MOTOROLA MBD54DWT1

Order this document
by MBD54DWT1/D
SEMICONDUCTOR TECHNICAL DATA
These Schottky barrier diodes are designed for high speed switching applications,
circuit protection, and voltage clamping. Extremely low forward voltage reduces
conduction loss. Miniature surface mount package is excellent for hand held and
portable applications where space is limited.
Motorola Preferred Device
• Extremely Fast Switching Speed
• Low Forward Voltage — 0.35 V @ IF = 10 mAdc
Anode 1
30 VOLTS
DUAL HOT–CARRIER
DETECTOR AND SWITCHING
DIODES
6 Cathode
N/C 2
5 N/C
Cathode 3
4 Anode
6
1
2
5
4
3
CASE 419B – 01, STYLE 6
SOT– 363
MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)
Symbol
Value
Unit
Reverse Voltage
VR
30
Volts
Forward Power Dissipation
@ TA = 25°C
Derate above 25°C
PF
150
1.2
mW
mW/°C
Forward Current (DC)
IF
200 Max
mA
Junction Temperature
TJ
125 Max
°C
Tstg
– 55 to +150
°C
Rating
Storage Temperature Range
DEVICE MARKING
MBD54DWT1 = BL
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (EACH DIODE)
Symbol
Min
Typ
Max
Unit
V(BR)R
30
—
—
Volts
Total Capacitance (VR = 1.0 V, f = 1.0 MHz)
CT
—
7.6
10
pF
Reverse Leakage (VR = 25 V)
IR
—
0.5
2.0
µAdc
Forward Voltage (IF = 0.1 mAdc)
VF
—
0.22
0.24
Vdc
Forward Voltage (IF = 30 mAdc)
VF
—
0.41
0.5
Vdc
Forward Voltage (IF = 100 mAdc)
VF
—
0.52
1.0
Vdc
Reverse Recovery Time
(IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc) Figure 1
trr
—
—
5.0
ns
Forward Voltage (IF = 1.0 mAdc)
VF
—
0.29
0.32
Vdc
Forward Voltage (IF = 10 mAdc)
VF
—
0.35
0.40
Vdc
Forward Current (DC)
IF
—
—
200
mAdc
Repetitive Peak Forward Current
IFRM
—
—
300
mAdc
Non–Repetitive Peak Forward Current (t < 1.0 s)
IFSM
—
—
600
mAdc
Characteristic
Reverse Breakdown Voltage (IR = 10 µA)
Preferred devices are Motorola recommended choices for future use and best overall value.
Thermal Clad is a registered trademark of the Bergquist Company.
REV 3
Motorola Small–Signal Transistors, FETs and Diodes Device Data
 Motorola, Inc. 1997
5–1
MBD54DWT1
820 Ω
+10 V
2k
0.1 µF
tr
IF
100 µH
tp
0.1 µF
IF
t
trr
10%
t
DUT
50 Ω OUTPUT
PULSE
GENERATOR
50 Ω INPUT
SAMPLING
OSCILLOSCOPE
90%
IR
VR
iR(REC) = 1 mA
OUTPUT PULSE
(IF = IR = 10 mA; measured
at iR(REC) = 1 mA)
INPUT SIGNAL
Notes: 1. A 2.0 kΩ variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes: 3. tp » trr
Figure 1. Recovery Time Equivalent Test Circuit
100
1000
IR , REVERSE CURRENT (µA)
IF, FORWARD CURRENT (mA)
TA = 150°C
1 50°C
10
1 25°C
1.0
85°C
25°C
0.1
0.0
– 40°C
100
TA = 125°C
10
1.0
TA = 85°C
0.1
0.01
– 55°C
TA = 25°C
0.001
0.1
0.2
0.3
0.4
0.5
0
0.6
5
VF, FORWARD VOLTAGE (VOLTS)
Figure 2. Forward Voltage
10
15
20
VR, REVERSE VOLTAGE (VOLTS)
25
30
Figure 3. Leakage Current
C T , TOTAL CAPACITANCE (pF)
14
12
10
8
6
4
2
0
0
5
10
15
20
25
30
VR, REVERSE VOLTAGE (VOLTS)
Figure 4. Total Capacitance
5–2
Motorola Small–Signal Transistors, FETs and Diodes Device Data
MBD54DWT1
INFORMATION FOR USING THE SOT–363 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
design. The footprint for the semiconductor packages must
be the correct size to insure proper solder connection
interface between the board and the package. With the
correct pad geometry, the packages will self align when
subjected to a solder reflow process.
0.4 mm (min)
0.5 mm (min)
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
1.9 mm
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
ÉÉÉ
0.65 mm 0.65 mm
SOT–363
SOT–363 POWER DISSIPATION
The power dissipation of the SOT–363 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power dissipation.
Power dissipation for a surface mount device is determined
by TJ(max), the maximum rated junction temperature of the
die, RθJA, the thermal resistance from the device junction to
ambient, and the operating temperature, TA . Using the
values provided on the data sheet for the SOT–363 package,
PD can be calculated as follows:
PD =
TJ(max) – TA
RθJA
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device which in this
case is 150 milliwatts.
PD =
150°C – 25°C
833°C/W
= 150 milliwatts
The 833°C/W for the SOT–363 package assumes the use
of the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 150 milliwatts. There
are other alternatives to achieving higher power dissipation
from the SOT–363 package. Another alternative would be to
use a ceramic substrate or an aluminum core board such as
Thermal Clad. Using a board material such as Thermal
Clad, an aluminum core board, the power dissipation can be
doubled using the same footprint.
SOLDERING PRECAUTIONS
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within a
short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
• Always preheat the device.
• The delta temperature between the preheat and
soldering should be 100°C or less.*
• When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
• The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
• When shifting from preheating to soldering, the
maximum temperature gradient shall be 5°C or less.
• After soldering has been completed, the device should
be allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
• Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause excessive
thermal shock and stress which can result in damage to the
device.
Motorola Small–Signal Transistors, FETs and Diodes Device Data
5–3
MBD54DWT1
PACKAGE DIMENSIONS
A
G
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
6
5
4
–B–
S
1
2
DIM
A
B
C
D
G
H
J
K
N
S
V
3
D 6 PL
0.2 (0.008)
M
B
M
N
J
C
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
–––
0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
0.012
0.016
STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
–––
0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
0.30
0.40
ANODE 2
N/C
CATHODE 1
ANODE 1
N/C
CATHODE 2
K
H
CASE 419B-01
ISSUE C
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488
Mfax: [email protected] – TOUCHTONE 602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
INTERNET: http://motorola.com/sps
5–4
◊
MBD54DWT1/D
Motorola Small–Signal Transistors, FETs and Diodes Device
Data