Order this document by BDW42/D SEMICONDUCTOR TECHNICAL DATA " ! . . . designed for general purpose and low speed switching applications. • High DC Current Gain – hFE = 2500 (typ.) @ IC = 5.0 Adc. • Collector Emitter Sustaining Voltage @ 30 mAdc: VCEO(sus) = 80 Vdc (min.) — BDW46 VCEO(sus) = 100 Vdc (min.) — BDW42/BDW47 • Low Collector Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (max.) @ IC = 5.0 Adc VCE(sat) = 3.0 Vdc (max.) @ IC = 10.0 Adc • Monolithic Construction with Built–In Base Emitter Shunt resistors • TO–220AB Compact Package *Motorola Preferred Device DARLINGTON 15 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 80 – 100 VOLTS 85 WATTS ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MAXIMUM RATINGS Rating Collector–Emitter Voltage Symbol BDW46 BDW42 BDW47 Unit VCEO 80 100 Vdc Collector–Base Voltage VCB 80 100 Vdc Emitter–Base Voltage VEB 5.0 Vdc Collector Current — Continuous IC 15 Adc Base Current IB 0.5 Adc Total Device Dissipation @ TC = 25_C Derate above 25_C PD 85 0.68 Watts W/_C – 55 to + 150 _C Operating and Storage Junction Temperature Range TJ, Tstg CASE 221A–06 TO–220AB THERMAL CHARACTERISTICS Characteristic Symbol Max Unit RθJC 1.47 _C/W Thermal Resistance, Junction to Case PD, POWER DISSIPATION (WATTS) 90 80 70 60 50 40 30 20 10 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) Figure 1. Power Temperature Derating Curve Preferred devices are Motorola recommended choices for future use and best overall value. REV 7 3–212 Motorola, Inc. 1995 Motorola Bipolar Power Transistor Device Data ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted) Characteristic Symbol Min Max 80 100 — — — — 2.0 2.0 — — 1.0 1.0 — 2.0 1000 250 — — — — 2.0 3.0 — 3.0 Unit OFF CHARACTERISTICS Collector Emitter Sustaining Voltage (1) (IC = 30 mAdc, IB = 0) VCEO(sus) BDW46 BDW42/BDW47 Collector Cutoff Current (VCE = 40 Vdc, IB = 0) (VCE = 50 Vdc, IB = 0) BDW46 BDW42/BDW47 Collector Cutoff Current (VCB = 80 Vdc, IE = 0) (VCB = 100 Vdc, IE = 0) BDW41/BDW46 BDW42/BDW47 Vdc ICEO mAdc ICBO Emitter Cutoff Current (VBE = 5.0 Vdc, IC = 0) IEBO mAdc mAdc ON CHARACTERISTICS (1) DC Current Gain (IC = 5.0 Adc, VCE = 4.0 Vdc) (IC = 10 Adc, VCE = 4.0 Vdc) hFE Collector–Emitter Saturation Voltage (IC = 5.0 Adc, IB = 10 mAdc) (IC = 10 Adc, IB = 50 mAdc) VCE(sat) Base–Emitter On Voltage (IC = 10 Adc, VCE = 4.0 Vdc) VBE(on) Vdc Vdc SECOND BREAKDOWN (2) Second Breakdown Collector Current with Base Forward Biased BDW42 IS/b VCE = 28.4 Vdc VCE = 40 Vdc VCE = 22.5 Vdc VCE = 36 Vdc BDW46/BDW47 Adc 3.0 1.2 3.8 1.2 — — — — 4.0 — — — 200 300 300 — DYNAMIC CHARACTERISTICS Magnitude of common emitter small signal short circuit current transfer ratio (IC = 3.0 Adc, VCE = 3.0 Vdc, f = 1.0 MHz) Output Capacitance (VCB = 10 Vdc, IE = 0, f = 0.1 MHz) fT Cob BDW42 BDW46/BDW47 Small–Signal Current Gain (IC = 3.0 Adc, VCE = 3.0 Vdc, f = 1.0 kHz) hfe MHz pF (1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%. (2) Pulse Test non repetitive: Pulse Width = 250 ms. 5.0 VCC – 30 V [ [ [ V1 APPROX 25 µs – 12 V tr, tf 10 ns DUTY CYCLE = 1.0% v 3.0 SCOPE [ + 4.0 V for td and tr, D1 id disconnected and V2 = 0 For NPN test circuit reverse all polarities Figure 2. Switching Times Test Circuit Motorola Bipolar Power Transistor Device Data ts 2.0 RC t, TIME ( µs) RB AND RC VARIED TO OBTAIN DESIRED CURRENT LEVELS D1 MUST BE FAST RECOVERY TYPES, e.g.: 1N5825 USED ABOVE IB 100 mA MSD6100 USED BELOW IB 100 mA TUT RB V2 APPROX + 8.0 V D1 51 8.0 k 150 0 tf 1.0 0.7 0.5 0.3 0.2 0.1 0.07 0.05 0.1 tr VCC = 30 V IC/IB = 250 IB1 = IB2 TJ = 25°C 0.2 td @ VBE(off) = 0 V 0.5 0.7 1.0 2.0 3.0 0.3 IC, COLLECTOR CURRENT (AMP) 5.0 7.0 10 Figure 3. Switching Times 3–213 r(t) EFFECTIVE TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 P(pk) 0.05 0.1 0.07 0.05 RθJC(t) = r(t) RθJC RθJC = 1.92°C/W 0.02 t1 0.03 t2 SINGLE PULSE 0.01 0.02 DUTY CYCLE, D = t1/t2 0.01 0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1.0 2.0 3.0 5.0 10 t, TIME OR PULSE WIDTH (ms) 20 30 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) RθJC(t) 50 100 200 300 500 1000 Figure 4. Thermal Response ACTIVE–REGION SAFE OPERATING AREA 50 0.1 ms 20 10 TJ = 25°C 1.0 ms 5.0 SECOND BREAKDOWN LIMIT BONDING WIRE LIMIT THERMAL LIMITED @ TC = 25°C (SINGLE PULSE) 2.0 1.0 0.5 0.5 ms dc 0.2 IC, COLLECTOR CURRENT (AMP) IC, COLLECTOR CURRENT (AMP) 50 0.1 0.05 1.0 0.1 ms 20 TJ = 25°C 10 SECOND BREAKDOWN LIMIT BONDING WIRE LIMIT THERMAL LIMITED @ TC = 25°C (SINGLE PULSE) 2.0 1.0 0.5 0.05 1.0 20 30 2.0 3.0 5.0 7.0 10 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) 20 30 2.0 3.0 5.0 7.0 10 50 70 100 VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 6. BDW46 and BDW47 There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Fig. 5 and 6 is based on TJ(pk) = 200_C; TC is variable depending on conditions. Second break- down pulse limits are valid for duty cycles to 10% provided TJ(pk) 200_C. TJ(pk) may be calculated from the data in Fig. 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. v * Linear extrapolation 300 TJ = + 25°C 5000 3000 2000 200 C, CAPACITANCE (pF) hFE, SMALL–SIGNAL CURRENT GAIN 10,000 1000 500 300 200 TJ = 25°C VCE = 3.0 V IC = 3.0 A 100 50 30 20 2.0 5.0 10 20 50 100 f, FREQUENCY (kHz) Cob 100 Cib 70 50 BDW46, 47 (PNP) BDW42 (NPN) 200 500 1000 Figure 7. Small–Signal Current Gain 3–214 dc BDW46 BDW47 0.1 BDW42 0.5 ms 0.2 Figure 5. BDW42 10 1.0 1.0 ms 5.0 BDW46, 47 (PNP) BDW42 (NPN) 30 0.1 0.2 0.5 1.0 2.0 5.0 10 20 VR, REVERSE VOLTAGE (VOLTS) 50 Figure 8. Capacitance Motorola Bipolar Power Transistor Device Data 100 BDW40, 41, 42 (NPN) BDW45, 46, 47 (PNP) 20,000 20,000 VCE = 3.0 V VCE = 3.0 V 10,000 5000 hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN 10,000 TJ = 150°C 3000 2000 25°C 1000 – 55°C 500 300 200 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMP) 7000 5000 TJ = 150°C 3000 25°C 2000 1000 700 500 – 55°C 300 200 0.1 5.0 7.0 10 0.2 0.3 0.5 0.7 1.0 2.0 3.0 IC, COLLECTOR CURRENT (AMP) 5.0 7.0 10 VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 9. DC Current Gain 3.0 TJ = 25°C 2.6 IC = 2.0 A 4.0 A 6.0 A 2.2 1.8 1.4 1.0 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) 20 30 3.0 TJ = 25°C 2.6 IC = 2.0 A 4.0 A 6.0 A 2.2 1.8 1.4 1.0 0.5 0.7 0.3 1.0 2.0 3.0 5.0 7.0 10 IB, BASE CURRENT (mA) 20 30 Figure 10. Collector Saturation Region BDW40, 41, 42 (NPN) BDW45, 46, 47 (PNP) 3.0 3.0 TJ = 25°C 2.5 V, VOLTAGE (VOLTS) V, VOLTAGE (VOLTS) TJ = 25°C 2.0 VBE(sat) @ IC/IB = 250 1.5 VBE @ VCE = 4.0 V 1.0 2.5 2.0 1.5 VBE @ VCE = 4.0 V 1.0 VBE(sat) @ IC/IB = 250 VCE(sat) @ IC/IB = 250 0.5 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 0.5 VCE(sat) @ IC/IB = 250 0.1 IC, COLLECTOR CURRENT (AMP) 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 IC, COLLECTOR CURRENT (AMP) Figure 11. “On” Voltages Motorola Bipolar Power Transistor Device Data 3–215 10 + 5.0 + 4.0 *IC/IB + 3.0 v 250 25°C to 150°C + 2.0 + 1.0 – 55°C to 25°C 0 – 1.0 *θVC for VCE(sat) – 2.0 25°C to 150°C – 3.0 θVB for VBE – 55°C to 25°C – 4.0 – 5.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 θV, TEMPERATURE COEFFICIENTS (mV/°C) θV, TEMPERATURE COEFFICIENT (mV/ °C) + 5.0 + 4.0 v 250 + 25°C to 150°C + 2.0 + 1.0 0 – 1.0 *θVC for VCE(sat) – 2.0 – 55°C to + 25°C θVB for VBE + 25°C to 150°C – 3.0 – 55°C to +25°C – 4.0 – 5.0 7.0 10 *IC/IB + 3.0 0.1 0.5 0.2 0.3 IC, COLLECTOR CURRENT (AMP) 1.0 2.0 3.0 5.0 10 IC, COLLECTOR CURRENT (AMP) Figure 12. Temperature Coefficients 104 103 105 FORWARD REVERSE IC, COLLECTOR CURRENT ( µA) IC, COLLECTOR CURRENT ( µA) 105 VCE = 30 V 102 101 TJ = 150°C 100°C 100 25°C 10– 1 + 0.6 + 0.4 + 0.2 0 – 0.2 – 0.4 – 0.6 – 0.8 – 1.0 – 1.2 – 1.4 104 103 REVERSE FORWARD VCE = 30 V 102 TJ = 150°C 101 100 100°C 25°C 10– 1 – 0.6 – 0.4 – 0.2 VBE, BASE–EMITTER VOLTAGE (VOLTS) 0 + 0.2 + 0.4 + 0.6 + 0.8 + 1.0 + 1.2 + 1.4 VBE, BASE–EMITTER VOLTAGE (VOLTS) Figure 13. Collector Cut–Off Region NPN BDW42 COLLECTOR PNP BDW46 BDW47 BASE COLLECTOR BASE [ 8.0 k [ 60 [ 8.0 k [ 60 EMITTER EMITTER Figure 14. Darlington Schematic 3–216 Motorola Bipolar Power Transistor Device Data PACKAGE DIMENSIONS –T– B SEATING PLANE C F T S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q 1 2 3 U H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ––– ––– 0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ––– ––– 2.04 BASE COLLECTOR EMITTER COLLECTOR CASE 221A–06 TO–220AB ISSUE Y Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315 MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 Motorola Bipolar Power Transistor ◊ Device Data *BDW42/D* 3–217 BDW42/D