (V)
60
0.24
IPOS
0
2
Figure 31. Input IP3, Noise Figure vs. VSET
Figure 28. Power Conversion Gain vs. RF Frequency
3
1
07882-032
–5
1900
07882-031
5
07882-028
–4
32
30
3100
0
1
2
3
VSET (V)
4
Figure 33. Input IP2 vs. VSET
Figure 30. Input IP3 vs. RF Frequency
Rev. 0 | Page 12 of 32
ADL5802
15
0
TA = +25°C
TA = +85°C
–5
14
INPUT P1dB (dBm)
13
TA = –40°C
12
11
10
–15
–20
–25
TA = –40°C
–30
–35
TA = +25°C
–40
8
1900
07882-034
9
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
TA = +85°C
–45
–50
1900
3100
07882-037
LO TO IF LEAKAGE (dBm)
–10
2100
2300
2500
2700
2900
3100
LO FREQUENCY (MHz)
Figure 34. Input P1dB vs. RF Frequency
Figure 37. LO to IF Leakage vs. LO Frequency
20
–30
18
–31
16
–32
TA = +85°C
TA = +85°C
TA = +25°C
12
10
TA = –40°C
8
6
TA = –40°C
–34
–35
–36
–37
–38
07882-035
4
2
0
1800
–33
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
07882-038
NOISE FIGURE (dB)
14
LO TO RF LEAKAGE (dBm)
TA = +25°C
–39
–40
1900
3000
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
3100
Figure 38. LO to RF Leakage vs. LO Frequency
Figure 35. SSB Noise Figure vs. RF Frequency
30
20
NF, RF 2145MHz,
IF 230MHz, BLOCKER 2140MHz
15
10
5
0
–60
07882-036
NOISE FIGURE (dB)
25
–50
–40
–30
–20
–10
0
–23
TA = –40°C
–25
–27
TA = +85°C
–29
–31
–33
–35
1900
10
BLOCKER LEVEL (dBm)
TA = +25°C
07882-039
RF TO IF OUTPUT ISOLATION (dBc)
–21
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
Figure 39. RF to IF Output Isolation vs. RF Frequency
Figure 36. SSB Noise Figure vs. Blocker Level
Rev. 0 | Page 13 of 32
3100
ADL5802
48
46
TA = –40°C
44
42
40
TA = +25°C
38
TA = +85°C
36
34
07882-040
CHANNEL-TO-CHANNEL ISOLATION (dB)
50
32
30
1900
2100
2300
2500
2700
RF FREQUENCY (MHz)
2900
3100
Figure 40. RF Channel Isolation
Rev. 0 | Page 14 of 32
ADL5802
DOWNCONVERTER MODE USING A JOHANSON 3.5 GHZ BALUN
VS = 5 V, TA = 25°C, VSET = 5 V, IF = 153 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.
Insertion loss of input and output baluns (3600BL14M050, TC4-1W+) is included in the gain measurement.
5
25
4
20
3
INPUT IP3
TA = –40°C
1
GAIN (dB)
INPUT IP3 (dBm)
2
TA = +25°C
0
–1
15
NOISE FIGURE
10
–2
TA = +85°C
07882-041
–4
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
0
0
4100
0.30
50
4
0.27
48
0.24
46
IPOS
0.18
1
0.15
0
GAIN
0.12
–2
0.09
–3
0.06
–4
0.03
–5
0
1
2
3
VSET (V)
4
5
44
3
VSET (V)
4
5
6
TA = –40°C
42
40
TA = +85°C
38
TA = +25°C
36
34
07882-042
–1
32
30
2900
6
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
4100
5
6
Figure 45. Input IP2 vs. RF Frequency
Figure 42. Power Conversion Gain and IPOS vs. VSET
50
30
TA = +85°C
48
TA = +25°C
25
46
TA = –40°C
44
INPUT IP2 (dBm)
20
15
10
40
38
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
07882-046
34
5
0
2900
42
36
07882-043
INPUT IP3 (dBm)
GAIN (dB)
0.21
INPUT IP2 (dBm)
3
SUPPLY CURRENT (A)
5
0
2
Figure 44. Input IP3, Noise Figure vs. VSET
Figure 41. Power Conversion Gain vs. RF Frequency
2
1
07882-045
–5
2900
07882-044
5
–3
32
30
4100
0
Figure 43. Input IP3 vs. RF Frequency
1
2
3
VSET (V)
4
Figure 46. Input IP2 vs. VSET
Rev. 0 | Page 15 of 32
ADL5802
15
–20
TA = +85°C
TA = +25°C
14
LO TO IF LEAKAGE (dBm)
–25
12
TA = –40°C
11
10
TA = +25°C
–35
TA = +85°C
TA = –40°C
–40
07882-047
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
–50
2900
4100
3900
4100
–24
LO TO RF LEAKAGE (dBm)
14
12
10
TA = –40°C
TA = +25°C
8
6
4
TA = –40°C
–26
–28
–30
TA = +25°C
TA = +85°C
–32
–34
07882-048
–36
2
2900
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
4100
–38
–40
2900
4300
–15
RF TO IF OUTPUT ISOLATION (dBc)
–10
40
35
30
25
NF, RF 3805MHz,
IF 300MHz, BLOCKER 3800MHz
15
10
–30
–20
–10
0
3300
3500
3700
LO FREQUENCY (MHz)
3900
4100
–20
–25
–30
TA = –40°C
TA = +25°C
TA = +85°C
–35
–40
–45
07882-049
5
–40
3100
Figure 51. LO to RF Leakage vs. LO Frequency
Figure 48. SSB Noise Figure vs. RF Frequency
45
–50
07882-051
NOISE FIGURE (dB)
3700
–22
TA = +85°C
16
NOISE FIGURE (dB)
3500
–20
18
0
–60
3300
Figure 50. LO to IF Leakage vs. LO Frequency
20
20
3100
LO FREQUENCY (MHz)
Figure 47. Input P1dB vs. RF Frequency
0
2700
07882-050
–45
9
8
2900
–30
–50
2900
10
07882-052
INPUT P1dB (dBm)
13
3100
3300
3500
3700
3900
RF FREQUENCY (MHz)
BLOCKER LEVEL (dBm)
Figure 49. SSB Noise Figure vs. Blocker Level
Figure 52. RF to IF Output Isolation vs. RF Frequency
Rev. 0 | Page 16 of 32
4100
ADL5802
48
46
44
42
TA = +25°C
40
38
TA = –40°C
36
TA = +85°C
34
07882-053
CHANNEL-TO-CHANNEL ISOLATION (dB)
50
32
30
2900
3100
3300
3500
3700
RF FREQUENCY (MHz)
3900
4100
Figure 53. RF Channel Isolation
Rev. 0 | Page 17 of 32
ADL5802
DOWNCONVERTER MODE USING A JOHANSON 5.7 GHZ BALUN
VS = 5 V, TA = 25°C, VSET = 4.8 V, IF = 380 MHz, as measured using a typical circuit schematic with low-side LO, unless otherwise noted.
Insertion loss of input and output baluns (5400BL15B050, TC4-1W+) is included in the gain measurement.
25
30
2
20
24
–2
–4
18
15
NOISE FIGURE
10
12
TA = +25°C
–6
6
07882-054
5
5100
5300
5500
5700
RF FREQUENCY (MHz)
5900
0
0
6100
0
60
0.27
55
3
0.24
50
2
0.21
0.18
0
0.15
–1
0.12
0.09
–2
GAIN
07882-055
0
–5
2
3
VSET (V)
4
5
6
TA = +85°C
TA = +25°C
35
TA = –40°C
30
15
10
4900
6
5100
5300
5500
5700
RF FREQUENCY (MHz)
5900
Figure 58. Input IP2 vs. RF Frequency
50
30
TA = –40°C
TA = +25°C
45
INPUT IP2 (dBm)
25
TA = +85°C
15
10
40
35
30
07882-056
5100
5700
5300
5500
RF FREQUENCY (MHz)
5900
20
1.5
6100
07882-059
25
5
0
4900
5
40
Figure 55. Power Conversion Gain and IPOS vs. VSET
20
4
20
0.03
1
3
VSET (V)
25
0.06
–4
0
45
INPUT IP2 (dBm)
IPOS
SUPPLY CURRENT (A)
0.30
4
INPUT IP3 (dBm)
GAIN (dB)
5
–3
2
Figure 57. Input IP3, Noise Figure vs. VSET
Figure 54. Power Conversion Gain vs. RF Frequency
1
1
07882-058
–8
4900
07882-057
INPUT IP3 (dBm)
TA = +85°C
TA = –40°C
GAIN (dB)
IP3
NOISE FIGURE (dB)
0
2.0
2.5
3.0
3.5
4.0
VSET (V)
Figure 59. Input IP2 vs. VSET
Figure 56. Input IP3 vs. RF Frequency
Rev. 0 | Page 18 of 32
4.5
5.0
5.5
ADL5802
16
–10
–15
LO TO IF LEAKAGE (dBm)
TA = +85°C
INPUT P1dB (dBm)
14
TA = +25°C
13
12
TA = –40°C
11
10
–20
–25
–30
–35
TA = –40°C
TA = +25°C
–40
–45
TA = +85°C
–50
8
4900
07882-060
9
5100
5300
5500
5700
RF FREQUENCY (MHz)
5900
07882-063
15
–55
–60
4900
6100
Figure 60. Input P1dB vs. RF Frequency
5100
5300
5500
5700
LO FREQUENCY (MHz)
5900
6100
Figure 63. LO to IF Leakage vs. LO Frequency
–15
25
–17
LO TO RF LEAKAGE (dBm)
15
10
TA = –40°C
TA = +25°C
TA = +85°C
5
–21
–23
TA = –40°C
TA = +25°C
–25
–27
–29
TA = +85°C
5100
5300
5500
5700
RF FREQUENCY (MHz)
5900
–33
–35
4900
6100
Figure 61. SSB Noise Figure vs. RF Frequency
40
–35
RF TO IF OUTPUT ISOLATION (dBc)
–30
30
25
NF, RF 5805MHz,
IF 380MHz, BLOCKER 5800MHz
15
10
07882-062
NOISE FIGURE (dB)
35
5
0
–60
–50
–40
–30
–20
BLOCKER LEVEL (dBm)
–10
5100
5300
5500
5700
LO FREQUENCY (MHz)
5900
6100
Figure 64. LO to RF Leakage vs. LO Frequency
45
20
07882-064
–31
07882-061
0
4900
–19
–40
TA = –40°C
–50
TA = +85°C
–55
–60
–65
–70
4900
0
TA = +25°C
–45
07882-065
NOISE FIGURE (dB)
20
5100
5300
5500
5700
5900
RF FREQUENCY (MHz)
Figure 62. SSB Noise Figure vs. Blocker Level
Figure 65. RF to IF Output Isolation vs. RF Frequency
Rev. 0 | Page 19 of 32
6100
ADL5802
43
41
39
37
35
33
31
29
27
25
4900
TA = –40°C
TA = +25°C
TA = +85°C
5100
5300
5500
5700
RF FREQUENCY (MHz)
07882-066
CHANNEL-TO-CHANNEL ISOLATION (dB)
45
5900
6100
Figure 66. RF Channel Isolation
Rev. 0 | Page 20 of 32
ADL5802
SPUR PERFORMANCE
All spur tables are (N × fRF) − (M × fLO) and were measured using the standard evaluation board (see the Evaluation Board section). Mixer
spurious products are measured in decibels relative to the carrier (dBc) from the IF output power level. Data was measured for frequencies
less than 6 GHz only. The typical noise floor of the measurement system is −100 dBm.
900 MHz Performance
VS = 5 V, VSET = 4 V, T A = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 900 MHz, fLO = 703 MHz, Z0 = 50 Ω.
0
0
1
2
3
4
5
6
N
−34.3
−49.1
−86.7
−91.8
≤100
≤100
7
8
9
1
−35.9
0.0
−69.2
−79.6
≤100
≤100
≤100
2
−25.5
−46.3
−68.2
≤100
−96.4
≤100
≤100
3
−47.3
−19.8
−61.6
−67.3
≤100
≤100
≤100
4
−27.4
−64.3
−68.7
−98.0
≤100
≤100
≤100
5
−51.5
−30.0
−80.7
−71.0
≤100
≤100
≤100
6
−37.5
−75.6
−67.5
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
10
11
12
13
14
15
M
7
−62.1
−45.0
−88.1
−86.3
≤100
≤100
≤100
8
−47.5
−67.8
−79.1
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
9
10
11
12
13
14
−55.3
−82.6
≤100
≤100
≤100
≤100
−91.5
≤100
≤100
≤100
≤100
≤100
−98.4
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
13
14
≤100
≤100
≤100
≤100
≤100
≤100
≤100
2090 MHz Performance
VS = 5 V, VSET = 4 V, T A = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 2090 MHz, fLO = 1842 MHz, Z0 = 50 Ω.
M
0
0
1
2
3
4
5
6
N
7
8
9
10
11
12
13
14
15
−26.8
−59.8
1
−43.0
0.0
−71.9
−67.6
2
−23.7
−59.6
−53.8
−97.6
≤100
3
−52.9
−42.2
−67.5
−59.3
≤100
≤100
4
−80.5
−68.2
−92.2
−93.7
≤100
≤100
5
−84.1
−79.3
−97.8
−96.1
≤100
≤100
6
≤100
≤100
≤100
≤100
≤100
≤100
7
8
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
Rev. 0 | Page 21 of 32
9
10
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
11
≤100
≤100
≤100
≤100
≤100
≤100
12
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
ADL5802
2600 MHz Performance
VS = 5 V, VSET = 4.5 V, T A = 25°C, RF power = 0 dBm, LO power = 0 dBm, f RF = 2600 MHz, fLO = 2350 MHz, Z0 = 50 Ω.
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
−27.5
−75.5
1
−37.9
0.0
−59.7
−75.0
2
−31.5
−62.6
−52.2
−88.7
≤100
3
4
−36.3
−65.8
−56.3
≤100
≤100
−68.8
−86.8
−82.5
≤100
5
6
7
8
9
−90.5
−92.1
−94.4
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
10
≤100
≤100
≤100
≤100
≤100
11
≤100
≤100
≤100
≤100
≤100
12
≤100
≤100
≤100
≤100
≤100
13
14
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
13
14
3500 MHz Performance
VS = 5 V, VSET= 5 V, T A = 25°C, RF power = 0 dBm, LO power = 0 dBm, fRF = 3500 MHz, fLO = 3800 MHz, Z0 = 50 Ω.
M
0
0
1
2
3
4
5
6
N
7
8
9
10
11
12
13
14
15
−26.8
−59.8
1
−43.0
0.0
−71.9
−67.6
2
−23.7
−59.6
−53.8
−97.6
≤100
3
−52.9
−42.2
−67.5
−59.3
≤100
≤100
4
−80.5
−68.2
−92.2
−93.7
≤100
≤100
5
−84.1
−79.3
−97.8
−96.1
≤100
≤100
6
≤100
≤100
≤100
≤100
≤100
≤100
7
8
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
Rev. 0 | Page 22 of 32
9
10
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
11
≤100
≤100
≤100
≤100
≤100
≤100
12
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
≤100
ADL5802
5800 MHz Performance
VS = 5 V, VSET= 4.8 V, T A = 25°C, RF power = −10 dBm, LO power = 0 dBm, f RF = 5800 MHz, fLO = 5600 MHz, Z 0 = 50 Ω.
M
0
N
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
−63.6
1
−28.3
0.0
2
−80.5
−48.6
3
−92.6
−64.2
4
−98.7
−90.5
5
−98.3
≤100
6
−99.4
−81.6
7
−98.0
−87.2
15
Rev. 0 | Page 23 of 32
8
−95.9
−84.0
9
−99.5
≤100
10
≤100
≤100
11
≤100
≤100
12
≤100
≤100
13
−99.6
≤100
14
−99.8
≤100
ADL5802
CIRCUIT DESCRIPTION
The ADL5802 provides two double-balanced active mixers.
These mixers are designed for a 50 Ω input impedance and a
200 Ω output impedance. Both are driven from a common local
oscillator (LO) amplifier. The RF inputs and LO outputs are
differential, providing maximum usable bandwidth at the input
and output ports. The LO also operates with a 50 Ω input
impedance and can, optionally, be operated differentially or
single-ended. The input, output, and LO ports can be operated
over an exceptionally wide frequency range. The ADL5802 can
be configured as a downconvert mixer or as an upconvert mixer.
The ADL5802 can be divided into the following sections: the
local oscillator (LO) amplifier and splitter, the RF voltage-tocurrent (V-to-I) converter, the mixer cores, the output loads,
and the bias circuit. A simplified block diagram of the device is
shown in Figure 67. The LO block generates a pair of differential
LO signals to drive two mixer cores. The RF input is converted
into current by the V-to-I converters that then feed into the two
mixer cores. The internal differential load of the mixers is
designed for a wideband 200 Ω output impedance from the
mixer. Reference currents to each section are generated by the
bias circuit, which can be enabled or disabled using the ENBL
pin. A detailed description of each section of the ADL5802
follows.
VPOS RF1+ RF1– GND RF2+ RF2–
24
23
22
21
20
19
1
18
GND
GND
2
17
GND
OP1+
3
16
OP2+
OP1–
4
15
OP2–
GND
5
14
GND
13
VPOS
VPOS
6
IP3
BIAS
ADL5802
7
8
9
10
11
12
ENBL GND LOIP LOIN GND VSET
The differential RF input signal is applied to a voltage-to-current
converter that converts the differential input voltage to output
currents. The V-to-I converter provides a 50 Ω input
impedance. The V-to-I section bias current can be adjusted up
or down using the VSET pin. Adjusting the current up improves
IP3 and P1dB input but degrades SSB NF. Adjusting the current
down improves SSB NF but degrades IP3 and P1dB input. The
conversion gain remains nearly constant over a wide range of
VSET pin settings, allowing the part to be adjusted dynamically
without affecting the conversion gain. The current adjustment
can be made by connecting a resistor from the VSET pin to the
positive supply to increase the bias current or from the VSET
pin to ground to decrease the bias current. The VSET pin
impedance is approxi-mately 675 Ω in series with two diodes
and an internal current source.
MIXER CORES
The ADL5802 has two double-balanced mixers that use high
performance SiGe NPN transistors. These mixers are based on
the Gilbert cell design of four cross-connected transistors.
MIXER LOAD
Each mixer load is designed to use a pair of 100 Ω resistors connected to the positive supply. This provides a 200 Ω differential
output resistance. The mixer output should be pulled to the
positive supply externally using a pair of RF chokes or using an
output transformer with the center tap connected to the positive
supply. It is possible to exclude these components when the mixer
core current is low, but both P1dB and IP3 are then reduced.
The mixer load output can operate from direct current (dc) up to
approximately 500 MHz into a 200 Ω load. For upconversion
applications, the mixer load can be matched using off-chip
matching components. Transmit operation up to 2 GHz is
possible. See the Applications Information section for matching
circuit details.
07882-128
GND
RF VOLTAGE TO CURRENT (V-TO-I) CONVERTER
BIAS CIRCUIT
Figure 67. ADL5802 Block Diagram
LO AMPLIFIER AND SPLITTER
The LO input is amplified using a broadband LNA and is then
split and followed by separate LO limiting amplifiers. The LNA
input impedance is nominally 50 Ω. The LO is designed to
accommodate a wide range of LO input power levels. The LO
input is conditioned by the series of amplifiers to provide a well
controlled and limited LO swing to the mixer core, resulting in
excellent IP3. The LO circuit exhibits low additive noise,
resulting in an excellent mixer noise figure and output noise
under RF blocking. For optimal performance, the LO inputs
should be driven differentially but at lower frequencies; singleended drive is acceptable.
A band gap reference circuit generates the reference currents
used by the mixers. The bias circuit can be enabled and disabled
using the ENBL pin. If the ENBL pin is grounded or left open,
the part is enabled. Pulling the ENBL pin high shuts off the bias
circuit and disables the part. However, the ENBL pin does not
alter the current in the LO section and, therefore, does not
provide a true power-down feature. Certain configurations may
require the VSET pin to be connected to the positive supply
through a resistor. This will result in an increased mixer core
current. Unless this resistor to positive supply is removed, bias
current will continue to be supplied to the mixer core.
Rev. 0 | Page 24 of 32
ADL5802
APPLICATIONS INFORMATION
BASIC CONNECTIONS
RF AND LO PORTS
The ADL5802 features dual channel mixers with a common
local oscillator (LO). The mixer is designed to translate between
radio frequencies (RF) and intermediate frequencies (IF). For
both upconversion and downconversion applications, RF1+
(Pin 23), RF1− (Pin 22), RF2+ (Pin 20), and RF2− (Pin 19)
must be configured as the input interfaces. OP1+ (Pin 3), OP1−
(Pin 4), OP2+ (Pin 16), and OP2− (Pin 15) must be configured
as the output interfaces. Figure 68 illustrates the basic connections
for ADL5802 operation.
The RF and LO input ports are designed for differential input
impedance of approximately 50 Ω. Figure 69 and Figure 70
illustrate the RF and LO interfaces, respectively. It is recommended
that each of the RF and LO differential ports be driven through a
balun for optimum performance. It is also necessary to accouple both RF and LO ports with the proper size capacitors.
Table 4 lists the recommended components for various RF
frequency bands. The characterization data is available in the
Typical Performance Characteristics section.
RF2
RF1
T3
T5
C13
C5
C14
C12
VPOS
C8
C11
24
23
22
21
20
19
VPOS RF1+ RF1– GND RF2+ RF2–
C16
GND 18
2 GND
GND 17
3 OP1+
VPOS
OP2+ 16
C15
ADL5802
T4
VPOS
T2
4 OP1–
OP2– 15
5 GND
GND 14
C9
ENBL GND LOIP LOIN GND VSET
7
VPOS
VPOS 13
6 VPOS
C6
IF2P
8
9
10
11
C7
C10
12
VSET
C2
C3
T1
LO
Figure 68. Basic Connections Schematic
Rev. 0 | Page 25 of 32
07882-101
VPOS
IF1P
1 GND
ADL5802
RF1
frequency. A variety of suitable choke inductors is commercially
available from manufacturers such as Coilcraft and Murata. An
impedance transforming network may be required to transform
the final load impedance to 200Ω at the IF outputs.
RF2
T5
C13
T3
C14
23
C5
22
21
C12
19
20
07882-102
RF1+ RF1– GND RF2+ RF2–
ADL5802
1 GND
VPOS
Figure 69. ADL5802 RF Interface
2 GND
IF1P
3 OP1+
C16
ADL5802
ADL5802
T4
4 OP1–
ENBL GND LOIP LOIN GND
7
8
9
10
11
5 GND
C2
C3
T1
07882-103
GND 18
GND 17
Figure 70. ADL5802 LO Interface
VPOS
OP2+ 16
C15
ADL5802
Table 4. Suggested Components for the RF and LO Interfaces
RF and LO
C2, C3, C5,
Frequency
T1, T3, T5
C12, C13, C14
900 MHz
Mini-Circuits® TC1-1-13M+ 100 pF
1900 MHz
Mini-Circuits TC1-1-13M+
100 pF
2500 MHz
3 pF
Johanson Technology
2500BL14M050
3500 MHz
1.5 pF
Johanson Technology
3600BL14M050
5500 MHz
3 pF
Johanson Technology
5400BL15B050
T2
OP2– 15
IF2P
07882-104
GND 14
Figure 71. Biasing the IF Port Open-Collector Outputs
Using a Center-Tapped Impedance Transformer
VPOS
C17
L3
IF PORT
1
GND
2
GND
3
OP1+
4
OP1–
5
GND
IF1 OUT+
The IF port features an open-collector differential output
interface. It is necessary to bias the open collector outputs using
one of the schemes presented in Figure 71 and Figure 72.
ZL
IMPEDANCE
TRANSFORMING
NETWORK
IF1 OUT–
L4
Figure 71 shows the use of center-tapped impedance transformers.
The turns ratio of the transformer should be selected to provide
the desired impedance transformation. In the case of a 50 Ω
load impedance, a 4:1 impedance ratio transformer should be
used to transform the 50 Ω load into a 200 Ω differential load at
the IF output pins.
Figure 72 shows a differential IF interface where pull-up choke
inductors are used to bias the open-collector outputs. The
shunting impedance of the choke inductors used to couple dc
current into the mixer core should be large enough at the IF
frequency of operation so as not to load down the output
current before it reaches the intended load. Additionally, the dc
current handling capability of the selected choke inductors
must be at least 45 mA. The self-resonant frequency of the
selected choke inductors must be higher than the intended IF
ADL5802
ZLOAD = 200Ω
C18
VPOS
VPOS
GND 18
GND 17
C4
L2
IF2 OUT+
OP2+ 16
ADL5802
Rev. 0 | Page 26 of 32
ZLOAD = 200Ω
OP2– 15
GND 14
L1
C1
IMPEDANCE
TRANSFORMING
NETWORK
ZL
IF2 OUT–
VPOS
Figure 72. Biasing the IF Port Open-Collector Outputs
Using Pull-Up Choke Inductors
07882-105
LO
ADL5802
EVALUATION BOARD
An evaluation board is available for the ADL5802. The standard evaluation board is fabricated using Rogers® RO3003 material. Each of
the RF, LO, and IF ports is configured for single-ended signaling via a balun transformer. The schematic for the evaluation board is shown
in Figure 73. Table 5 describes the various configuration options for the evaluation board. Layout for the board is shown in Figure 74 and
Figure 75.
RF1
RF2
T5
C11
C8
VPOS
GND
C12
24
23
22
20
21
19
VPOS
VPOS RF1+ RF1– GND RF2+ RF2–
L3
GND 18
2 GND
GND 17
R16
3
C16
OP1+
C4
L2
4
OP2+ 16
R6
OP1–
T2
OP2– 15
IF2P
R13
VPOS 13
6 VPOS
C6
C9
GND 14
GND
R10
7
VPOS
8
9
R4
10
11
R20
VPOS
C10
C7
ENBL GND LOIP LOIN GND VSET
R9
C1
R12
12
R5
VSET
R11
C2
ENBL1
C3
R23
T1
R1
VPOS
LON
LO
LOP
R22
07882-100
5
C18
L1
07882-001
L4
R21
VPOS
IF2N
C15
R15
R3
R2
R14
ADL5802
R7
IF1N
C5
GND
1
C17
T4
C14
VPOS
VPOS1
R19
VPOS
IF1P
C13
T3
Figure 73. Evaluation Board Schematic
Table 5. Evaluation Board Configuration
Components
Function
C1, C4, C6, C7, C8, C9, Power supply decoupling. Nominal supply decoupling
C10, C11, C17, C18,
consists of a 0.01 µF capacitor to ground in parallel with 10
R10, R12, R19, R20,
pF capacitors to ground, positioned as close to the device
R21
as possible. Series resistors are provided for enhanced
supply decoupling using optional ferrite chip inductors.
C5, C12, C13, C14, T3, RF Channel 1 and RF Channel 2 input interfaces. Input
T5, RF1, RF2
channels are ac-coupled through C5, C12, C13, and C14. T3
and T4 are 1:1 baluns used to interface to the 50 Ω
differential inputs.
C15, C16, L1, L2, L3,
IF Channel 1 and IF Channel 2 output interfaces. The 200 Ω
L4, R2, R3, R6, R7,
open-collector IF output interfaces are biased through the
R13, R14, R15, R16,
center taps of T2 and T4 4:1 impedance transformers. C15
R20, R21, T2, T4, IF1,
and C16 provide local bypassing with R20 and R21 available
IF2
for additional supply bypassing. R6, R7, R13, R14, R15, and
R16 are provided for IF filtering and matching options.
C2, C3, R4, R5, T1, LO
LO interface. C2 and C3 provide ac coupling for the local
oscillator input. T1 is a 1:1 balun to allow single-ended
interfacing to the differential 50 Ω local oscillator input.
R1, R9, R11, ENBL1
Enable interface. The ADL5802 can be disabled using the 3pin ENBL1 header. The ENBL pin is pulled up to VPOS
through R9. R1 is provided as an optional termination for
the high impedance enable interface. If desired, the ENBL
pin can be driven by an external source through the ENBL
SMA connector.
Rev. 0 | Page 27 of 32
Default Conditions
C6, C7, C8 = 10 pF (size 0402)
C9, C10, C11 = 0.01 µF (size 0402)
C1, C4, C17, C18 = open (size 0402)
R10, R12, R19, R20, R21 = 0 Ω (size 0402)
C5, C12, C13, C14 = 100 pF (size 0402)
T3, T5 = TC1-1-13M+ (Mini-Circuits)
C15, C16 = 100 pF (size 0402)
L1, L2, L3, L4 = open (size 0805)
R2, R3, R13, R14, R15, R16, R20, R21 = 0 Ω (size 0402)
R6, R7 = open (size 0402)
T2, T4 = TC4-1W+ (Mini-Circuits)
C2, C3 = 1 nF (size 0402)
R4, R5 = open (size 0402)
T1 = TC1-1-13M+ (Mini-Circuits)
R9 = 10 kΩ (size 0402); R1, R11 = open (size 0402)
Or R1 = 10 kΩ (size 0402);R9, R11 = open (size 0402)
Or R11 = 10 kΩ (size 0402); R1, R9 = open (size 0402)
ENBL1 = 3-pin header and shunt
ADL5802
Default Conditions
R22, R23 = open (size 0402)
07882-107
EPAD (EP)
Function
VSET bias control. R22 and R23 form an optional resistor
divider network between VPOS and GND, allowing for a
fixed bias setting. See the Typical Performance
Characteristics section to choose the recommended VSET
control voltage for the desired frequency band.
Exposed paddle. Must be soldered to ground.
07882-106
Components
R22, R23, VSET
Figure 74. Evaluation Board Top Layer
Figure 75. Evaluation Board Bottom Layer
Rev. 0 | Page 28 of 32
ADL5802
OUTLINE DIMENSIONS
0.60 MAX
4.00
BSC SQ
TOP
VIEW
0.50
BSC
3.75
BSC SQ
0.50
0.40
0.30
1.00
0.85
0.80
12° MAX
0.80 MAX
0.65 TYP
SEATING
PLANE
24 1
19
18
2.65
2.50 SQ
2.35
EXPOSED
PAD
(BOTTOMVIEW)
13
12
7
6
0.23 MIN
2.50 REF
0.05 MAX
0.02 NOM
0.30
0.23
0.18
PIN 1
INDICATOR
0.20 REF
COPLANARITY
0.08
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8
082908-A
PIN 1
INDICATOR
0.60 MAX
Figure 76. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm × 4 mm Body, Very Thin Quad
(CP-24-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADL5802ACPZ-R71
ADL5802-EVALZ1
1
Temperature
Range
−40°C to +85°C
Package Description
24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
Evaluation Board
Z = RoHS Compliant Part.
Rev. 0 | Page 29 of 32
Package Option
CP-24-3
Ordering Quantity
1,500 per Reel
1
ADL5802
NOTES
Rev. 0 | Page 30 of 32
ADL5802
NOTES
Rev. 0 | Page 31 of 32
ADL5802
NOTES
©2009 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D07882-0-11/09(0)
Rev. 0 | Page 32 of 32