MOTOROLA BDW46

Order this document
by BDW42/D
SEMICONDUCTOR TECHNICAL DATA
"
! . . . designed for general purpose and low speed switching applications.
• High DC Current Gain – hFE = 2500 (typ.) @ IC = 5.0 Adc.
• Collector Emitter Sustaining Voltage @ 30 mAdc:
VCEO(sus) = 80 Vdc (min.) — BDW46
VCEO(sus) = 100 Vdc (min.) — BDW42/BDW47
• Low Collector Emitter Saturation Voltage
VCE(sat) = 2.0 Vdc (max.) @ IC = 5.0 Adc
VCE(sat) = 3.0 Vdc (max.) @ IC = 10.0 Adc
• Monolithic Construction with Built–In Base Emitter Shunt resistors
• TO–220AB Compact Package
*Motorola Preferred Device
DARLINGTON
15 AMPERE
COMPLEMENTARY
SILICON
POWER TRANSISTORS
80 – 100 VOLTS
85 WATTS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Rating
Collector–Emitter Voltage
Symbol
BDW46
BDW42
BDW47
Unit
VCEO
80
100
Vdc
Collector–Base Voltage
VCB
80
100
Vdc
Emitter–Base Voltage
VEB
5.0
Vdc
Collector Current — Continuous
IC
15
Adc
Base Current
IB
0.5
Adc
Total Device Dissipation
@ TC = 25_C
Derate above 25_C
PD
85
0.68
Watts
W/_C
– 55 to + 150
_C
Operating and Storage Junction
Temperature Range
TJ, Tstg
CASE 221A–06
TO–220AB
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
RθJC
1.47
_C/W
Thermal Resistance, Junction to Case
PD, POWER DISSIPATION (WATTS)
90
80
70
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
Figure 1. Power Temperature Derating Curve
Preferred devices are Motorola recommended choices for future use and best overall value.
REV 7
3–212
Motorola, Inc. 1995
Motorola Bipolar Power Transistor Device Data
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Max
80
100
—
—
—
—
2.0
2.0
—
—
1.0
1.0
—
2.0
1000
250
—
—
—
—
2.0
3.0
—
3.0
Unit
OFF CHARACTERISTICS
Collector Emitter Sustaining Voltage (1)
(IC = 30 mAdc, IB = 0)
VCEO(sus)
BDW46
BDW42/BDW47
Collector Cutoff Current
(VCE = 40 Vdc, IB = 0)
(VCE = 50 Vdc, IB = 0)
BDW46
BDW42/BDW47
Collector Cutoff Current
(VCB = 80 Vdc, IE = 0)
(VCB = 100 Vdc, IE = 0)
BDW41/BDW46
BDW42/BDW47
Vdc
ICEO
mAdc
ICBO
Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)
IEBO
mAdc
mAdc
ON CHARACTERISTICS (1)
DC Current Gain
(IC = 5.0 Adc, VCE = 4.0 Vdc)
(IC = 10 Adc, VCE = 4.0 Vdc)
hFE
Collector–Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 10 mAdc)
(IC = 10 Adc, IB = 50 mAdc)
VCE(sat)
Base–Emitter On Voltage
(IC = 10 Adc, VCE = 4.0 Vdc)
VBE(on)
Vdc
Vdc
SECOND BREAKDOWN (2)
Second Breakdown Collector
Current with Base Forward Biased
BDW42
IS/b
VCE = 28.4 Vdc
VCE = 40 Vdc
VCE = 22.5 Vdc
VCE = 36 Vdc
BDW46/BDW47
Adc
3.0
1.2
3.8
1.2
—
—
—
—
4.0
—
—
—
200
300
300
—
DYNAMIC CHARACTERISTICS
Magnitude of common emitter small signal short circuit current transfer ratio
(IC = 3.0 Adc, VCE = 3.0 Vdc, f = 1.0 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
fT
Cob
BDW42
BDW46/BDW47
Small–Signal Current Gain
(IC = 3.0 Adc, VCE = 3.0 Vdc, f = 1.0 kHz)
hfe
MHz
pF
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.
(2) Pulse Test non repetitive: Pulse Width = 250 ms.
5.0
VCC
– 30 V
[
[
[
V1
APPROX
25 µs
– 12 V
tr, tf 10 ns
DUTY CYCLE = 1.0%
v
3.0
SCOPE
[
+ 4.0 V
for td and tr, D1 id disconnected
and V2 = 0
For NPN test circuit reverse all polarities
Figure 2. Switching Times Test Circuit
Motorola Bipolar Power Transistor Device Data
ts
2.0
RC
t, TIME ( µs)
RB AND RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1 MUST BE FAST RECOVERY TYPES, e.g.:
1N5825 USED ABOVE IB 100 mA
MSD6100 USED BELOW IB 100 mA
TUT
RB
V2
APPROX
+ 8.0 V
D1
51
8.0 k
150
0
tf
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.1
tr
VCC = 30 V
IC/IB = 250
IB1 = IB2
TJ = 25°C
0.2
td @ VBE(off) = 0 V
0.5 0.7 1.0
2.0 3.0
0.3
IC, COLLECTOR CURRENT (AMP)
5.0 7.0 10
Figure 3. Switching Times
3–213
r(t) EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
P(pk)
0.05
0.1
0.07
0.05
RθJC(t) = r(t) RθJC
RθJC = 1.92°C/W
0.02
t1
0.03
t2
SINGLE PULSE
0.01
0.02
DUTY CYCLE, D = t1/t2
0.01
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0 5.0
10
t, TIME OR PULSE WIDTH (ms)
20
30
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) RθJC(t)
50
100
200 300
500
1000
Figure 4. Thermal Response
ACTIVE–REGION SAFE OPERATING AREA
50
0.1 ms
20
10
TJ = 25°C
1.0 ms
5.0
SECOND BREAKDOWN LIMIT
BONDING WIRE LIMIT
THERMAL LIMITED
@ TC = 25°C (SINGLE PULSE)
2.0
1.0
0.5
0.5 ms
dc
0.2
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
50
0.1
0.05
1.0
0.1 ms
20
TJ = 25°C
10
SECOND BREAKDOWN LIMIT
BONDING WIRE LIMIT
THERMAL LIMITED
@ TC = 25°C (SINGLE PULSE)
2.0
1.0
0.5
0.05
1.0
20 30
2.0 3.0
5.0 7.0 10
50 70 100
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
20 30
2.0 3.0
5.0 7.0 10
50 70 100
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 6. BDW46 and BDW47
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of the
transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate. The data of Fig. 5 and 6 is based on TJ(pk) =
200_C; TC is variable depending on conditions. Second break-
down pulse limits are valid for duty cycles to 10% provided
TJ(pk)
200_C. TJ(pk) may be calculated from the data in
Fig. 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.
v
* Linear extrapolation
300
TJ = + 25°C
5000
3000
2000
200
C, CAPACITANCE (pF)
hFE, SMALL–SIGNAL CURRENT GAIN
10,000
1000
500
300
200
TJ = 25°C
VCE = 3.0 V
IC = 3.0 A
100
50
30
20
2.0
5.0
10
20
50 100
f, FREQUENCY (kHz)
Cob
100
Cib
70
50
BDW46, 47 (PNP)
BDW42 (NPN)
200
500 1000
Figure 7. Small–Signal Current Gain
3–214
dc
BDW46
BDW47
0.1
BDW42
0.5 ms
0.2
Figure 5. BDW42
10
1.0
1.0 ms
5.0
BDW46, 47 (PNP)
BDW42 (NPN)
30
0.1
0.2
0.5
1.0 2.0
5.0 10
20
VR, REVERSE VOLTAGE (VOLTS)
50
Figure 8. Capacitance
Motorola Bipolar Power Transistor Device Data
100
BDW40, 41, 42 (NPN)
BDW45, 46, 47 (PNP)
20,000
20,000
VCE = 3.0 V
VCE = 3.0 V
10,000
5000
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
10,000
TJ = 150°C
3000
2000
25°C
1000
– 55°C
500
300
200
0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
7000
5000
TJ = 150°C
3000
25°C
2000
1000
700
500
– 55°C
300
200
0.1
5.0 7.0 10
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
5.0 7.0 10
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 9. DC Current Gain
3.0
TJ = 25°C
2.6
IC = 2.0 A
4.0 A
6.0 A
2.2
1.8
1.4
1.0
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IB, BASE CURRENT (mA)
20
30
3.0
TJ = 25°C
2.6
IC = 2.0 A
4.0 A
6.0 A
2.2
1.8
1.4
1.0
0.5 0.7
0.3
1.0
2.0 3.0
5.0 7.0 10
IB, BASE CURRENT (mA)
20
30
Figure 10. Collector Saturation Region
BDW40, 41, 42 (NPN)
BDW45, 46, 47 (PNP)
3.0
3.0
TJ = 25°C
2.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
TJ = 25°C
2.0
VBE(sat) @ IC/IB = 250
1.5
VBE @ VCE = 4.0 V
1.0
2.5
2.0
1.5
VBE @ VCE = 4.0 V
1.0
VBE(sat) @ IC/IB = 250
VCE(sat) @ IC/IB = 250
0.5
0.1
0.2 0.3
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
0.5
VCE(sat) @ IC/IB = 250
0.1
IC, COLLECTOR CURRENT (AMP)
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC, COLLECTOR CURRENT (AMP)
Figure 11. “On” Voltages
Motorola Bipolar Power Transistor Device Data
3–215
10
+ 5.0
+ 4.0
*IC/IB
+ 3.0
v 250
25°C to 150°C
+ 2.0
+ 1.0
– 55°C to 25°C
0
– 1.0
*θVC for VCE(sat)
– 2.0
25°C to 150°C
– 3.0
θVB for VBE
– 55°C to 25°C
– 4.0
– 5.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
θV, TEMPERATURE COEFFICIENTS (mV/°C)
θV, TEMPERATURE COEFFICIENT (mV/ °C)
+ 5.0
+ 4.0
v 250
+ 25°C to 150°C
+ 2.0
+ 1.0
0
– 1.0
*θVC for VCE(sat)
– 2.0
– 55°C to + 25°C
θVB for VBE
+ 25°C to 150°C
– 3.0
– 55°C to +25°C
– 4.0
– 5.0
7.0 10
*IC/IB
+ 3.0
0.1
0.5
0.2 0.3
IC, COLLECTOR CURRENT (AMP)
1.0
2.0 3.0
5.0
10
IC, COLLECTOR CURRENT (AMP)
Figure 12. Temperature Coefficients
104
103
105
FORWARD
REVERSE
IC, COLLECTOR CURRENT ( µA)
IC, COLLECTOR CURRENT ( µA)
105
VCE = 30 V
102
101
TJ = 150°C
100°C
100
25°C
10– 1
+ 0.6 + 0.4
+ 0.2
0
– 0.2 – 0.4 – 0.6 – 0.8 – 1.0 – 1.2 – 1.4
104
103
REVERSE
FORWARD
VCE = 30 V
102
TJ = 150°C
101
100
100°C
25°C
10– 1
– 0.6 – 0.4 – 0.2
VBE, BASE–EMITTER VOLTAGE (VOLTS)
0
+ 0.2 + 0.4 + 0.6 + 0.8
+ 1.0 + 1.2 + 1.4
VBE, BASE–EMITTER VOLTAGE (VOLTS)
Figure 13. Collector Cut–Off Region
NPN
BDW42
COLLECTOR
PNP
BDW46
BDW47
BASE
COLLECTOR
BASE
[ 8.0 k [ 60
[ 8.0 k [ 60
EMITTER
EMITTER
Figure 14. Darlington Schematic
3–216
Motorola Bipolar Power Transistor Device Data
PACKAGE DIMENSIONS
–T–
B
SEATING
PLANE
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.147
0.095
0.105
0.110
0.155
0.018
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
–––
–––
0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
3.73
2.42
2.66
2.80
3.93
0.46
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
–––
–––
2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
CASE 221A–06
TO–220AB
ISSUE Y
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
Motorola Bipolar Power Transistor
◊ Device Data
*BDW42/D*
3–217
BDW42/D