TI CY74FCT399CTSOCT

CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
D
D
D
D
D
D
D
D
Function, Pinout, and Drive Compatible
With FCT and F Logic
Reduced VOH (Typically = 3.3 V) Versions of
Equivalent FCT Functions
Edge-Rate Control Circuitry for
Significantly Improved Noise
Characteristics
Ioff Supports Partial-Power-Down Mode
Operation
Matched Rise and Fall Times
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
Fully Compatible With TTL Input and
Output Logic Levels
64-mA Output Sink Current
32-mA Output Source Current
SO PACKAGE
(TOP VIEW)
S
QA
I0A
I1A
I1B
I0B
QB
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
QD
I0D
I1D
I1C
I0C
QC
CP
description
The CY74FCT399T is a high-speed quad 2-input register that selects four bits of data from either of two sources
(ports) under control of a common select (S) input. Selected data are transferred to a 4-bit output register
synchronous with the low-to-high transition of the clock (CP) input. The 4-bit D-type output register is fully edge
triggered. The data inputs (I0X, I1X) and S input must be stable only one setup time prior to, and hold time after,
the low-to-high transition of CP for predictable operation. The CY74FCT399T has noninverted outputs.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
PIN DESCRIPTION
NAME
S
DESCRIPTION
Common select input
CP
Clock-pulse input (active rising edge)
I0
I1
Data inputs from source 0
Q
Register noninverted outputs
Data inputs from source 1
ORDERING INFORMATION
TA
SPEED
(ns)
ORDERABLE
PART NUMBER
Tube
6.1
CY74FCT399CTSOC
Tape and reel
6.1
CY74FCT399CTSOCT
PACKAGE†
SOIC – SO
–40°C
40°C to 85°C
SOIC – SO
Tube
7
CY74FCT399ATSOC
Tape and reel
7
CY74FCT399ATSOCT
TOP-SIDE
MARKING
FCT399C
FCT399A
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
FUNCTION TABLE
INPUTS
S
OUTPUT
Q
l
I0
l
I1
X
l
h
X
H
h
X
l
L
h
X
h
H
L
H = High logic level, h = High logic level
one setup time prior to the low-to-high
clock transition, L = Low logic level,
l = Low logic level one setup time prior
to the low-to-high clock transition,
X = Don’t care
logic diagram
I0A
3
S
1
D
I1A
I0B
Q
4
I0C
6
Q
5
I0D
QB
11
Q
12
10
QC
CP
14
D
2
7
CP
D
I1C
QA
CP
D
I1B
2
I1D
13
CP
9
Q
CP
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
QD
CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range to ground potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
DC output current (maximum sink current/pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 mA
Package thermal impedance, θJA (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W
Ambient temperature range with power applied, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 135°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 2)
MIN
NOM
MAX
UNIT
4.75
5
5.25
V
VCC
VIH
Supply voltage
VIL
IOH
Low-level input voltage
0.8
V
High-level output current
–32
mA
IOL
TA
Low-level output current
64
mA
85
°C
High-level input voltage
2
Operating free-air temperature
–40
V
NOTE 2: All unused inputs of the device must be held at VCC or GND to ensure proper device operation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
VCC = 4.75,
VOH
VCC = 4
4.75
75
VOL
VH
VCC = 4.75,
All inputs
II
IIH
VCC = 5.25 V,
VCC = 5.25 V,
VIN = VCC
VIN = 2.7 V
IIL
IOS‡
VCC = 5.25 V,
VCC = 5.25 V,
VIN = 0.5 V
VOUT = 0 V
Ioff
ICC
VCC = 0 V,
VCC = 5.25 V,
MIN
IIN = –18 mA
IOH = –32 mA
TYP†
MAX
UNIT
–0.7
–1.2
V
2
IOH = –15 mA
IOL = 64 mA
2.4
V
3.3
0.3
0.55
V
5
µA
±1
µA
0.2
V
±1
µA
–120
–225
mA
±1
µA
0.1
0.2
mA
0.5
2
mA
0.06
0.12
mA/
MHz
0.7
1.4
VIN = 3.4 V or GND
VIN ≤ 0.2 V or
VIN ≥ VCC – 0.2 V
1.2
3.4
1.6
3.2||
VIN = 3.4 V or GND
2.9
8.2||
Ci
5
10
Co
9
12
∆ICC
ICCD¶
IC#
–60
VOUT = 4.5 V
VIN ≤ 0.2 V,
VIN ≥ VCC – 0.2 V
VCC = 5.25 V, VIN = 3.4 V§, f1 = 0, Outputs open
VCC = 5.25 V, One input switching at 50% duty cycle, Outputs open,
VIN ≤ 0.2 V or VIN ≥ VCC – 0.2 V
VCC = 5
5.25
25 V
V,
f0 = 10 MHz,,
Outputs open,
S = Steady state
One input switching
at f1 = 5 MHz
at 50% duty cycle
Four inputs switching
at f1 = 5 MHz
at 50% duty cycle
VIN ≤ 0.2 V or
VIN ≥ VCC – 0.2 V
mA
pF
pF
† Typical values are at VCC = 5 V, TA = 25°C.
‡ Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus
and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise,
prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In
any sequence of parameter tests, IOS tests should be performed last.
§ Per TTL-driven input (VIN = 3.4 V); all other inputs at VCC or GND
¶ This parameter is derived for use in total power-supply calculations.
# IC
= ICC + ∆ICC × DH × NT + ICCD (f0/2 + f1 × N1)
Where:
IC
= Total supply current
ICC = Power-supply current with CMOS input levels
∆ICC = Power-supply current for a TTL high input (VIN = 3.4 V)
DH
= Duty cycle for TTL inputs high
NT
= Number of TTL inputs at DH
ICCD = Dynamic current caused by an input transition pair (HLH or LHL)
f0
= Clock frequency for registered devices, otherwise zero
f1
= Input signal frequency
N1
= Number of inputs changing at f1
All currents are in milliamperes and all frequencies are in megahertz.
|| Values for these conditions are examples of the ICC formula.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
timing requirement over recommended operating free-air temperature range (unless otherwise
noted) (see Figure 1)
CY74FCT399AT
MIN
tw
Pulse duration, CP high or low
tsu
Setup time,
time high or low
th
time high or low
Hold time,
MAX
CY74FCT399CT
MIN
5
5
In before CP↑
3.5
3.5
S before CP↑
8.5
8.5
In after CP↑
1
1
S after CP↑
0
0
MAX
UNIT
ns
ns
ns
switching characteristics over operating free-air temperature range (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
CP
Q
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
CY74FCT399AT
CY74FCT399CT
MIN
MAX
MIN
MAX
2.5
7
2.5
6.1
2.5
7
2.5
6.1
UNIT
ns
5
CY74FCT399T
QUAD 2-INPUT REGISTER
SCCS024A – MARCH 1994 – REVISED OCTOBER 2001
PARAMETER MEASUREMENT INFORMATION
7V
From Output
Under Test
From Output
Under Test
Test
Point
CL = 50 pF
(see Note A)
Open
TEST
GND
CL = 50 pF
(see Note A)
500 Ω
S1
500 Ω
S1
Open
7V
Open
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
500 Ω
LOAD CIRCUIT FOR
3-STATE OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
3V
1.5 V
Timing Input
0V
tw
tsu
3V
1.5 V
Input
1.5 V
th
3V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
1.5 V
Input
1.5 V
0V
tPLH
tPHL
1.5 V
1.5 V
VOL
tPHL
Out-of-Phase
Output
tPLZ
≈3.5 V
1.5 V
tPZH
VOH
1.5 V
VOL
1.5 V
0V
Output
Waveform 1
(see Note B)
tPLH
1.5 V
1.5 V
tPZL
VOH
In-Phase
Output
3V
Output
Control
Output
Waveform 2
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. The outputs are measured one at a time with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
CY74FCT399ATQCT
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
CY74FCT399ATQCTE4
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
CY74FCT399ATSOC
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399ATSOCE4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399ATSOCT
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399ATSOCTE4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399CTQCT
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
CY74FCT399CTQCTE4
ACTIVE
SSOP/
QSOP
DBQ
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1YEAR
CY74FCT399CTSOC
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399CTSOCE4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399CTSOCT
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
CY74FCT399CTSOCTE4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated