MAXIM DS3100DK

DS3100DK
Stratum 3/E3 Timing Card IC
Demo Kit
www.maxim-ic.com
GENERAL DESCRIPTION
FEATURES
The DS3100DK is an easy-to-use demo and
evaluation kit for the DS3100 Stratum 3/3E timing
card IC. A surface-mounted DS3100 and careful
layout provide maximum signal integrity. An on-board
Dallas 8051-compatible microcontroller and included
software give point-and-click access to configuration
and status registers from a personal computer. LEDs
on the board indicate interrupt, power-supply
function, and GPIO status. The board provides BNC
and bantam connectors for the composite clock and
BITS interfaces. Single-ended and LVDS clocks are
accessed via SMB connectors. All LEDs and
connectors are clearly labeled with silkscreening to
identify associated signals.
Soldered DS3100 for Best Signal Integrity
SMB Connectors, BNC, Bantam,
Transformers, and Termination Ease
Connectivity
Careful Layout for Analog Signal Paths
On-Board Stratum 3 Oscillator with Footprints
for Stratum 3E Oscillators
DS3100 Configured for CPU Bus Operation
for Complete Control Over the Device
On-Board Dallas Microcontroller and Included
Software Provide Point-and-Click Access to
the DS3100 Register Set
LEDs for Interrupt, Power Supplies, and GPIO
Included International Power Supply
Banana Jack VDD and GND Connectors
Support Use of Lab Power Supplies
Easy-to-Read Silkscreen Labels Identify the
Signals Associated with All Connectors,
Jumpers and LEDs
Header Provided for Master/Slave Connection
to a Second DS3100DK
Software Provides GUI Fields for Most
Commonly Used Features Plus Full
Read/Write Access to the Entire Register Set
Software Support for Creating and Running
Configuration Scripts Saves Time During
Evaluation
DEMO KIT CONTENTS
DS3100DK PCB
CD_ROM Includes:
DS3100 Software
DS3100 Initialization File
DS3100DK Data Sheet
DS3100 Data Sheet/Errata Sheet
MINIMUM SYSTEM REQUIREMENTS
PC Running Windows® XP or Windows 2000
Display with 1024 x 768 Resolution or Higher
Available Serial (COM) Port
DB-9 Serial Cable
ORDERING INFORMATION
PART
DS3100DK
DESCRIPTION
Demo kit for DS3100
Windows is a registered trademark of Microsoft Corp.
1 of 32
REV: 110206
DS3100DK
TABLE OF CONTENTS
1.
BOARD FLOORPLAN........................................................................................................4
1.1
1.2
1.3
1.4
1.5
1.6
INPUT AND OUTPUT CLOCKS ............................................................................................................5
JUMPERS, HEADERS, AND SWITCH SETTINGS ..................................................................................5
COMPOSITE CLOCK INTERFACE .......................................................................................................5
BITS INTERFACES ...........................................................................................................................5
MICROCONTROLLER ........................................................................................................................5
POWER-SUPPLY CONNECTORS........................................................................................................5
2.
BASIC HARDWARE SETUP..............................................................................................6
3.
INSTALLING AND RUNNING THE SOFTWARE...............................................................6
3.1
4.
COMMAND LINE OPTIONS ................................................................................................................6
OVERVIEW OF THE SOFTWARE INTERFACE................................................................7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
GLOBAL CONFIGURATION ................................................................................................................7
INPUT CLOCK MONITOR, DIVIDER, AND SELECTOR ...........................................................................7
T0 DPLL ........................................................................................................................................ 8
T4 DPLL ........................................................................................................................................ 9
T0 APLL....................................................................................................................................... 10
T4 APLL....................................................................................................................................... 10
OUTPUT CLOCKS...........................................................................................................................11
DPLL FREQUENCY LIMITS, PHASE DETECTORS, DPLL LOCK CRITERIA ..........................................12
BITS RECEIVERS AND BITS TRANSMITTERS ..................................................................................13
4.9.1
4.10
4.11
4.12
4.13
4.13.1
4.13.2
5.
Note About Working with the BITS Receivers and Transmitters ......................................................... 13
COMPOSITE CLOCK RECEIVERS .................................................................................................14
REFCLK CALIBRATION ..............................................................................................................14
REGISTER VIEW WINDOW ...........................................................................................................14
CONFIGURATION SCRIPTS AND LOG FILE ....................................................................................15
Configuration Log File .......................................................................................................................... 15
Configuration Scripts............................................................................................................................ 15
ADDITIONAL INFORMATION AND RESOURCES .........................................................15
5.1
5.2
5.3
DS3100 INFORMATION ..................................................................................................................15
DS3100DK INFORMATION .............................................................................................................15
TECHNICAL SUPPORT ....................................................................................................................15
6.
APPENDIX 1: HARDWARE COMPONENTS...................................................................16
7.
APPENDIX 2: BITS MODE WRITE SEQUENCES...........................................................19
8.
SCHEMATICS ..................................................................................................................19
9.
