BF998/BF998R/BF998RW Vishay Telefunken N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode Electrostatic sensitive device. Observe precautions for handling. Applications Input and mixer stages in UHF tuners. Features D D D D D Low input capacitance D High AGC-range D High gain Integrated gate protection diodes Low noise figure Low feedback capacitance High cross modulation performance 2 1 1 13 579 94 9279 3 BF998 Marking: MO Plastic case (SOT 143) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 1 3 BF998R Marking: MOR Plastic case (SOT 143R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 2 13 654 4 95 10831 94 9278 4 4 2 13 566 3 BF998RW Marking: WMO Plastic case (SOT 343R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 1 (9) BF998/BF998R/BF998RW Vishay Telefunken Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Gate 1/Gate 2 - source voltage Total power dissipation Channel temperature Storage temperature range Test Conditions Tamb ≤ 60 °C Symbol Value VDS 12 ID 30 ±IG1/G2SM 10 ±VG1S/G2S 7 Ptot 200 TCh 150 Tstg –65 to +150 Unit V mA mA V mW °C °C Symbol RthChA Unit K/W Maximum Thermal Resistance Tamb = 25_C, unless otherwise specified Parameter Test Conditions Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35mm Cu Value 450 Electrical DC Characteristics Tamb = 25_C, unless otherwise specified Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Drain current Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage Test Conditions ID = 10 mA, –VG1S = –VG2S = 4 V ±IG1S = 10 mA, VG2S = VDS = 0 ±IG2S = 10 mA, VG1S = VDS = 0 ±VG1S = 5 V, VG2S = VDS = 0 ±VG2S = 5 V, VG1S = VDS = 0 VDS = 8 V, VG1S = 0, VG2S = 4 V VDS = 8 V, VG2S = 4 V, ID = 20 mA VDS = 8 V, VG1S = 0, ID = 20 mA www.vishay.de • FaxBack +1-408-970-5600 2 (9) Type BF998/BF998R/ BF998RW BF998A/BF998RA/ BF998RAW BF998B/BF998RB/ BF998RBW Symbol V(BR)DS Min 12 ±V(BR)G1SS 7 14 V ±V(BR)G2SS 7 14 V ±IG1SS 50 nA ±IG2SS 50 nA 18 mA IDSS 4 IDSS 4 IDSS 9.5 Typ Max Unit V 10.5 mA 18 mA –VG1S(OFF) 1.0 2.0 V –VG2S(OFF) 0.6 1.0 V Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Electrical AC Characteristics VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance Power g gain AGC range Noise figure g Document Number 85011 Rev. 4, 23-Jun-99 Test Conditions VG1S = 0, VG2S = 4 V GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz VG2S = 4 to –2 V, f = 800 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3,3 mS, GL = 1 mS, f = 800 MHz Symbol y21s Cissg1 Cissg2 Crss Coss Gps Gps DGps F F Min 21 16.5 40 Typ 24 2.1 1.1 25 1.05 28 20 1.0 1.5 Max 2.5 Unit mS pF pF fF pF dB dB dB dB dB www.vishay.de • FaxBack +1-408-970-5600 3 (9) BF998/BF998R/BF998RW Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) 250 200 150 100 50 0 20 40 60 80 1V 12 8 0 4 0 –0.6 100 120 140 160 Tamb – Ambient Temperature ( °C ) –0.2 0.2 0.6 1.0 1.4 VG2S – Gate 2 Source Voltage ( V ) 12817 Figure 1. Total Power Dissipation vs. Ambient Temperature Figure 4. Drain Current vs. Gate 2 Source Voltage 3.0 VG1S= 0.6V VG2S= 4V 25 C issg1 – Gate 1 Input Capacitance ( pF ) 30 ID – Drain Current ( mA ) 16 VG1S= –1V 96 12159 20 0.4V 15 0.2V 10 0 –0.2V 5 –0.4V 0 0 2 4 6 8 10 VDS – Drain Source Voltage ( V ) 12812 VDS=8V VG2S=4V f=1MHz 2.0 1.5 1.0 0.5 0 –2 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 VG1S – Gate 1 Source Voltage ( V ) Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage 3.0 20 16 3V 2V 6V C oss – Output Capacitance ( pF ) VDS= 8V 5V 1V 4V 12 8 0 4 0 –0.8 2.5 12863 Figure 2. Drain Current vs. Drain Source Voltage ID – Drain Current ( mA ) 3V 2V 5V VDS= 8V 0 12816 4V 20 ID – Drain Current ( mA ) P tot – Total Power Dissipation ( mW ) 300 VG2S=–1V –0.4 0.0 0.4 0.8 2.0 1.5 1.0 0.5 0 2 1.2 VG1S – Gate 1 Source Voltage ( V ) Figure 3. Drain Current vs. Gate 1 Source Voltage www.vishay.de • FaxBack +1-408-970-5600 4 (9) VG2S=4V f=1MHz 2.5 12864 4 6 8 10 12 VDS – Drain Source Voltage ( V ) Figure 6. Output Capacitance vs. Drain Source Voltage Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken 10 1V –10 0 –20 –0.2V –30 –0.4V –40 –50 –1 –0.5 0.0 0.5 1.0 400MHz 20mA 700MHz –25 1.5 1000MHz 1300MHz 0 4 8 12 16 20 24 28 32 Re (y21) ( mS ) 12821 Figure 10. Short Circuit Forward Transfer Admittance 9 VG2S=4V VDS=8V f=1MHz 24 7 3V 20 16 2V 12 f=1300MHz 8 Im ( y22) ( mS ) y21s – Forward Transadmittance ( mS ) 10mA –20 –40 32 8 6 1000MHz 5 700MHz 4 3 1V 1 0 4 100MHz 0 8 12 16 20 24 0 28 ID – Drain Current ( mA ) 12819 VDS=15V VG2S=4V ID=10mA f=100...1300MHz 400MHz 2 4 0 0 ID=5mA –15 –35 Figure 7. Transducer Gain vs. Gate 1 Source Voltage 28 –10 f=100MHz –30 VG2S=–0.8V VG1S – Gate 1 Source Voltage ( V ) 12818 –5 VDS=8V VG2S=4V f=100...1300MHz 0 Im ( y21) ( mS ) – Transducer Gain ( dB ) 0 2 S 21 5 4V 3V 2V f= 800MHz 12822 Figure 8. Forward Transadmittance vs. Drain Current 0.25 0.50 0.75 1.00 1.25 1.50 Re (y22) ( mS ) Figure 11. Short Circuit Output Admittance 20 f=1300MHz 18 16 Im ( y11 ) ( mS ) 14 1000MHz 12 10 700MHz 8 6 VDS=8V VG2S=4V ID=10mA f=100...1300MHz 400MHz 4 2 100MHz 0 0 2 4 6 8 10 12 14 Re (y11) ( mS ) 12820 Figure 9. Short Circuit Input Admittance Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 5 (9) BF998/BF998R/BF998RW Vishay Telefunken VDS = 8 V, ID = 10 mA, VG2S = 4 V , Z0 = 50 W S12 S11 j 90° 120° j0.5 60° j2 150° j0.2 0 30° j5 ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ 0.2 0.5 1 2 1200 1300MHz 1 5 200 100 180° 0.08 0.16 0° 100 –j0.2 –j5 1300MHz –150° 1000 –j0.5 –30° –j2 –120° –j 12 960 –60° –90° 12 973 Figure 12. Input reflection coefficient Figure 14. Reverse transmission coefficient S21 S22 j 90° 120° 60° 700 j0.5 1000 400 150° j2 30° j0.2 1300MHz j5 ÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁ 100 180° 1 2 0° 0 0.2 0.5 1 2 5 100 –j0.2 –150° 1 –j5 –30° 1300MHz –j0.5 –120° 12 962 –j2 –60° –90° Figure 13. Forward transmission coefficient www.vishay.de • FaxBack +1-408-970-5600 6 (9) 12 963 –j Figure 15. Output reflection coefficient Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Dimensions of BF998 in mm 96 12240 Dimensions of BF998R in mm 96 12239 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 7 (9) BF998/BF998R/BF998RW Vishay Telefunken Dimensions of BF998RW in mm 96 12238 www.vishay.de • FaxBack +1-408-970-5600 8 (9) Document Number 85011 Rev. 4, 23-Jun-99 BF998/BF998R/BF998RW Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 Document Number 85011 Rev. 4, 23-Jun-99 www.vishay.de • FaxBack +1-408-970-5600 9 (9)