IRF IRFZ34N

PD - _____
IRFZ34N
PRELIMINARY
HEXFET ® Power MOSFET
Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
VDSS = 55V
RDS(on) = 0.040 Ω
ID = 26A
Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing
techniques to achieve the lowest possible on-resistance per silicon area. This
benefit, combined with the fast switching speed and ruggedized device design that
HEXFET Power MOSFETs are well known for, provides the designer with an
extremely efficient device for use in a wide variety of applications.
The TO-220 package is universally preferred for all commercial-industrial
applications at power dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
Absolute Maximum Ratings
Parameter
ID @ T C = 25°C
ID @ T C = 100°C
IDM
PD @T C = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Max.
Continuous Drain Current, V GS @ 10V
Continuous Drain Current, V GS @ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw.
Units
26
18
100
56
0.37
±20
110
16
5.6
4.6
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Min.
Typ.
Max.
Units
––––
––––
––––
––––
0.50
––––
2.7
––––
62
°C/W
8/29/95
IRFZ34N
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(ON)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
∆V(BR)DSS/∆TJ
Min.
55
–––
–––
2.0
6.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.052
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
7.0
49
31
40
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
700
240
100
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, I D = 250µA
––– V/°C Reference to 25°C, I D = 1mA
0.040
Ω
VGS = 10V, I D = 16A
4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 16A
25
VDS = 55V, VGS = 0V
µA
250
VDS = 44V, VGS = 0V, T J = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
34
ID = 16A
6.8
nC
VDS = 44V
14
VGS = 10V, See Fig. 6 and 13
–––
VDD = 28V
–––
ID = 16A
ns
–––
RG = 18Ω
–––
RD = 1.8Ω, See Fig. 10
Between lead,
–––
6mm (0.25in.)
nH
from package
–––
and center of die contact
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
26
–––
–––
100
–––
–––
–––
–––
57
130
1.6
86
200
A
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, I S = 16A, V GS = 0V
TJ = 25°C, I F = 16A
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD ≤ 16 A, di/dt ≤ 420A/µs, V DD ≤ V(BR)DSS,
T J ≤ 175°C
VDD = 25V, starting T J = 25°C, L = 610µH
R G = 25Ω, IAS = 16A. (See Figure 12)
Pulse width ≤ 300µs; duty cycle ≤ 2%.
S+LD)
IRFZ34N
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
10
4.5V
20µs PULSE WIDTH
TC = 25°C
1
0.1
1
10
A
100
10
4.5V
100
2.4
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
10
VDS = 25V
20µs PULSE WIDTH
6
7
8
9
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
10
A
100
Fig 2. Typical Output Characteristics,
TC = 175oC
100
5
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics,
TC = 25oC
1
20µs PULSE WIDTH
TC = 175°C
1
0.1
VDS , Drain-to-Source Voltage (V)
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I , Drain-to-Source Current (A)
D
I , Drain-to-Source Current (A)
D
TOP
10
A
I D = 26A
2.0
1.6
1.2
0.8
0.4
VGS = 10V
0.0
-60 -40 -20
0
20
40
60
A
80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
IRFZ34N
1200
VGS , Gate-to-Source Voltage (V)
1000
C, Capacitance (pF)
20
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
Ciss C oss = Cds + C gd
800
Coss
600
400
Crss
200
0
A
1
10
I D = 16A
V DS = 44V
V DS = 28V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
VDS , Drain-to-Source Voltage (V)
20
30
A
40
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
10
100
TJ = 175°C
TJ = 25°C
10
100
10µs
100µs
10
1ms
VGS = 0V
1
0.4
0.8
1.2
1.6
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
A
2.0
TC = 25°C
TJ = 175°C
Single Pulse
1
1
10ms
A
10
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
100
IRFZ34N
RD
VDS
VGS
30
D.U.T.
RG
VDD
ID, Drain Current (Amps)
25
10 V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
20
Fig 10a. Switching Time Test Circuit
15
10
5
A
0
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
PD M
0.02
0.01
t
1
SINGLE PULSE
(THERMAL RESPONSE)
t2
N otes :
1 . D uty fac tor D = t
0.01
0.00001
1
/t
2
2. P ea k T J = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
t 1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
A
1
10 V
Fig 12a. Unclamped Inductive Test Circuit
EAS , Single Pulse Avalanche Energy (mJ)
IRFZ34N
250
TOP
BOTTOM
200
ID
6.5A
11A
16A
150
100
50
0
VDD = 25V
25
50
A
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 12b. Unclamped Inductive Waveforms
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
10 V
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit
Appendix B: Package Outline Mechanical Drawing
Appendix C: Part Marking Information
175
IRFZ34N
Appendix A
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
D.U.T
RG
•
•
•
•
dv/dt controlled by R G
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
*
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
IRFZ34N
Appendix B
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
3.78 (.149)
3.54 (.139)
-A-
-B4.69 (.185)
4.20 (.165)
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
0.55 (.022)
0.46 (.018)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
Appendix C
Part Marking Information
TO-220AB
EXAMPLE : THIS IS AN IRF1010
WITH ASSEMBLY
LOT CODE 9B1M
A
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRF1010
9246
9B 1M
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK