ETC CXP884P60

CXP884P60
CMOS 8-bit Single Chip Microcomputer
Description
The CXP884P60 is a CMOS 8-bit microcomputer which
consists of A/D converter, serial interface, timer/counter,
time-base timer, high precision timing pattern generation
circuit, PWM output, VISS/VASS circuit, 32kHz timer/counter,
remote control receiving circuit, VSYNC separator and the
measurement circuit which measure signals of capstan FG
and drum FG/PG and other servo systems, as well as
basic configurations like 8-bit CPU, ROM, RAM and I/O
port. They are integrated into a single chip.
Also, the CXP884P60 provides sleep/stop functions which
enable to lower power consumption.
This IC is the PROM-incorporated version of the CXP88460
with built-in mask ROM. This provides the additional feature
of being able to write directly into the program. Thus, it is most
suitable for evaluation use during system development and
for small-quantity production.
100 pin QFP (Plastic)
Structure
Silicon gate CMOS IC
Features
• A wide instruction set (213 instructions) which covers various types of data
— 16-bit arithmetic/multiplication and division/boolean bit operation instructions
• Minimum instruction cycle
250ns at 16MHz operation
122µs at 32kHz operation
• Incorporated PROM capacity
60K bytes
• Incorporated RAM capacity
2048 bytes
• Peripheral functions
— A/D converter
8 bits, 12 channels, successive approximation system
(Conversion time of 20µs/16MHz)
— Serial interface
Incorporated 8-bit, 8-stage FIFO
(Auto transfer for 1 to 8 bytes), 1 channel
Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 1 channel
Incorporated two-wire 8-bit and 8-stage FIFO (Auto transfer for
1 to 8 bytes), 1 channel
— Timer
8-bit timer/counter, 2 channels
19-bit time-base timer
32kHz timer/counter
— High precision timing pattern generation
PPG: Maximum of 19 pins 32 stages programmable
circuit
RTG: 5 pins, 1 channel
7-bit, 10-stage FIFO (RECCTL control/ATC control),
1 channel
— PWM/DA gate output
12 bits, 2 channels (Repetitive frequency 62.5kHz at 16MHz)
DA gate pulse output: 13 bits, 2 channels
— Analog signal input circuit
PBCTL amplifier circuit
Reel FG comparator
— CTL write/rewrite circuit
Recording current control circuit
— Servo input control
Capstan FG, Drum FG/PG, CTL, Reel FG input
— VSYNC separator
— FRC capture unit
Incorporated 26-bit and 8-stage FIFO
— PWM output
14 bits, 1 channel
— VISS/VASS circuit
Pulse duty auto detection circuit
— Remote control receiving circuit
8-bit pulse measurement counter, 6-stage FIFO
— Tri-state output
PPG output 2 pins
— High speed head switching circuit
• Interruption
22 factors, 15 vectors, multi-interruption possible
• Standby mode
Sleep/stop
• Package
100-pin plastic QFP
• Piggy/evaluation chip
CXP88400 100-pin ceramic PQFP
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E01432A33
SERIAL
INTERFACE UNIT
(CH1)
SO1
EC
2
V SYNC SEPARATOR
PRESCALER/
TIME-BASE TIMER
PBCTL AMP
REEL
COMPARATOR
SERVO INPUT
CONTROL
REMOCON INPUT
5
FRC
CAPTURE UNIT
FIFO
32kHz
TIMER/COUNTER
FIFO
14-BIT PWM GENERATOR
8
PD0 to PD7
2
PE0, 1, 6, 7
6
PE2 to PE5
4
PF0 to PF3
4
PF4 to PF7
4
PG0 to PG3
4
PH0 to PH3
4
PH4 to PH7
8
PI0 to PI7
12-BIT PWM GENERATOR CH1
CTL R/W CONTROL
2
4
19
REALTIME PULSE
GENERATOR
RAM
CH1
CH0
FIFO
5
5
CXP884P60
ADJ
CTLHEAD
HEADL
12-BIT PWM GENERATOR CH0
PROGRAMABLE
PATTERN
GENERATOR
RTO3
to
RTO7
PWM0
PWM1
DAA1
PC0 to PC7
PORT I
DRUM
2
DAA0
8
PORT G
CAPSTAIN
VISS/VASS
PWM
PB0 to PB7
2
PPO0
to
PPO18
–2–
RMC
VDD
Vss
EXTAL
8-BIT TIMER1
2
EXI0
EXI1
CFG
DFG
DPG
CTLFAMPI
RFG0
RFG1
XTAL
TEX
TX
RST
MP
INT2
8-BIT TIMER/COUNTER 0
TO/DDO
SYNC
FIFO
RAM
2048
BYTES
PORT A
SI1
PROM
60K
BYTES
PORT B
RAM
8
PORT C
SERIAL
INTERFACE UNIT
(CH0)
PA0 to PA7
PORT D
CS0
SI0
SO0
SCK0
8
PORT E
FIFO
CLOCK GENERATOR/
SYSTEM CONTROL
SPC700
CPU CORE
PORT F
SERIAL
INTERFACE UNIT
(CH2)
INT1/NMI
INT0
SCL0
SCL1
SDA0
SDA1
SCK1
NMI
2
A/D CONVERTER
PORT H
12
INTERRUPT CONTROLLER
AN0 to AN11
AVss
AVDD
AVREF
Block Diagram
CXP884P60
PE4/EXI0
PE3/SYNC
PE2/SI1
PE1/SO1
PE0/SCK1
TEX
TX
VSS
VDD
Vpp
PA7/PPO7
PA6/PPO6
PA5/PPO5
PA4/PPO4
PA3/PPO3
PA2/PPO2
PA1/PPO1
PA0/PPO0
PB7/PPO15
PB6/PPO14
Pin Assignment (Top View)
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
PB5/PPO13
1
80
PE5/EXI1
PB4/PPO12
2
79
PE6/PWM0/DAA0
PB3/PPO11
3
78
PE7/PWM1/DAA1
PB2/PPO10
4
77
RFG0
PB1/PPO9
5
76
RFG1
PB0/PPO8
6
75
ANOUT
PC7/RTO7
7
74
AMPVDD
PC6/RTO6
8
73
CTLFAMPO
PC5/RTO5
9
72
CTLSAMPI
PC4/RTO4
10
71
CTLAGND
PC3/RTO3
11
70
CTLFAMPI (–)
PC2/PPO18
12
69
CTLFAMPI (+)
PC1/PPO17
13
68
HEADL (–)
PC0/PPO16
14
67
HEADL (+)
PI7
15
66
CTLHEAD (+)
PI6
16
65
CTLHEAD (–)
PI5
17
64
AMPVSS
PI4
18
63
VDD
PI3
19
62
AN0
PI2
20
61
AN1
AN2
PI1
21
60
PI0/INT0
22
59
AN3
PD7/SI0
23
58
PF0/AN4
PF1/AN5
PD6/SO0
24
57
PD5/SCK0
25
56
PF2/AN6
PD4/CS0
26
55
PF3/AN7
PD3/SRVO/TO/DDO/ADJ
27
54
AVDD
PD2/PWM
28
53
AVREF
PD1/RMC
29
52
AVSS
PD0/INT1/NMI
30
51
PF4/AN8
Note) 1. Vpp (Pin 90) is always connected to VDD.
2. VDD (Pins 63 and 89) are both connected to VDD
3. Vss (Pins 41 and 88) are both connected to GND.
4. MP (Pin 39) is always connected to GND.
–3–
PF5/AN9
PF6/AN10
PG0/CFG
PF7/AN11
PG1/DFG
PG2/DPG
PG3/EC/INT2
EXTAL
VSS
XTAL
RST
MP
PH0/SCL0
PH1/SCL1
PH3/SDA1
PH2/SDA0
PH4
PH5
PH7
PH6
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
CXP884P60
Pin Description
Symbol
PA0/PPO0
to
PA7/PPO7
I/O
Output/
Real-time output
PB0/PPO8
to
PB7/PPO15
Output/
Real-time output
PC0/PPO16
to
PC2/PPO18
I/O/
Real-time output
Description
(Port A)
8-bit output port. Data is
gated with PPO contents
by OR-gate and they are
output.
(8 pins)
(Port B)
8-bit output port. Data is
gated with PPO contents
by OR-gate and they are
output.
(8 pins)
(Port C)
8-bit I/O port. I/O can be
specified in 1-bit units.
Data is gated with PPO or
RTO contents by OR-gate
and they are output.
(8 pins)
Head switching output.
Programmable pattern generator (PPG)
output. Functions as high precision realtime pulse output port.
(19 pins)
PB0 and PB2 can be tri-state controlled
with PPG.
Real-time pulse generator (RTG) output.
Functions as high precision real-time
pulse output port. PC3 can be tri-state
controlled with RTG.
(5 pins)
PC3/RTO3
to
PC7/RTO7
I/O/
Real-time output
PD0/INT1/
NMI
I/O/Input/Input
Input pin to request external interruption
and non-maskable interruption.
PD1/RMC
I/O/Input
Remote control receiving circuit input pin.
PD2/PWM
I/O/Output
14-bit PWM output pin.
PD3/TO
DDO/ADJ
SRVO
Timer/counter, CTL duty detector, 32kHz
oscillation adjustment and servo amplifier
output pin.
PD4/CS0
I/O/Output/Output/ (Port D)
Output/Output
8-bit I/O port. I/O can be
specified in 1-bit units.
(8 pins)
I/O/Input
PD5/SCK0
I/O/I/O
Serial clock (CH0) I/O pin.
PD6/SO0
I/O/Output
Serial data (CH0) output pin.
PD7/SI0
I/O/Input
Serial data (CH0) input pin.
PE0/SCK1
Output/I/O
Serial clock (CH1) I/O pin.
PE1/SO1
Output/Output
Serial data (CH1) output pin.
PE2/SI1
Input/Input
PE3/SYNC
Input/Input
PE4/EXI0
Input/Input
PE5/EXI1
Input/Input
PE6/PWM0/
DAA0
Output/Output
PE7/PWM1/
DAA1
Output/Output
Serial chip select (CH0) input pin.
Serial data (CH1) input pin.
(Port E)
8-bit port. Bits 2, 3, 4 and 5 Composite sync signal input pin.
are for inputs; bits 0, 1, 6
and 7 are for outputs.
External input pin for FRC capture unit.
(8 pins)
(2 pins)
PWM output pin.
(2 pins)
–4–
DA gate pulse
output pin.
(2 pins)
CXP884P60
Description
Description
I/O
AN0 to AN3
Input
PF0/AN4
to
PF3/AN7
Input/Input
PF4/AN8
to
PF7/AN11
Output/Input
(Port F)
Lower 4 bits are for inputs; upper 4 bits are for
outputs. Lower 4 bits also serve as standby
release input pins.
(8 pins)
Capstan FG input pin.
PG0/CFG
PG1/DFG
Input/Input
Input/Input/Input
PH0/SCL0
PH1/SCL1
PH2/SDA0
PH3/SDA1
Drum FG input pin.
(Port G)
4-bit input port.
(4 pins)
PG2/DPG
PG3/EC/
INT2
Analog input pin to
A/D converter.
(12 pins)
I/O/I/O
Drum PG input pin.
Input pin to request
External event input
external interruption.
pin for
Active when falling
timer/counter.
edge.
Serial clock (CH2) I/O pin.
(Port H)
8-bit I/O port. Upper four
bits are for outputs. I/O
Serial data (CH2) I/O pin.
can be specified in 1-bit
units for lower four bits.
Lower four bits are N-ch open drain outputs and which can drive 12mA
sink current.
Upper four bits are for outputs; N-ch open drain output of medium drive
voltage (12V) and large current (12mA).
(8 pins)
PH4 to PH7
Output
PI0/INT0
I/O/Input
PI1 to PI7
I/O
RFG0, RFG1
Input
Input ports. (2 pins)
Reel FG input pin.
ANOUT
Output
Output port. (1 pin)
Internal waveform output pin of analog circuit.
CTLFAMPO
Output
Output port. (1 pin)
PBCTL signal 1st amplifier output pin.
CTLSAMPI
Input
Input port. (1 pin)
PBCTL signal 2nd amplifier input pin.
CTLAGND
Output
Output port. (1 pin)
Smoothing capacitor connecting pin.
CTLFAMPI (–)
CTLFAMPI (+)
Input
Input ports. (2 pins)
Input PBCTL signal with capacitor coupled.
HEADL (–)
HEADL (+)
Output
Output ports. (2 pins)
During playback, connect to CTLHEAD (–)
and CTLHEAD (+) with internal switch.
CTLHEAD (–)
CTLHEAD (+)
I/O
I/O ports. (2 pins)
During playback, input pin of PBCTL signal;
during recording, output pin of PBCTL signal.
Input pin to request external interruption.
(Port I)
Active when falling edge.
8-bit I/O port. I/O can be
specified in 1-bit units.
Function as standby release input can be specified in 1-bit units.
(8 pins)
AMPVSS
Analog signal input circuit GND pin.
AMPVDD
Analog signal input circuit power supply pin.
–5–
CXP884P60
Symbol
I/O
Description
EXTAL
Input
XTAL
Output
TEX
Input
TX
Output
Connecting pin of crystal oscillator for 32kHz timer clock. When used
as event counter, input to TEX pin and leave TX pin open.
(In this time, feedback resistor is not removed.)
RST
Input
System reset pin; active at low level.
Positive power supply pin for incorporated PROM write.
Connect this pin to VDD for normal operation.
Vpp
MP
Input
Test mode input pin. Always connect to GND.
Positive power supply pin of A/D converter.
AVDD
AVREF
Connecting pin of crystal oscillator for system clock. When supplying
the external clock, input it to EXTAL pin and input the opposite phase
clock to XTAL pin.
Input
Reference voltage input pin of A/D converter.
AVSS
GND pin of A/D converter.
VDD
Positive power supply pin.
VSS
GND pin. Connect both Vss pins to GND.
–6–
CXP884P60
Input/Output Circuit Formats for Pins
Pin
Circuit format
After a reset
Port A
PPO data
Port B
PA0/PPO0
to
PA7/PPO7
Ports A and B data
Hi-Z
PB4/PPO12
to
PB7/PPO15
Internal data bus
RD (Port A or Port B)
Output becomes active from
high impedance by data writing
to port data register.
Port B
PPO8, PPO10 data
PB0/PPO8
PB2/PPO10
Hi-Z
PB0, PB2 data
Internal data bus
RD (Port B)
PPO9, PPO11 data
Output becomes active from high
impedance by data writing to port
data register.
PPG control/status
register bit 0
Tri-state control
selection
"0" after a reset
PPO9, PPO11 data
PB1/PPO9
PB3/PPO11
Hi-Z
PB1, PB3 data
Internal data bus
RD (Port B)
–7–
Output becomes active from high
impedance by data writing to port
data register.
CXP884P60
Circuit format
Pin
After a reset
Port C
PPO, RTO data
PC0/PPO16
to
PC2/PPO18
PC5/RTO5
to
PC7/RTO7
Port C data
Input protection
circuit
Port C direction
Hi-Z
IP
"0" after a reset
Internal data bus
RD (Port C)
Internal data bus
RD (Port C direction)
Port C
RTO3 data
PC3 data
PC3 direction
"0" after a reset
IP
PC3/RTO3
Internal data bus
Hi-Z
RD (Port C)
Internal data bus
RD (Port C direction)
RTO4 data
RTG interruption
control register bit 7
Tri-state control
selection
"0" after a reset
RTO4 data
PC4 data
PC4 direction
PC4/RTO4
Hi-Z
"0" after a reset
IP
Internal data bus
RD (Port C)
Internal data bus
RD (Port C direction)
–8–
CXP884P60
Pin
After a reset
Circuit format
Port D
Port D data
Port D direction
PD0/INT1/NMI
PD1/RMC
PD4/CS0
PD7/SI0
"0" after a reset
IP
Internal data bus
Hi-Z
RD (Port D)
Schmitt input
Internal data bus
RD (Port D direction)
PD1: Remote control circuit
PD0: Interruption circuit
PD4, PD7: Serial CH0
Port D
Port D function
select
"0" after a reset
PD2:
PD3:
PD2/PWM
PD3/SRVO/
TO/DDO/
ADJ
14-bit PWM
Timer/counter,
CTL duty detection circuit,
32kHz timer,
amplifier circuit
MPX
Port D data
Hi-Z
Port D direction
"0" after a reset
IP
Internal data bus
RD (Port D)
Internal data bus
RD (Port D direction)
Port D
Port D function
select
"0" after a reset
SIO CH0
MPX
PD5/SCK0
PD6/SO0
Port D data
Port D direction
IP
MPX
Note)
PD5 is schmitt input
PD6 is inverter input
"0" after a reset
Internal data bus
RD (Port D)
SIO CH0
–9–
Hi-Z
CXP884P60
Pin
After a reset
Circuit format
Port E
Port/SCK
output select
"1" after a reset
SIO CH1
MPX
PE0/SCK1
Hi-Z
Port E data
Hi-Z control
IP
Internal data bus
SIO CH1
RD (Port E)
Port E
Port E function
select
"1" after a reset
SIO CH1
MPX
PE1/SO1
Hi-Z
Port E data
Internal data bus
Hi-Z control
RD (Port E)
Port E
Schmitt input
PE2/SI1
PE3/SYNC
PE4/EXI0
PE5/EXI1
PE2: SIO CH1
PE3
PE4 : Servo input
PE5
IP
Hi-Z
Internal data bus
RD (Port E)
Note) For PE3/SYNC, CMOS schmitt input or TTL schmitt input can be selected
with the mask option.
Port E
Port/DA/PWM
select
PE6/PWM0/
DAA0
PE7/PWM1/
DAA1
"1" after a reset
DA gate output or
PWM output
MPX
High level
Port E data
Internal data bus
Hi-Z control
RD (Port E)
– 10 –
CXP884P60
Pin
After a reset
Circuit format
Input multiplexer
AN0
to
AN3
Hi-Z
A/D converter
IP
Port F
Input multiplexer
A/D converter
IP
PF0/AN4
to
PF3/AN7
Hi-Z
Internal data bus
RD (Port F)
Port F
Port F data
PF4/AN8
to
PF7/AN11
Hi-Z
Internal data bus
IP
RD (Port F)
Port/AD select
Input multiplexer
"1" after a reset
A/D converter
Port G
Power ON/OFF control
Schmitt input
PG0/CFG
PG1/DFG
PG2/DPG
Servo input
IP
Hi-Z
Internal data bus
RD (Port G)
Schmitt width selection
Port G
Schmitt input
PG3/EC/INT2
IP
Hi-Z
Internal data bus
RD (Port G)
– 11 –
CXP884P60
Pin
After a reset
Circuit format
Port H
SCL, SDA
I2C output enable
Port H data
PH0/SCL0
PH1/SCL1
PH2/SDA0
PH3/SDA1
Port H direction
IP
"0" after a reset
Hi-Z
Schmitt input
Internal data bus
RD (Port H)
Internal data bus
RD (Port H direction)
SCL, SDA
(Serial interface
(CH2) circuit)
Other serial interface
(CH2) pin
Port H
∗
Port H data
Hi-Z
PH4 to PH7
Internal data bus
∗ 12V drive voltage,
large current 12mA
RD (Port H)
Port I
Pull-up resistor
∗
"0" after a reset
PI0 data
PI0 direction
IP
"0" after a reset
Internal data bus
RD (Port I)
PI0/INT0
Hi-Z
Internal data bus
RD (Port I direction)
Internal data bus
RD (pull-up resistor)
Edge detection
Standby release
Interruption circuit
∗ Pull-up transistor
approximately 100kΩ
– 12 –
CXP884P60
Pin
After a reset
Circuit format
Port I
Pull-up resistor
∗
"0" after a reset
Port I data
Port I direction
IP
"0" after a reset
Internal data bus
PI1 to PI7
Hi-Z
RD (Port I)
Internal data bus
RD (Port I direction)
Internal data bus
RD (pull-up resistor)
Edge detection
Standby release
∗ Pull-up transistor
approximately 100kΩ
CTLAGND
CTLFAMPI (+)
CTLFAMPI (–)
CTLFAMPO
CTLFAMPI (+)
IP
1/2AMPVDD
IP
CTLFAMPO
CTLFAMPI (–)
Input pin charge control
Input pin charge control
CTLSAMPI
IP
1/2AMPVDD
LPF circuit
CTLAGND
– 13 –
CXP884P60
Pin
After a reset
Circuit format
AMPVDD
CTLAGND
1/2AMPVDD
IP
CTL AMP
AMPVSS
AMPVDD
Write current select
Recording current control circuit
RTO6
CTLHEAD (+)
IP
Hi-Z
RTO7
HEADL (+) pin
RTO3
AMPVSS
RTG control permission
AMPVDD
Write current select
Recording current control circuit
RTO7
CTLHEAD (–)
IP
RTO6
Hi-Z
HEADL (–) pin
RTO3
AMPVSS
RTG control permission
CTLHEAD (+) pin
HEADL (+)
IP
Hi-Z
RTO3
RTG control permission
AMPVSS
CTLHEAD (–) pin
HEADL (–)
IP
Hi-Z
RTO3
RTG control permission
AMPVSS
– 14 –
CXP884P60
Pin
After a reset
Circuit format
Comparator
RFG0
RFG1
Servo output
IP
EXTAL
Hi-Z
• Shows the circuit composition
during oscillation.
IP
EXTAL
XTAL
• Feedback resistor is removed
and XTAL outputs High level
during stop.
Oscillation
XTAL
32kHz
timer/counter
TEX
TEX
TX
IP
• Feedback resistor is
removed during 32kHz
oscillation circuit stop by
software. At that time,
TEX outputs Low level
and TX outputs High level.
TX
Mask option
RST
• Shows the circuit
composition during
oscillation.
Pull-up resistor
Schmitt input
OP
IP
– 15 –
Oscillation
Low level
(during a
reset)
CXP884P60
Absolute Maximum Ratings
Item
Supply voltage
(Vss = 0V reference)
Symbol
Rating
Unit
VDD
–0.3 to +7.0
V
Vpp
V
AVDD
–0.3 to +13
AVss to +7.0∗1
AVSS
–0.3 to +0.3
V
AMPVSS to +7.0∗2
V
AMPVDD
PROM incorporated version
V
Input voltage
VIN
–0.3 to +0.3
–0.3 to +7.0∗3
Output voltage
VOUT
–0.3 to +7.0∗3
V
Medium drive output voltage
VOUTP
–0.3 to +15.0
V
High level output current
IOH
–5
mA
High level total output current
∑IOH
–50
mA
IOL
15
mA
IOLC
20
mA
Low level total output current
∑IOL
130
mA
Operating temperature
Topr
–20 to +75
°C
Storage temperature
Tstg
–55 to +150
°C
Allowable power dissipation
PD
600
mW
AMPVSS
Remarks
V
V
Low level output current
Port H (PH7 to PH4) pin
Total of output pins
Other than large current output
ports (value per pin)
Large current output port∗4
(value per pin)
Total of output pins
QFP package type
∗1 AVDD should not exceed VDD + 0.3V.
∗2 AMPVDD should not exceed VDD + 0.3V.
∗3 VIN and VOUT should not exceed VDD + 0.3V.
∗4 The large current output port is port H (PH7 to PH4).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should
better take place under the recommended operating conditions. Exceeding those conditions may
adversely affect the reliability of the LSI.
– 16 –
CXP884P60
Recommended Operating Conditions
Item
Supply voltage
Analog supply voltage
High level input voltage
Symbol
VDD
Operating temperature
∗1
∗2
∗3
∗4
∗5
∗6
∗7
∗8
Min.
Max.
Unit
4.5
5.5
Guaranteed operation range for 1/2 and 1/4
frequency dividing clock
3.5
5.5
Guaranteed operation range for 1/16 frequency
dividing clock or during sleep mode
2.7
5.5
2.5
5.5
V
Remarks
Guaranteed operation range by TEX clock
V
Guaranteed data hold operation range
during stop
∗8
5.5
V
∗1
4.5
5.5
V
∗2
VIH
0.7VDD
VDD
V
∗3
VIHS
0.8VDD
VDD
V
VIHTS
2.2
VDD
V
Vpp
Vpp = VDD
AVDD
4.5
AMPVDD
VIHEX
Low level input voltage
(Vss = 0V reference)
VDD – 0.4 VDD + 0.3
V
CMOS schmitt input∗4
TTL schmitt input∗5
EXTAL pin∗6 TEX pin∗7
∗3
VIL
0
0.3VDD
V
VILS
0
0.2VDD
V
VILTS
0
0.8
V
CMOS schmitt input∗4
TTL schmitt input∗5
VILEX
–0.3
0.4
V
EXTAL pin∗6 TEX pin∗7
Topr
–20
+75
°C
AVDD and VDD should be set to the same voltage.
AMPVDD and VDD should be set to the same voltage.
Normal input port (each pin of PC, PD2, PD3, PD6, PF0 to PF3, PI1 to PI7 and PH0 to PH3), MP pin
Each pin of RST, PD0/INT1/NMI, PD1/RMC, PD4/CS0, PD5/SCK0, PD7/SI0, PE0/SCK1, PE2/SI1,
PE3/SYNC, PE4/EXI0, PE5/EXI1, PI0/INT0, PG3/EC/INT2 (For PE3/SYNC, when CMOS schmitt input is
selected with mask option.)
PE3/SYNC (when TTL schmitt input is selected with mask option.)
Specifies only during external clock input.
Specifies only during external event input.
Vpp and VDD should be set to the same voltage.
– 17 –
CXP884P60
Electrical Characteristics
DC Characteristics (VDD = 4.5 to 5.5V)
Item
High level
output voltage
Low level
output voltage
Symbol
VOH
VOL
IIHE
Pins
IIHT
Conditions
V
VDD = 4.5V, IOH = –1.2mA
3.5
V
PH
EXTAL
TEX
VDD = 4.5V, IOL = 1.8mA
0.4
V
VDD = 4.5V, IOL = 3.6mA
0.6
V
VDD = 4.5V, IOL = 12.0mA
1.5
V
VDD = 5.5V, VIH = 5.5V
0.5
40
µA
VDD = 5.5V, VIL = 0.4V
–0.5
–40
µA
VDD = 5.5V, VIH = 5.5V
0.1
10
µA
VDD = 5.5V,
VIL = 0.4V
–0.1
–10
µA
–1.5
–400
µA
±10
µA
RST∗1
I/O leakage
current
IIZ
PA to PF,
PG3, PI, MP, VDD = 5.5V,
AN0 to AN3, VI = 0, 5.5V
RST∗1
Open drain
output leakage
current (N-CH
Tr off state)
ILOH
PH4 to PH7
VDD = 5.5V, VOH = 12V
50
µA
PH0 to PH3
VDD = 5.5V, VOH = 5.5V
10
µA
37
50
mA
2.1
8
mA
58
1000
µA
9
35
µA
30
µA
16MHz crystal oscillation (C1 = C2 = 15pF)
IDD1
VDD = 5.5V∗3
Sleep mode
IDDS1
VDD = 5.5V
IDDS2
32kHz crystal oscillation (C1 = C2 = 47pF)
VDD, VSS
VDD = 3.3V
Sleep mode
VDD = 3V ± 0.3V
IDDS3
Max. Unit
4.0
IILR
IDD2
Typ.
VDD = 4.5V, IOH = –0.5mA
IILT
Supply
current∗2
Min.
PA to PD,
PE0 to PE1,
PE6 to PE7,
PF4 to PF7,
PH (VOL only)
PI
IILE
Input current
(Ta = –10 to +75°C, Vss = 0V reference)
Stop mode
(EXTAL and TEX pins oscillation stop)
VDD = 5V ± 0.5V
– 18 –
CXP884P60
Item
Input capacity
Symbol
CIN
Pins
Conditions
PC, PD, PE0,
PE2 to PE5,
PF, PG, PI,
CTLHEAD (+),
CTLHEAD (–), Clock 1MHz
CTLFAMPI (+), 0V other than the measured pins
CTLFAMPI (–),
CTLSAMPI,
RFG,
XTAL, TEX
Min.
Typ.
10
Max. Unit
20
∗1 RST pin specifies the input current when the pull-up resistor is selected, and specifies leakage current
when no resistor is selected.
∗2 When entire output pins are left open.
∗3 When setting upper 2 bits (CPU clock selection) of clock control register (CLC: 00FEh) to "00" and
operating in high speed mode (1/2 frequency dividing clock).
– 19 –
pF
CXP884P60
AC Characteristics
(1) Clock timing
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
Pins
Conditions
Min.
System clock frequency
fC
XTAL
EXTAL
Fig. 1, Fig. 2
1
System clock input pulse width
tXL,
tXH
XTAL
EXTAL
Fig. 1, Fig. 2
External clock drive
28
XTAL
EXTAL
Fig. 1, Fig. 2
External clock drive
EC
Fig. 3
Event count clock input
rise and fall times
tCR,
tCF
tEH,
tEL
tER,
tEF
EC
Fig. 3
System clock frequency
fC
TEX
TX
VDD = 2.7 to 5.5V
Fig. 2 (32kHz clock
applied condition)
Event count clock input
pulse width
tTL,
tTH
TEX
Fig. 3
Event count clock input
rise and fall times
tTR,
tTF
TEX
Fig. 3
System clock input rise and
fall times
Event count clock input
pulse width
∗1
Typ.
Max.
Unit
16
MHz
ns
200
tsys + 200∗1
ns
ns
20
ms
kHz
32.768
µs
10
20
ms
tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits
(CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
1/fc
VDD – 0.4V
EXTAL
XTAL
0.4V
tCF
tXH
tXL
tCR
Fig. 1. Clock timing
Crystal oscillation
Ceramic oscillation
EXTAL
C1
XTAL
External clock
EXTAL
C2
32kHz clock applied condition
Crystal oscillation
TEX
XTAL
74HC04
TX
C1
C2
Fig. 2. Clock applied condition
0.8VDD
TEX
EC
0.2VDD
tEH
tEF
tEL
tER
tTH
tTF
tTL
tTR
Fig. 3. Event count clock timing
– 20 –
CXP884P60
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
(2) Serial transfer (CH0)
Item
Symbol
Pins
Conditions
Min.
Max.
Unit
CS0 ↓ → SCK0
delay time
tDCSK
SCK0
Chip select transfer mode
(SCK0 = output mode)
tsys + 200
ns
CS0 ↑ → SCK0
floating delay time
tDCSKF SCK0
Chip select transfer mode
(SCK0 = output mode)
tsys + 200
ns
CS0 ↓ → SO0
delay time
tDCSO
SO0
Chip select transfer mode
tsys + 200
ns
CS0 ↑ → SO0
floating delay time
tDCSOF SO0
Chip select transfer mode
tsys + 200
ns
CS0
high level width
tWHCS CS0
Chip select transfer mode
tsys + 200
ns
SCK0
cycle time
tKCY
Input mode
2tsys + 200
ns
SCK0
16000/fc
ns
SCK0
high and low level widths
tKH
tKL
Input mode
tsys + 100
ns
SCK0
Output mode
8000/fc – 100
ns
SI0 input setup time
(against SCK0 ↑)
tSIK
SCK0 input mode
–tsys + 100
ns
SI0
200
ns
SI0 input hold time
(against SCK0 ↑)
tKSI
2tsys + 100
ns
SI0
100
ns
SCK0 ↓ → SO0 delay time
tKSO
SO0
Output mode
SCK0 output mode
SCK0 input mode
SCK0 output mode
SCK0 input mode
SCK0 output mode
2tsys + 100
ns
100
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Note 2) The load of SCK0 output mode and SO0 output delay time is 50pF + 1TTL.
– 21 –
CXP884P60
tWHCS
0.8VDD
CS0
0.2VDD
tKCY
tDCSK
tKL
tDCSKF
tKH
0.8VDD
0.8VDD
SCK0
0.2VDD
tSIK
tKSI
0.8VDD
SI0
Input data
0.2VDD
tDCSO
tKSO
tDCSOF
0.8VDD
SO0
Output data
0.2VDD
Fig. 4. Serial transfer timing (CH0)
– 22 –
CXP884P60
Serial transfer (CH1) (SIO mode)
Item
Symbol
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Pins
Conditions
Min.
tKCY
SCK1
SCK1 high and low
level widths
tKH
tKL
SCK1
SI1 input setup time
(for SCK1 ↑)
tSIK
SI1
SI1 input hold time
(for SCK1 ↑)
tKSI
SI1
SCK1 ↓ → SO1 delay time
tKSO
SO1
Unit
2tsys + 200
ns
Output mode
16000/fc
ns
Input mode
tsys +100
ns
8000/fc – 50
ns
SCK1 input mode
100
ns
SCK1 output mode
200
ns
tsys + 200
ns
100
ns
Input mode
SCK1 cycle time
Max.
Output mode
SCK1 input mode
SCK1 output mode
SCK1 input mode
SCK1 output mode
tsys + 200
ns
100
ns
Note 1) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh) upper
2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = “00”), 4000/fc (Upper 2 bits = “01”), 16000/fc (Upper 2 bits = “11”)
Note 2) The load of SCK1 output mode and SO1 output delay time is 50pF + 1TTL.
tKCY
tKL
tKH
SCK1
0.8VDD
0.2VDD
tSIK
tKSI
0.8VDD
SI1
Input data
0.2VDD
tKSO
0.8VDD
SO1
Output data
0.2VDD
Fig. 5. Serial transfer CH1 timing (SIO mode)
– 23 –
CXP884P60
Serial transfer (CH1) (Special mode) (Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
Pins
Conditions
Min.
∗1
Typ.
Max.
Unit
SO1 cycle time
tLCY
SO1
SI1
SI1 data setup time
tLSU
tLHD
SI1
2
µs
SI1
2
µs
SI1 data hold time
∗1
104
µs
tLCY is specified only when serial mode register (CH1) (SIOM1: 05F2h) lower 2 bits (SO1 clock selection)
are set at 104µs.
Note) The load of SO1 pin is 50pF + 1TTL.
tLCY
SO1
tLCY
Start bit
0.5VDD
Output data bit
tLCY/2
tLSU
tLHD
Input
data bit
SI1
0.8VDD
0.2VDD
Fig. 6. Serial transfer CH1 timing (Special mode)
– 24 –
CXP884P60
Serial transfer (CH2)
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Symbol
Item
Pins
Conditions
Min.
Max.
Unit
400
kHz
SCL clock frequency
fSLC
SCL
Bus-free time before starting transfer
tBUF
tHD; STA
tLOW
tHIGH
tSU; STA
tHD; DAT
tSU; DAT
tR
tF
tSU; STO
SDA, SCL
2.6
µs
SDA, SCL
1.0
µs
SCL
1.0
µs
SCL
1.0
µs
SDA, SCL
µs
SDA, SCL
1.0
0∗1
SDA, SCL
100
ns
Hold time for starting transfer
Clock low level width
Clock high level width
Setup time for repetitive transfers
Data hold time
Data setup time
SDA, SCL rise time
SDA, SCL fall time
Setup time for transfer completion
µs
SDA, SCL
300
ns
SDA, SCL
300
ns
SDA, SCL
1.6
µs
∗1 The SCL fall time (300ns Max.) is not included in the data hold time.
SDA
tBUF
tR
tF
tHD; STA
SCL
tHD; STA
tSU; STA
P
S
tLOW
tHD; DAT
tHIGH
tSU; DAT
St
tSU; STO
P
Fig. 7. Serial transfer CH2 timing
Device
RS
Device
RS RS
R S RP
RP
SDA0
(or SDA1)
SCL0
(or SCL1)
Fig. 8. Device recommended circuit
• A pull-up resistor (RP) must be connected to SDA0 (or SDA1) and SCL0 (or SCL1).
• The SDA0 (or SDA1) and SCL0 (or SCL1) series resistance (Rs = 300Ω or less) can be used to reduce the
spike noise caused by CRT flashover.
– 25 –
CXP884P60
(4) A/D converter characteristics
(Ta = –10 to +75°C, VDD = AVDD = 4.5 to 5.5V, AVREF = 4.0 to AVDD, Vss = AVSS = 0V reference)
Item
Symbol
Pins
Conditions
Min.
Typ.
Max.
Unit
8
Bits
±1
LSB
±2
LSB
Resolution
Ta = 25°C
VDD = AVDD = AVREF = 5.0V
VSS = AVSS = 0V
Linearity error
Absolute error
tCONV
tSAMP
Conversion time
Sampling time
Reference input voltage VREF
Analog input voltage
VIAN
AVREF
AN0 to AN7
160/fADC∗1
µs
12/fADC∗1
µs
AVDD – 0.5
AVDD
V
0
AVREF
V
1.0
mA
10
µA
0.6
Operating mode
AVREF current
IREF
AVREF
FFh
FEh
Sleep mode
Stop mode
32kHz operating mode
Digital conversion value
∗1 fADC indicates the follwing values due to the peripheral
clock control register (PCC: 05F8h) bit 3 and clock control
register (CLC: 00FEh) upper 2 bits.
ADCCK
0 (φ/2 selection) 1 (φ selection)
PCK1, PCK0
Linearity error
01h
00 (φ = fEX/2)
fADC = fc/2
fADC = fc
01 (φ = fEX/4)
fADC = fc/4
fADC = fc/2
11 (φ = fEX/16)
fADC = fc/16
fADC = fc/8
00h
VZT
VFT
Analog input
Fig. 9. Definitions of A/D converter terms
– 26 –
CXP884P60
(4) Interruption, reset input
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
Pins
Conditions
External interruption high and
low level widths
tIH
tIL
INT0
INT1
INT2
NMI
PI0 to PI7
Reset input low level width
tRSL
RST
Min.
Unit
1
µs
32/fc
µs
tIH
INT0
INT1
INT2
NMI
PI0 to PI7
(During standby release input)
(Falling edge)
Max.
tIL
0.8VDD
0.2VDD
Fig. 10. Interruption input timing
tRSL
RST
0.2VDD
Fig. 11. Reset input timing
(5) Others
(Ta = –10 to +75°C, VDD = 4.5 to 5.5V, Vss = 0V reference)
Item
Symbol
tCFH
tCFL
DFG input
tDFH
high and low level widths
tDFL
DPG minimum pulse width tDPW
CFG input
high and low level widths
Pins
Conditions
Min.
Max.
Unit
CFG
24tFRC + 200
ns
DFG
16tFRC + 200
ns
DPG
8tFRC + 200
ns
16tFRC + 200
ns
8tFRC + 200 + tsys
ns
DPG minimum
removal time
trem
DPG
EXI input
high and low level widths
tEIH
tEIL
EXI0
EXI1
tsys = 2000/fc
tFRC = 1000/fc [ns]
Note 2) tsys indicates three values according to the contents of the clock control register (CLC: 00FEh)
Note 1)
upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
– 27 –
CXP884P60
tCFH
tCFL
0.8VDD
CFG
0.2VDD
tDFH
tDFL
0.8VDD
DFG
0.2VDD
tDPW
trem
trem
0.8VDD
DPG
tEIH
EXI0
EXI1
tEIL
0.8VDD
0.2VDD
Fig. 12. Other timings
– 28 –
CXP884P60
Analog Circuit Characteristics
(1) Amplifier circuit reference voltage characteristics (AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Item
Symbol
Reference level
VOR
output voltage
Pins
CTLAGND
(2) CTL 1st amplifier characteristics
Item
Voltage gain∗1
Output offset
voltage
Symbol
AVCTL1
VOSCTL1
Conditions
Pins
CTLFAMPI (–)
CTLFAMPI (+)
CTLFAMPI (–)
CTLFAMPI (+)
Min.
Typ.
Max.
Unit
2.20
2.45
2.75
V
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Min.
Typ.
Max.
CTLFAMPI (–) = 0V,
Gain = 16dB
13.5
15.5
17.5
CTLFAMPI (–) = 0V,
Gain = 34dB
31.8
33.8
35.8
CTLFAMPI (–) = 0V,
Gain = 49dB
46.5
48.5
50.5
CTLFAMPI (–) = 0V,
Gain = 55dB
52.5
54.5
56.5
CTLFAMPI (–),
CTLFAMPI (+) = open,
Gain = 16dB
–25
0
+25
Conditions
Unit
dB
mV
∗1 The result after monitoring CTLFAMPO pin when the electrolytic capacitor (10µF) is connected to
CTLFAMP (–) and CTLFAMP (+).
(3) CTL 2nd amplifier characteristics
Item
Voltage gain∗1
Symbol
AVCTL2
Pins
CTLSAMPI
Output offset
voltage
VOSCTL2
CTLSAMPI
LPF cut-off
frequency
FCCTL
CTLSAMPI
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Conditions
Min.
Typ.
Max.
Gain = 5dB
3.5
5.5
7.5
Gain = 8dB
6.2
8.2
10.2
Gain = 11dB
9.0
11.0
13.0
Gain = 14dB
12.0
14.0
16.0
Gain = 17dB
15.0
17.0
19.0
Gain = 20dB
18.0
20.0
22.0
CTLSAMPI = open,
Gain = 5dB
–30
0
+30
12kHz, fDC – 3dB
8
12
24
20kHz, fDC – 3dB
12
20
42
– 29 –
Unit
dB
mV
kHz
CXP884P60
Item
Comparator
level∗2
Symbol
VCCTL
Pins
CTLSAMPI
Conditions
Min.
Typ.
Max.
Comparator level = +100mV0-p
80
110
140
Comparator level = +150mV0-p
110
150
190
Comparator level = +200mV0-p
160
200
240
Comparator level = +250mV0-p
210
250
290
Comparator level = +300mV0-p
250
290
330
Comparator level = +400mV0-p
340
380
420
Comparator level = +500mV0-p
420
470
520
Comparator level = +600mV0-p
530
570
610
Comparator level = +1000mV0-p
850
920
990
Comparator level = –100mV0-p
–90
–120
–150
Comparator level = –150mV0-p
–110
–130
–190
Comparator level = –200mV0-p
–150
–190
–230
Comparator level = –250mV0-p
–200
–240
–280
Comparator level = –300mV0-p
–240
–280
–320
Comparator level = –400mV0-p
–340
–380
–420
Comparator level = –500mV0-p
–430
–480
–530
Comparator level = –600mV0-p
–540
–580
–620
Comparator level = –1000mV0-p
–870
–970 –1070
Unit
mV
∗1 The result after monitoring ANOUT pin when the electrolytic capacitor (10µF) is connected to CTLSAMPI.
∗2 The reference value of the comparator level is CTLAGND.
(4) CTL amplifier characteristics (CTL1stAMP + CTL2ndAMP)
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Item
Voltage gain∗3
Input sensitivity
Symbol
AVCTL
VSCTL
Pins
CTLHEAD (–)
CTLHEAD (+)
CTLHEAD (–)
CTLHEAD (+)
Conditions
Min.
Typ.
Max.
CTLHEAD (–) = 0V,
Gain = (16dB + 5dB)
17.0
20.5
23.5
CTLHEAD (–) = 0V,
Gain = (55dB + 20dB)
70.5
74.5
77.0
60
70
140
CTLHEAD (–) = 0V,
Gain = (55dB + 20dB)
Comparator = ±150mV0-p
Unit
dB
µVp-p
∗3 The result when waveform is input from CTLHEAD (+) pin and ANOUT pin is monitored after performing
coupling electrolytic capacitor (10µF) of CTLHEAD (–) and CTLHEAD (+), and coupling electrolytic capacitor
(10µF) of HEADL (–) and HEADL (+), CTLFAMPI (–) and CTLFAMPI (+) , and CTLFAMPO and CTLSAMPI.
Gain is maximum –1.5dB lowered when waveform is input from CTLHEAD (+) pin.
– 30 –
CXP884P60
(5) RECCTL write circuit characteristics
Item
Symbol
Write current∗1
Pins
Conditions
CTLHEAD (–)
CTLHEAD (+)
IOREC
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Min.
Typ.
Max.
Write current 2.0mAp-p
0.8
1.8
3.6
Write current 3.0mAp-p
1.4
2.8
5.0
Write current 4.0mAp-p
2.0
3.8
7.0
Write current 5.0mAp-p
2.4
4.8
8.5
Write current 6.0mAp-p
3.0
6.0
10.0
Write current 7.0mAp-p
3.5
6.8
11.5
Write current 8.0mAp-p
4.5
7.8
13.0
Write current 9.0mAp-p
5.0
8.8
15.0
Write current 10.0mAp-p
5.5
7.7
17.0
Unit
mA
∗1 The current which flows when CTLHEAD (–) and CTLHEAD (+) shorts.
(6) Auto threshold control circuit (ATC) characteristics
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
Item
Symbol
ATC peak hold circuit
initialize voltage value∗2
VATCINIT
ATC comparator level
offset voltage∗3
Pins
VATCOFF
Conditions
Min.
Typ.
Max.
Voltage = –150mV0-P
–110
–150
–190
Voltage = –400mV0-P
–350
–400
–450
Gain = 1/6 (16.7%)
–70
–160
Gain = 1/5 (20%)
–90
–210
Gain = 1/4 (25%)
–90
–210
Gain = 1/3 (33.3%)
–70
–160
Gain = 2/5 (40%)
–90
–210
Gain = 1/2 (50%)
–70
–160
Gain = 3/5 (60%)
–90
–210
Unit
mV
mV
∗2 Reference is CTLAGND.
∗3 Reference is CTLAGND.
When comparator level is generated using ATC, actual comparator level is as follows by the offset voltage
inside the ATC.
Vin × gain + |offset voltage|
Example: Gain = 1/2
Vin × 1/2 + 160
(AMPVDD = VDD = 5.0V, AMPVSS = Vss = 0V, Ta = –10 to +75°C)
(7) Schmitt characteristics
Item
Symbol
Pins
RTG schmitt width
SRFG
RFG0,
RFG1
CFG/DFG/DPG
SCFG
SDFG
SDPG
CFG,
DFG,
DPG
Conditions
Min.
Typ.
Max.
Unit
Schmitt width 1Vp-p
820
920
1020
mV
Schmitt width 410mVp-p
180
300
420
Schmitt width 1Vp-p
700
900
1100
– 31 –
mV
CXP884P60
Appendix
(ii)
(i)
EXTAL
TEX
XTAL
TX
Rd
Rd
C1
C2
C2
C1
Fig. 13. Recommended oscillation circuit
Manufacturer
RIVER
ELETEC
CO., LTD.
Model
HC-49/U03
Rd (Ω)
Circuit
example
0
(i)
fc (MHz)
C1 (pF)
C2 (pF)
8.00
10
10
5
5
8.00
16 (12)
16 (12)
10.00
16 (12)
16 (12)
12.00
12
12
0
16.00
12
12
0
32.768kHz
30
18
470k
10.00
12.00
16.00
KINSEKI LTD.
HC-49/U (-S)
P3
0
(i)
(ii)
Mask option table
Item
Package
ROM capacity
Reset pin pull-up resistor
Input circuit format∗1
Mask ROM
CXP884P60Q-1-
100-pin plastic QFP
100-pin plastic QFP
40K/48K (CXP88340/88348)
52K/60K (CXP88452/88460)
PROM 60K bytes
Existent/Non-existent
Existent
CMOS schmitt/TTL schmitt
TTL schmitt
∗1 The input circuit format can be selected for PE3/SYNC pin.
∗2 OEM No.
– 32 –
∗2
CXP884P60
Characteristics Curve
IDD vs. VDD
IDD vs. fC
(fc = 16MHz, Ta = 25°C)
(VDD = 5V, Ta = 25°C)
100
1/2 dividing mode
40
1/4 dividing mode
1/2 dividing mode
1/16 dividing mode
Sleep mode
1
32kHz mode
(instruction)
0.1
(100µA)
IDD – Supply current [mA]
IDD – Supply current [mA]
10
30
20
1/4 dividing mode
10
32kHz
Sleep mode
1/16 dividing mode
0.01
(10µA)
Sleep mode
0
1
2
3
4
5
6
0
7
5
10
15
fc – System clock [MHz]
VDD – Supply voltage [V]
– 33 –
CXP884P60
Unit: mm
100PIN QFP (PLASTIC)
23.9 ± 0.4
+ 0.4
20.0 – 0.1
+ 0.1
0.15 – 0.05
80
51
+ 0.4
14.0 – 0.1
17.9 ± 0.4
15.8 ± 0.4
50
81
A
31
100
1
30
+ 0.15
0.3 – 0.1
0.65
0.13
+ 0.2
0.1 – 0.05
+ 0.35
2.75 – 0.15
M
0˚ to 10˚
DETAIL A
0.8 ± 0.2
(16.3)
0.15
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-100P-L01
LEAD TREATMENT
SOLDER PLATING
EIAJ CODE
QFP100-P-1420
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
1.7g
JEDEC CODE
100PIN QFP (PLASTIC)
23.9 ± 0.4
+ 0.4
20.0 – 0.1
+ 0.1
0.15 – 0.05
80
51
+ 0.4
14.0 – 0.1
17.9 ± 0.4
15.8 ± 0.4
50
81
A
31
100
1
30
+ 0.15
0.3 – 0.1
0.65
0.13
+ 0.2
0.1 – 0.05
+ 0.35
2.75 – 0.15
M
(16.3)
0.15
0˚ to 10˚
DETAIL A
0.8 ± 0.2
Package Outline
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-100P-L01
LEAD TREATMENT
SOLDER PLATING
EIAJ CODE
QFP100-P-1420
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
1.7g
JEDEC CODE
LEAD PLATING SPECIFICATIONS
ITEM
LEAD MATERIAL
SPEC.
42 ALLOY
SOLDER COMPOSITION
Sn-Bi Bi:1-4wt%
PLATING THICKNESS
5-18µm
– 34 –
Sony Corporation