PD - _____ IRFZ34N PRELIMINARY HEXFET ® Power MOSFET Advanced Process Technology Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Fully Avalanche Rated VDSS = 55V RDS(on) = 0.040 Ω ID = 26A Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. Absolute Maximum Ratings Parameter ID @ T C = 25°C ID @ T C = 100°C IDM PD @T C = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Max. Continuous Drain Current, V GS @ 10V Continuous Drain Current, V GS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. Units 26 18 100 56 0.37 ±20 110 16 5.6 4.6 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Min. Typ. Max. Units –––– –––– –––– –––– 0.50 –––– 2.7 –––– 62 °C/W 8/29/95 IRFZ34N Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(ON) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS ∆V(BR)DSS/∆TJ Min. 55 ––– ––– 2.0 6.5 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.052 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 7.0 49 31 40 Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 700 240 100 IGSS Max. Units Conditions ––– V VGS = 0V, I D = 250µA ––– V/°C Reference to 25°C, I D = 1mA 0.040 Ω VGS = 10V, I D = 16A 4.0 V VDS = VGS, ID = 250µA ––– S VDS = 25V, ID = 16A 25 VDS = 55V, VGS = 0V µA 250 VDS = 44V, VGS = 0V, T J = 150°C 100 VGS = 20V nA -100 VGS = -20V 34 ID = 16A 6.8 nC VDS = 44V 14 VGS = 10V, See Fig. 6 and 13 ––– VDD = 28V ––– ID = 16A ns ––– RG = 18Ω ––– RD = 1.8Ω, See Fig. 10 Between lead, ––– 6mm (0.25in.) nH from package ––– and center of die contact ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– 26 ––– ––– 100 ––– ––– ––– ––– 57 130 1.6 86 200 A V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, I S = 16A, V GS = 0V TJ = 25°C, I F = 16A di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by L Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) ISD ≤ 16 A, di/dt ≤ 420A/µs, V DD ≤ V(BR)DSS, T J ≤ 175°C VDD = 25V, starting T J = 25°C, L = 610µH R G = 25Ω, IAS = 16A. (See Figure 12) Pulse width ≤ 300µs; duty cycle ≤ 2%. S+LD) IRFZ34N 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 10 4.5V 20µs PULSE WIDTH TC = 25°C 1 0.1 1 10 A 100 10 4.5V 100 2.4 R DS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) TJ = 25°C TJ = 175°C 10 VDS = 25V 20µs PULSE WIDTH 6 7 8 9 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 10 A 100 Fig 2. Typical Output Characteristics, TC = 175oC 100 5 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics, TC = 25oC 1 20µs PULSE WIDTH TC = 175°C 1 0.1 VDS , Drain-to-Source Voltage (V) 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I , Drain-to-Source Current (A) D I , Drain-to-Source Current (A) D TOP 10 A I D = 26A 2.0 1.6 1.2 0.8 0.4 VGS = 10V 0.0 -60 -40 -20 0 20 40 60 A 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature IRFZ34N 1200 VGS , Gate-to-Source Voltage (V) 1000 C, Capacitance (pF) 20 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd Ciss C oss = Cds + C gd 800 Coss 600 400 Crss 200 0 A 1 10 I D = 16A V DS = 44V V DS = 28V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 100 0 VDS , Drain-to-Source Voltage (V) 20 30 A 40 Q G , Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 1000 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) ISD , Reverse Drain Current (A) 10 100 TJ = 175°C TJ = 25°C 10 100 10µs 100µs 10 1ms VGS = 0V 1 0.4 0.8 1.2 1.6 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage A 2.0 TC = 25°C TJ = 175°C Single Pulse 1 1 10ms A 10 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 100 IRFZ34N RD VDS VGS 30 D.U.T. RG VDD ID, Drain Current (Amps) 25 10 V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 20 Fig 10a. Switching Time Test Circuit 15 10 5 A 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 PD M 0.02 0.01 t 1 SINGLE PULSE (THERMAL RESPONSE) t2 N otes : 1 . D uty fac tor D = t 0.01 0.00001 1 /t 2 2. P ea k T J = P D M x Z thJ C + T C 0.0001 0.001 0.01 0.1 t 1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case A 1 10 V Fig 12a. Unclamped Inductive Test Circuit EAS , Single Pulse Avalanche Energy (mJ) IRFZ34N 250 TOP BOTTOM 200 ID 6.5A 11A 16A 150 100 50 0 VDD = 25V 25 50 A 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 12b. Unclamped Inductive Waveforms Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit Appendix B: Package Outline Mechanical Drawing Appendix C: Part Marking Information 175 IRFZ34N Appendix A Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D.U.T RG • • • • dv/dt controlled by R G Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD * * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS IRFZ34N Appendix B Package Outline TO-220AB Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A- -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 0.55 (.022) 0.46 (.018) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. Appendix C Part Marking Information TO-220AB EXAMPLE : THIS IS AN IRF1010 WITH ASSEMBLY LOT CODE 9B1M A INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRF1010 9246 9B 1M DATE CODE (YYWW) YY = YEAR WW = WEEK