DOCUMENT REVISION HISTORY ..................................................................................19
2 of 32
DS3100DK
LIST OF FIGURES
Figure 1-1. Board Floorplan......................................................................................................................................... 4
LIST OF TABLES
Table 4-1. Mapping Between Input Clock Software Fields and DS3100 Register Fields ........................................... 7
Table 4-2. Mapping Between T0 DPLL Software Fields and DS3100 Register Fields ............................................... 8
Table 4-3. Mapping Between T4 DPLL Software Fields and DS3100 Register Fields ............................................... 9
Table 4-4. Mapping Between T0 APLL Software Fields and DS3100 Register Fields ............................................. 10
Table 4-5. Mapping Between T4 APLL Software Fields and DS3100 Register Fields ............................................. 10
Table 4-6. Mapping Between Output Clock Software Fields and DS3100 Register Fields ...................................... 11
Table 4-7. Mapping Between DPLL Software Fields and DS3100 Register Fields .................................................. 12
Table 4-8. Mapping Between BITS Software Fields and DS3100 Register Fields ................................................... 13
Table 4-9. Mapping Between CC Software Fields and DS3100 Register Fields ...................................................... 14
Table 4-10. Mapping Between REFCLK Software Fields and DS3100 Register Fields ........................................... 14
3 of 32
DS3100DK
1.
BOARD FLOORPLAN
Figure 1-1 shows the floorplan of the DS3100DK. The DS3100 is in the center of the board, input clock SMB
connectors are along the top edge of the board, and output clock connectors are on the bottom edge. Between the
input clock connectors and the DS3100, land patterns are provided for several different types of local oscillators,
ranging from tiny, inexpensive TCXOs to larger, high-performance OCXOs. The right edge contains, from top to
bottom, power supply connectors, DC-DC converters and power-indicator LEDs, reset push-button, serial
connector and USB connector. An on-board DS87C520 microcontroller is located near the USB connector. The left
edge of the board is occupied by connectors and transformers for the DS3100’s built-in BITS (DS1/E1/2048kHz)
and composite clock (64kHz) receivers and transmitters. Between the BITS and composite clock connectors are a
JTAG header and three switches to control the DS3100’s MASTSLV, SONSDH, and SRCSW pins.
See APPENDIX 1: HARDWARE COMPONENTS for a complete component list. Complete board schematics follow
Appendix 2.
Figure 1-1. Board Floorplan
Power
Option
LVDS Input
Clocks
5V Banana
Jack
Single-ended Input Clocks
GND Banana
Jack
Oscillator Circuitry
Power Supply Circuitry
GPIO
Circuitry
BITS Interfaces
Reset
DS3100
RS232 9-Pin
Connector
Switches
Single-ended Output Clocks
M\S Hdr
Composite Clock
Output
LVDS Output
Clocks
USB
Connector
Composite Clock
Input
Microprocessor
`
JTAG
Header
4 of 32
DS3100DK
1.1
Input and Output Clocks
There are 13 SMB connectors at the top of the board labeled IC1–IC4, IC7–IC14, and SYNC2K that provide a
single-ended clock input to the DS3100. All single-ended clock inputs are connected to the DS3100 with a 50Ω
characteristic impedance trace and terminated with 50Ω at the device. Four additional SMB connectors labeled
IC5P, IC5N, IC6P, and IC6N provide differential clock inputs to the DS3100. These differential inputs have 50Ω
trace impedance and 50Ω termination at the device (i.e., 100Ω differential).
On the other end of the PCB are eight SMB clock output connectors labeled OC1–OC5 and OC9, OC10, and
OC11. All single-ended clock outputs are buffered at the DS3100 and connected to the SMB connector via a 50Ω
characteristic impedance trace. Four additional SMB connectors labeled OC6P, OC6N, OC7P, and OC7N provide
connections to the differential outputs from the DS3100.
1.2
Jumpers, Headers, and Switch Settings
Jumpers JMP1 to JMP4 (upper right of board) provide input settings to the four DS3100 GPIO pins. If a jumper is
installed the corresponding GPIO input is high. With no jumper the GPIO pin defaults low. LEDs DS5–DS8 indicate
the logic level of the GPIO pins (LED lit means GPIO pin is high). Switches SW7 to SW9 set the SONSDH,
SRCSW and MASTSLV pins, respectively, high or low as indicated by the silkscreen. Headers J1 and J2 provide
access to BITS1 and BITS2 framer signals, respectively. Header J51 provides access to the JTAG port of the
DS3100. Header J15 provides interface to a master or slave board depending on position of switch SW6.
1.3
Composite Clock Interface
Bantam jacks J89 and J90 provide access to composite clock inputs IC1A and IC2A through a 2:1 transformer.
Jumpers JMP7 and JMP6 configure termination for IC1A and IC2A respectively. Silkscreen text indicates which
jumper is necessary to set the interface at 110Ω, 120Ω, or 133Ω. Bantam jack J117 provides an interface through a
1:1 transformer to the OC8 composite clock output. Jumpers JMP8, JMP9, and JMP10 provide different attenuation
configurations that are represented in silkscreen (Rs = 91Ω with no jumper installed). See the schematics for
additional details on the composite clock termination circuitry.
1.4
BITS Interfaces
The BITS1 DS1/E1 LIU uses bantam connectors J85 and J55 or BNC connectors J83 and J57 for transmit and
receive interfaces, respectively. The BITS2 LIU uses bantam connectors J86 and J56 or BNC connectors J84 and
J58 for transmit and receive, respectively. There is a dual transformer package for each BITS transceiver
(component T1 for BITS1 and T2 for BITS2). See the schematics for additional details on the BITS termination
circuitry.
1.5
Microcontroller
The DS87C520 microcontroller has factory-installed firmware in on-chip nonvolatile memory. This firmware
translates memory access requests from the RS-232 serial port or USB port into register accesses on the DS3100.
When the microcontroller starts up it turns on DS16 to indicate that the controller is working correctly. A pushbutton
switch labeled RESET (SW5) at the right middle of the board resets the microcontroller as well as the DS3100.
1.6
Power-Supply Connectors
The included international power supply can be connected to jack J3 to power the board or a 5V lab power supply
can be connected across the red (J13) and black (J19) banana jacks. The 5V input is then regulated to 3.3V and
1.8V and distributed to board components.
5 of 32
DS3100DK
2.
BASIC HARDWARE SETUP
The following steps provide a quick start to using the DS3100DK.
1) Configure the board for serial (RS-232) communication by placing jumpers to connect the left and middle
pins of JMP62 and JMP63 (near the serial connector). USB operation is not yet supported.
2) Ensure switch SW6 (near the OC1 and OC2 connectors) is in the “MAS” position.
3) Set switch SW9 (MASTSLV) in the “1” (master) position.
4) Set switch SW8 in “0” (normal operation) position.
5) Set switch SW7 to “1” to have the 1.544/2.048MHz frequency options in the DS3100 default to 1.544MHz.
Set SW7 to “0” for 2.048MHz.
6) Connect a standard DB-9 serial cable between the serial port connector on the DS3100DK and an
available serial port on the host computer. (Be sure the cable is a standard straight-through cable rather
than a null-modem cable. Null-modem cables prevent proper operation.)
7) Attach the appropriate AC power supply prongs to the included international power supply.
8) Plug the power supply into an AC power outlet and connect the DC output of the supply to connector J3
(PWR in Figure 1-1).
At this point the power indicator LEDs DS1–DS4 should be lit. Microcontroller status LED DS16 (to the right of the
USB connector) should also be lit.
3.
INSTALLING AND RUNNING THE SOFTWARE
At this time the DS3100 demo kit software only runs on Windows 2000 or Windows XP operating systems.
To install the demo kit software, run SETUP.EXE from the disk included in the DS3100DK box or from the zip file
downloadable on our website at www.maxim-ic.com/DS3100DK.
After software installation is complete, set up the hardware as described above and run the software by doubleclicking the DS3100 Demo Kit icon on the Windows desktop or by selecting Start→Programs→Dallas
Semiconductor→DS3100 Demo Kit. When the main window appears, select the correct serial port in the box in
the lower right corner. When communication has been properly established between the software and the
hardware, the ID field in the upper-left corner should indicate 3100 rev x, where x = 0 for a revision A1 device, and
x = 1 for a revision A2 device.
The demo kit software always starts in demo mode (with the DEMO MODE checkbox in the upper-left corner
checked) in case a user wants to look at the software without having the DK hardware connected to the PC. To
connect the software with the demo kit hardware, uncheck the DEMO MODE box. The software optionally
initializes the DS3100 device and then reads the state of the device to get ready for use.
3.1
Command Line Options
The demo kit software has these command line options:
-l <filepath>
-p[port#]
specifies an alternate log file
sets the serial (COM) port number
example: “DS3100DK.exe –l mylog.mfg
example: “DS3100DK.exe –p2” sets COM2
To add command line options to a shortcut, such as the DS3100 demo kit shortcut that the installer adds to the
desktop, right click on the shortcut and select Properties. In the Shortcut tab, at the end of the text in the Target
textbox, add a space followed by the command line option.
6 of 32
DS3100DK
4.
OVERVIEW OF THE SOFTWARE INTERFACE
4.1
Global Configuration
In the upper-left corner of the main window are several global status and configuration fields including the device ID
and REV, the status of the MASTSLV pin (MCR3:MASTSLV), the software DEMO MODE check box, and the
1.544MHz vs. 2.048MHz frequency selection bit (MCR3:SONSDH).
4.2
Input Clock Monitor, Divider, and Selector
This box occupying the left-center section of the main window contains the most frequently used configuration and
status associated with input clocks IC1–IC14. At the far left, inputs IC1 and IC2 can be configured for either
composite clock (on the IC1A and IC2A pins, respectively) or CMOS (on the IC1 and IC2 pins, respectively).
Similarly, IC5 and IC6 can be configured for LVDS or PECL operation.
Just to the right of the input clock numbers 1–14 are software LEDs that indicate the state of each input as reported
by its input monitor. These LEDs are red in the absence of any other condition. When a clock of the correct
frequency is applied to an input, the associated LED turns yellow when activity is detected and, about 10 seconds
later, it turns green if the input clock frequency is within range. If an input is disqualified by one of the DPLLs
because the DPLL could not lock to it, the LED turns magenta.
In the middle of the box, the FREQ and LK MODE fields configure the frequency and lock mode (direct-lock, DIVN,
or LOCK8K) for each input clock. At the bottom is a field to configure the DIVN divider used for inputs configured
for DIVN mode.
All the fields in the box containing the PRIORITY fields display information about either the T0 DPLL or the T4
DPLL, depending on which of two radio buttons is selected at the bottom of the box. The PRIORITY fields
configure the input clock priorities for the selected DPLL. The SEL REF field shows the selected reference for the
DPLL, while the REF 1, REF 2, and REF 3 fields display the three highest priority valid inputs for the DPLL. The
FREQ and PHASE fields show the real-time frequency and phase reported by the DPLL.
In future releases of the DS3100DK software, the More button will open a secondary window with additional
configuration and status fields.
Table 4-1. Mapping Between Input Clock Software Fields and DS3100 Register Fields
SOFTWARE FIELD
IC1 Signal Format (CMOS or CC)
IC2 Signal Format (CMOS or CC)
IC5 Signal Format (LVDS or PECL)
IC6 Signal Format (LVDS or PECL)
Input Clock Status LEDs
FREQ
LK MODE
PRIORITY
SEL REF
REF 1
REF 2
REF 3
FREQ (ppm)
PHASE (deg)
DS3100 REGISTER FIELDS
MCR5:IC1SF
MCR5:IC2SF
MCR5:IC5SF
MCR5:IC6SF
ISR1–ISR7 registers
LED red when ACT = 1, HARD = 1
LED yellow when ACT = 0, HARD = 1
LED green when ACT = 0, HARD = 0, LOCK = 0
LED magenta when ACT = 0, HARD = 0, LOCK = 1
ICR1–ICR14, FREQ[3:0]
ICR1–ICR14, LOCK8K, and DIVN
IPR1–IPR7
PTAB1:SELREF
PTAB1:REF1
PTAB2:REF2
PTAB3:REF3
FREQ1, FREQ2 and FREQ3 registers concatenated
PHASE1 and PHASE2 register concatenated
7 of 32
DS3100DK
4.3
T0 DPLL
The state of the T0 DPLL (free-run, locked, holdover, etc.) is shown in the STATE field. The STATE CHG, SRFAIL
and PHMON fields are buttons that represent latched status bits in the device. When the button is raised in the
middle, the corresponding latched status bit has been set in the DS3100. Pressing the button clears the latched
status bit. STATE CHG indicates the state of the T0 DPLL has changed since the last time the button was pressed.
SRFAIL indicates the selected reference has failed since the last time the button was pressed. PHMON indicates
the phase monitor limit (set by PMLIM) has been exceeded.
The state of the T0 DPLL can be forced using the combo box to the left of the STATE field, and the selected
reference can be forced using the CLK SEL field. Below the CLK SEL field is a field that configures the T0 DPLL for
revertive or nonrevertive input reference switching.
The frequency of the T0 DPLL is displayed in the FREQ field (fixed at 77.76MHz for the DS3100 T0 DPLL). The
acquisition and locked bandwidths are set by the ABW and LBW fields, respectively, and the damping factor is set
by the DAMP field. The acquisition bandwidth is only used if AUTOBW is checked. If the frequency of the T0
DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY LIMITS box at the top of
the window), the SOFTLIM LED turns red.
The PALARM status LED and the PHASE MONITOR and BUILDOUT fields are advanced topics. See Table 4-2
and the DS3100 data sheet for more details.
In future releases of the DS3100DK software, the More button will open a secondary window with additional
configuration and status fields.
Table 4-2. Mapping Between T0 DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
STATE combo box
STATE status box
CLK SEL
Revertive/Nonrevertive
FREQ
ABW
LBW
DAMP
STATE CHG
SRFAIL
PHMON
PALARM
SOFTLIM
AUTOBW
LIMINT
PMLIM
PMEN
PMPBEN
PBOEN
PBOFRZ
RECAL
MANUAL PBO
DS3100 REGISTER FIELDS
MCR1:T0STATE
OPSTATE:T0STATE
MCR2:T0FORCE
MCR3:REVERT
Fixed by T0 DPLL architecture
T0ABW
T0LBW
T0CR2:DAMP
MSR2:STATE
MSR2:SRFAIL
MSR3:PHMON
TEST1:PALARM
OPSTATE:T0SOFT
MCR9:AUTOBW
MCR9:LIMINT
PHMON:PMLIM
PHMON:PMEN
PHMON:PMPBEN
MCR10:PBOEN
MCR10:PBOFRZ
FSCR3:RECAL
OFFSET1 and OFFSET2
8 of 32
DS3100DK
4.4
T4 DPLL
The state of the T4 DPLL (locked or not locked) is shown in the STATE field. The LOCK and NO INPUT fields are
buttons that represent latched status bits in the device. When the button is raised in the middle, the corresponding
latched status bit has been set in the DS3100. Pressing the button clears the latched status bit. LOCK indicates the
state of the T4 DPLL has changed since the last time the button was pressed. NO INPUT means the T4 DPLL has
no valid inputs available. The selected reference for the T4 DPLL can be forced using the CLK SEL field.
The frequency of the T4 DPLL is displayed in the FREQ field. When the FREQ field is changed, the frequency of
the T4 option listed in the T4 APLL combo box automatically changes to match. If the T4 option in the T4 APLL box
is currently selected, the frequencies of all of the T4 options in the OC1–OC7 output clock combo boxes
automatically change to frequencies derived from the new T4 APLL frequency. These changes match what
happens inside the DS3100 device.
The bandwidth of the T4 DPLL is set by the BW field, while the damping factor is set by the DAMP field. If the
frequency of the T4 DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY
LIMITS box at the top of the window), the SOFTLIM LED turns red. Digital feedback (vs. analog feedback through
the T4 APLL) can be selected using the DIGFB checkbox.
The LKT4T0 and T4MT0 fields are advanced topics. See Table 4-3 and the DS3100 data sheet for more details.
In future releases of the DS3100DK software, the More button will open a secondary window with additional
configuration and status fields.
Table 4-3. Mapping Between T4 DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
STATE
CLK SEL
FREQ
BW
DAMP
LOCK
NO INPUT
SOFTLIM
DIGFB
LKT4T0
T4MT0
DS3100 REGISTER FIELDS
OPSTATE:T4LOCK
MCR4:T4FORCE
T4CR1:T4FREQ
T4BW
T4CR2:DAMP
MSR3:T4LOCK
MSR3:T4NOIN
OPSTATE:T4SOFT
MCR4:T4DFB
MCR4:LKT4T0
T0CR1:T4MT0
9 of 32
DS3100DK
4.5
T0 APLL
The T0 APLL can be connected to the output of the T0 Output DFS or to the T0 Low-Frequency DFS (see DS3100
data sheet for details). The frequency options listed in the T0 APLL field are all APLL input frequencies. The APLL
output frequency is always four times the input frequency. The difference between the “77.76 Analog” and “77.76
Digital” options is whether or not the feedback path of the T0 DPLL includes the T0 feedback APLL. The non-77.76
options in the T0 APLL field are all frequencies from the T0 Low-Frequency DFS. When the T0 APLL setting is
changed, the frequencies of all the T0 options in the OC1–OC7 output clock combo boxes automatically change to
frequencies derived from the new T0 APLL frequency. These changes match what happens inside the DS3100
device.
Table 4-4. Mapping Between T0 APLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
T0 APLL
4.6
DS3100 REGISTER FIELDS
T0CR1:T0FREQ
T4 APLL
The T4 APLL can be connected to the output of the T4 DPLL or to the output of the T0 DPLL (specifically the T0
low-frequency DFS; see DS3100 data sheet for details). The frequency options listed in the T4 APLL field are all
APLL input frequencies. The APLL output frequency is always four times the input frequency.
When the FREQ field is changed in the T4 DPLL box, the frequency of the T4 option listed in the T4 APLL combo
box automatically changes to match. If the T4 option in the T4 APLL box is currently selected, the frequencies of all
the T4 options in the OC1–OC7 output clock combo boxes automatically change to frequencies derived from the
new T4 APLL frequency. These changes match what happens inside the DS3100 device. Similarly, if the T4 APLL
option is changed, the frequencies of all the T4 options in the OC1–OC7 output clock combo boxes automatic
change to frequencies derived from the new T4 APLL frequency.
Table 4-5. Mapping Between T4 APLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
T4 APLL
DS3100 REGISTER FIELDS
T0CR1:T4APT0, T0CR1:T0FT4
10 of 32
DS3100DK
4.7
Output Clocks
The fields in this box configure the DS3100’s 11 output clocks. The 2K8K field specifies the source (T0 path or T4
path) for the 2kHz and 8kHz clock options for output clocks OC1–OC7. Similarly the DIG1 and DIG2 fields
configure the Digital1 and Digital2 frequency options for OC1–OC7 (see the DS3100 data sheet for details).
The OC1–OC7 fields specify the output frequencies for outputs OC1–OC7. Note that when the T0 APLL setting is
changed, the frequencies of all the T0 options in the OC1–OC7 fields automatically change to frequencies derived
from the new T0 APLL frequency. Similarly, when the T4 APLL setting is changed, the frequencies of all the T4
options in the OC1–OC7 fields automatically change to frequencies derived from the new T4 APLL frequency.
These changes match what happens inside the DS3100 device.
The OC89 field specifies whether the T0 path or the T4 path is the source for output clocks OC8 and OC9. OC8 is
the 64kHz composite clock output. The OC8 field configures the OC8 output clock for 50% or 5/8 duty cycle, and
also for whether or not the output signal has 8kHz BPVs and optionally 400Hz absence-of-BPVs per ITU-T G.703
Appendix II options a) and b). The “8K” options in the list enable the 8kHz BPVs but not the 400Hz absence-ofBPVs. The “400” options enable both the 8kHz BPVs and the 400Hz absence-of-BPVs. OC9 is a dedicated
1.544MHz or 2.048MHz output. When OC89 specifies that OC8 and OC9 are sourced from the T4 path, the Auto
Squelch checkbox specifies whether or not OC8 and OC9 are automatically squelched when T4 has no valid input
references. When OC89 indicates T0 path, Auto Squelch is not available to match DS3100 behavior.
OC10 is an 8kHz output that can be configured as a 50% duty cycle clock or a frame pulse and can optionally be
inverted. OC11 is a 2kHz output that can be similarly configured.
Table 4-6. Mapping Between Output Clock Software Fields and DS3100 Register Fields
SOFTWARE FIELD
2K8K
DIG1
DIG2
OC1–OC7
OC89
Auto Squelch
OC8
OC9
OC10
OC11
DS3100 REGISTER FIELDS
FSCR1:2K8KSRC
MCR6:DIG1SS, MCR7:DIG1F
MCR6:DIG2SS, MCR7:DIG2F, MCR7:DIG2AF
OCR1–OCR4
MCR4:OC89
T4CR1:ASQUEL
OCR4:OC8EN, T4CR1:OC8DUTY MCR8:OC8NO8,
MCR8:OC8400
OCR4:OC9EN, T4CR1:OC9SON
OCR4:OC10EN, FSCR1:8KPUL, FSCR1:8KINV
OCR4:OC11EN, FSCR1:2KPUL, FSCR1:2KINV
11 of 32
DS3100DK
4.8
DPLL Frequency Limits, Phase Detectors, DPLL Lock Criteria
The DPLL frequency limits specify the hard and soft limits of the DPLL frequency range. When the selected
reference for a DPLL exceeds the soft limit, the SOFTLIM LED for that DPLL turns red but the selected reference is
not disqualified. If the FLLOL (frequency limit loss of lock) box is checked in the DPLL Lock Criteria box, when the
selected reference for a DPLL exceeds the hard limit the DPLL will lose lock (T4 transitions to Not Locked state,
and T0 transitions to LOL state).
The remaining fields are advanced topics. See Table 4-7 and the DS3100 data sheet for more details.
Table 4-7. Mapping Between DPLL Software Fields and DS3100 Register Fields
SOFTWARE FIELD
HARD LIMIT
SOFT LIMIT
MCPDEN
USEMCPD
D180
COURSELIM
FINELIM
FLEN
CLEN
FLLOL
NALOL
DS3100 REGISTER FIELDS
HARDLIM[9:0] in DLIMIT1 and DLIMIT2
DLIMIT3:SOFTLIM
PHLIM2:MCPDEN
PHLIM2:USEMCPD
TEST1:D180
PHLIM2:COARSELIM
PHLIM1:FINELIM
PHLIM1:FLEN
PHLIM2:CLEN
DLIMIT3:FLLOL
PHLIM1:NALOL
12 of 32
DS3100DK
4.9
BITS Receivers and BITS Transmitters
The Mode fields in these boxes set the basic line mode for each port (DS1 ESF or SF, E1, 2048kHz, and—for
receivers only—6312kHz). The termination fields specify the line termination for the receiver or transmitter port.
The DS3100 supports either internal termination (inside the device) or external termination (resistors on the board).
As shipped from the factory the demo kit hardware does not have external termination resistors populated, and
therefore only the internal termination options should be selected in the software. The input clock (IC1–IC14) to
which each BITS receiver should be connected is specified in the CLOCK DEST fields. The output clock to which
each BITS transmitter should be connected is specified in the CLOCK SOURCE fields.
In the BITS Transmitters box, when a transmitter is in DS1 ESF or E1 mode, the SSM value to be transmitted can
be specified in the SSM fields below the TX1 and TX2 headings. In E1 mode, the Sa bit channel in which to
transmit SSMs can be specified (for both transmitters) in the small combo box next to the SSM label.
In the BITS Receivers box, when a receiver is in DS1 ESF or E1 mode, the received SSM values are displayed in
the SSM fields below the RX1 and RX2 headings. In E1 mode, the Sa channel in which to look for incoming SSMs
can be specified (for both receivers) in the small combo box next to the SSM label.
In future releases of the DS3100DK software, the headings RX1, RX2, TX1, and TX2 will also be buttons that open
secondary windows with additional configuration and status fields.
4.9.1
Note About Working with the BITS Receivers and Transmitters
1) When switching BITS transmitter or receiver modes, the termination must be changed to match: internal
100Ω for DS1, internal 75Ω or 120Ω for E1 and 2048kHz, internal 75Ω for 6312kHz.
2) When switching BITS transmitter modes between DS1 and E1/2048kHz modes, the rate of the transmit
clock source (typically OC9) must be changed to match: 1.544MHz for DS1 and 2.048MHz for
E1/2048kHz.
3) Enabling analog loopback between BITS transmitter 1 and BITS receiver 1 and between BITS transmitter 2
and BITS receiver 2 can be useful in evaluating the DS3100. During device initialization the DS3100DK
software enables analog loopback for both BITS transmitter/receiver pairs by setting ALB = 1 in registers
B1BLCR4 (address 93h) and B2BLCR4 (address 113h).
Table 4-8. Mapping Between BITS Software Fields and DS3100 Register Fields
SOFTWARE FIELD
DS3100 REGISTER FIELDS
BITS RECEIVERS
Mode
Termination
Clock Dest
Left-Hand SSM Combo (E1 Only)
SSM Textboxes
BMCR:RMODE, BCCR3:MCLKFC, BRMMR, BRCR1:RB8ZS,
BRCR1:RFM, BRCR3:RHDB3, BRCR3:RCRC4
See APPENDIX 2: BITS MODE WRITE SEQUENCES for
exact write sequences for each mode
BLCR3:RION, BLCR3:RIMP
BCCR2:RCLKD
BRMCR:SSMCH
DS1 ESF: BTBOC:TBOC
E1: BRMSR, BRSSM:SSM
BITS TRANSMITTERS
Mode
Termination
Clock Source
Left-and SSM Combo (E1 Only)
Main SSM Combos
BMCR:TMODE, BTMMR, BTCR1:TB8ZS, BTCR3:TFM,
BTCR4:THDB3, BTCR4:TCRC4, 60, 61
See APPENDIX 2: BITS MODE WRITE SEQUENCES for
exact write sequences.
BLCR2:TION, BLCR2:TIMP
BCCR1:TCLKS
Indicates which of BTSa4–BTSa8 to use
DS1 ESF: BRBOC:RBOC
E1: BTSa4–BTSa8
13 of 32
DS3100DK
4.10
Composite Clock Receivers
The AMI and LOS fields are buttons that represent latched status bits in the device. When the button is raised in
the middle, the corresponding latched status bit has been set in the DS3100. Pressing the button clears the latched
status bit. The AMI buttons indicate a deviation from the expected one-BPV-in-eight pattern has occurred since that
button was last pressed. The LOS buttons indicate no pulses were detected in the input signal in a 32μs period
(i.e., after two missing pulses).
In future releases of the DS3100DK software, the More button will open a secondary window with additional
configuration and status fields.
Table 4-9. Mapping Between CC Software Fields and DS3100 Register Fields
SOFTWARE FIELD
IC1 AMI
IC1 LOS
IC2 AMI
IC2 LOS
4.11
DS3100 REGISTER FIELDS
MSR3:AMI1
MSR3:LOS1
MSR3:AMI2
MSR3:LOS2
REFCLK Calibration
Any known frequency error in the local oscillator can be calibrated out inside the DS3100 by setting the ppm value
in the REFCLK box. Also the significant edge of the REFCLK signal can be selected in XOEDGE field.
Table 4-10. Mapping Between REFCLK Software Fields and DS3100 Register Fields
SOFTWARE FIELD
REFCLK slider/textbox
XOEDGE
4.12
DS3100 REGISTER FIELDS
MCLKFREQ[15:0] in MCLK1 and MCLK2
MCR3:XOEDGE
Register View Window
When the Register View button in the upper-right corner of the main window is pressed, the Register View window
appears. In this window the DS3100’s entire register set can be viewed and manually written as needed.
The large grid that takes up most of the window displays the DS3100 register map. For each register, its
hexadecimal address in square brackets is followed by its register name and its contents in 2-digit hex format. The
DS3100’s core register space is 00h to 7Fh, its BITS transceiver 1 register space is 80h to FFh, and its BITS
transceiver 2 register space is 100h to 17Fh. To distinguish between BITS1 and BITS2 registers, all BITS1 register
names start with “B1” and all BITS2 register names start with “B2.”
When a register is clicked on in the main register grid, its register description and fields are displayed at the bottom
of the window. Due to the limited speed of the serial port, the demo kit software does not continually poll every
register and make real-time updates to the data displayed on the Register View screen. Register of concern should
be manually read as described below.
The Register View window supports the following actions:
• Read a register. Select the register in the register map and click the Read button.
• Read all registers. Press the Read All button.
• Write a register field. Select the register, double-click the field, and enter the value to be written.
• Write a register. Double-click the register name in the register array and enter the value to be written.
• Write a multi-register field. Double-click on one of the register names in the register array and enter the
value for the field.
The software will not allow writes to read-only registers or fields, but it does allow writes to registers that have a mix
of read/write and read-only fields.
14 of 32
DS3100DK
4.13
Configuration Scripts and Log File
4.13.1 Configuration Log File
Every write command issued by the software to the DS3100DK board is logged in file DS3100DKLog.mfg located
in the same directory as the software executable. This file can be viewed in Notepad by pressing the Log File
button in the upper-right corner of the main window. Command line option "-l <filepath>" can be used to cause the
software to write to a different file than DS3100DKLog.mfg.
4.13.2 Configuration Scripts
All or part of the text in the Configuration Log File can be copied to a text file with a .mfg file extension for use as a
configuration script. Configuration scripts are useful for quickly configuring the DS3100 without having to remember
all of the required settings.
Two types of configuration scripts are possible: full and partial. A full configuration script can start with the DS3100
in its power-on default state and configure every aspect of the device to bring it to a desired state. To make a full
configuration script, run the software, uncheck the Demo Mode checkbox, configure the device using the DK
software fields (including Register View writes as needed), press the Log File button, and use File->Save As in
Notepad to save a copy of the entire log file to a different file name.
A partial configuration file only affects a subset of the DS3100 device settings. To make a partial configuration
script, press the Log File button to view the Log File, press Ctrl-End to jump to the end of the file, and add to the
end of the file a carriage return or comment line (starting with a semicolon) to delimit the start of the configuration.
Then save and exit the Log File. Next configure the device using the DK software fields (including Register View
writes as needed). Finally view the log file again, jump to the end, and copy everything from the delimiter you made
earlier to the end of the file into a new .mfg file.
To run a configuration script, press the Config Script button in the upper-right corner of the main window. In the
script window, type the path to the file or press the Browse button to navigate to the file. Note that the browser
window does not have Desktop and My Documents at the top of the file hierarchy like Windows XP does. Both
Desktop and My Documents for <username> can be found under c:\Documents and Settings\<username>.
Note that when the Demo Mode checkbox is unchecked, during the "Initializing the DS3100" step, the software
runs configuration script startup.mfg located in the same directory as the software executable. Startup.mfg can be
edited or replaced as needed to change the initial configuration of the device.
5.
ADDITIONAL INFORMATION AND RESOURCES
5.1
DS3100 Information
For more information about the DS3100, refer to the DS3100 data sheet at www.maxim-ic.com/DS3100.
5.2
DS3100DK Information
For more information about the DS3100DK including software downloads, refer to the DS3100DK Quick View page
at www.maxim-ic.com/DS3100DK.
5.3
Technical Support
For additional technical support, e-mail your questions to telecom.support@dalsemi.com.
15 of 32
DS3100DK
6.
APPENDIX 1: HARDWARE COMPONENTS
DESIGNATION
QTY
DESCRIPTION
C1, C2, C3, C8, C42,
C59–C138, C140,
C142, C143, C145,
C147, C149, C151,
C155, C163–C166,
C168, C169
99
0.1μF ±20%, 16V X7R ceramic capacitors (0603)
AVX
0603YC104MAT
C4, C5, C6, C27
4
Ceramic capacitors (0805)
DO NOT POPULATE
—
—
C6
1
470pF ±5%, 50V CGO ceramic capacitor (0805)
AVX
08055A471JAT
C7
1
68μF ±20%, 16V tantalum capacitor (D case)
Panasonic
ECS-T1CD686R
C13, C14, C16, C41
4
4.7μF ±10%, 25V X5R ceramic capacitors (1206)
Panasonic
ECJ-3YB1E475K
C17, C18, C20
3
6.8μF ±10%, 6.3V X5R ceramic capacitors (1206)
Panasonic
ECJ-3YB0J685K
C28, C29
2
560pF ±5%, 50V NPO ceramic capacitor (0805)
Panasonic
ECJ-2VC1H561K
C34–C38, C51–C58,
C139, C141, C153,
C154
17
10μF ±20%, 10V ceramic capacitors (1206)
Panasonic
ECJ-3YB1A106M
C39, C40
2
22pF ±10%, 100V ceramic capacitors (1206)
AVX Corp.
12061A220KAT2A
C43
1
1μF ±10%, 16V ceramic capacitor (1206)
Panasonic
ECJ-3YB1C105K
C48, C49
2
0.47μF ±10%, 16V ceramic capacitors (0805)
Panasonic
ECJ-2YB1C474K
D1
1
1A, 50V general-purpose silicon diode
D7
1
1A, 40V Schottky diode
DS1–DS4
4
Green LEDs (SMD)
Panasonic
LN1351C
DS5–DS10
6
Red LEDs (SMD)
Panasonic
LN1251C
DS16
1
Green LED (SMD)
Panasonic
LN1351C
J1, J2
2
6-pin socket strip (single row, vertical)
Samtec
SS-106-TT-2-N
J3
1
2.1mm/5.5mm closed frame power jack, high
current (right angle PCB, 24VDC at 5A)
CUI Inc.
PJ-002AH
J6–J12, J20–J41
29
5-pin vertical SMB connectors (50Ω)
AMP
413990-1
J13
1
Red socket (banana plug, horizontal)
Mouser
164-6219
J14
1
5-pin vertical SMB connector (50Ω)
DO NOT POPULATE
AMP
413990-1
J15
1
10-pin terminal strip (dual row, vertical)
Samtec
TSW-105-07-T-D
J19
1
Black horizontal banana plug socket
Mouser
164-6218
J50
1
DB9 right-angle connector (long case)
AMP
747459-1
J51
1
10-pin terminal strip (dual row, vertical)
—
—
J54
1
USB Type B black connector (right angle)
Molex
67068-0000
J55, J56, J85, J86,
J89, J90, J117
7
Bantam jack connectors (right angle)
Switchcraft
RTT34B02
J57, J58, J83, J84
4
5-pin BNC connectors (50Ω, right angle)
Trompeter
CBJR220
16 of 32
SUPPLIER
Vishay
General
Semiconductor
International
Rectifier
PART
1N4001
10BQ040
DS3100DK
DESIGNATION
QTY
JMP1–JMP5, JMP8,
JMP9, JMP11, JMP12,
JMP36, JMP37
11
2-pin vertical headers, 0.100" centers
Samtec
TSW-102-07-T-S
JMP6, JMP7, JMP10,
JMP62, JMP63
5
3-pin vertical headers, 0.100" centers
Samtec
TSW-103-07-T-S
R1
1
10kΩ ±5%, 1/10W resistor (0805)
Panasonic
ERJ-6GEYJ103V
9
Resistors (0603)
DO NOT POPULATE
—
—
25
10kΩ ±5%, 1/16W resistors (0603)
Panasonic
ERJ-3GEYJ103V
18
0Ω ±1%, 1/16W resistors (0603)
AVX
CJ10-000F
4
1.0kΩ ±5%, 1/16W resistors (0603)
Panasonic
ERJ-3GEYJ102V
5
470Ω ±5%, 1/16W resistors (0603)
Panasonic
ERJ-3GEYJ471V
1
33.2Ω ±1%, 1/16W resistors (0603)
Panasonic
ERJ-3EKF33R2V
R2, R3, R6, R7, R9,
R11, R16-R18
R4, R5, R8, R10, R12R14, R20, R25, R42,
R46, R84, R91, R92,
R95-R97, R110, R113,
R115, R116, R120R123
R15, R22, R23, R24,
R41, R43, R45,
R47,R49, R51, R53,
R55, R80, R81, R111,
R112, R117, R118
R19, R21, R40, R44
R26, R27, R48, R50,
R52
R28
DESCRIPTION
SUPPLIER
PART
R29–R35, R59–R68
17
51.1Ω ±1%, 1/16W resistors (0603)
Panasonic
ERJ-3EKF51R1V
R36–R39, R94, R108
6
330Ω ±5%, 1/16W resistors (0603)
Panasonic
ERJ-3GEYJ331V
R54, R56, R57, R58,
R74, R77, R89, R90
8
0Ω ±5%, 1/8W resistors (1206)
Panasonic
ERJ-8GEYJ0R00V
R69, R72
R70, R93
R71, R73
R75, R76
R78
R79
R82, R83
2
2
2
2
1
1
2
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
Panasonic
ERJ-6ENF1100V
ERJ-6ENF10R0V
ERJ-6ENF13R0V
ERJ-6ENF90R9V
ERJ-6ENF3570V
ERJ-6ENF3010V
ERJ-6GEY0R00V
R85–R88
4
—
—
SW5
1
110Ω ±1%, 1/10W resistors (0805)
10.0Ω ±1%, 1/10W resistors (0805)
13.0Ω ±1%, 1/10W resistors (0805)
90.9Ω ±1%, 1/10W resistors (0805)
357Ω ±1%, 1/10W resistor (0805)
301Ω ±1%, 1/10W resistor (0805)
0.0Ω ±5%, 1/10W resistors (0805)
Resistors (0805)
DO NOT POPULATE
4-pin single-pole switch
Panasonic
EVQPAE04M
SW6
SW7, SW8, SW9
1
3
2
T3
1
T4
1
Tyco
Tyco
Pulse
Engineering
Pulse
Engineering
Pulse
Engineering
SSA22
SSA12
T1, T2
6-pin, through-hole, DPDT slide switch
3-pin, through-hole, SPDT slide switches
16-pin SMT T1 transformers
(1CT:1CT and 1CT:2CT, 1500V)
12-pin dual SMT transformer
(64kbps, 1CT:2CT, 1500V)
64kbps interface transformer
(1CT:1CT, 1500V, 6-pin DIP)
TP1–TP10, TP18–
TP42, TP49–TP61,
TP65–TP84
68
1 plated hole test points
DO NOT STUFF
—
—
U1
1
High-frequency, surface-mount socket
(1mm, 256-pin BGA)
Ironwood
Electronics
SG-BGA-6017
U2, U3, U5, U7,
U9–U26
22
TinyLogic ultra-high-speed 2-input OR gates
(5-pin SOT23)
Fairchild
Semiconductor
NC7SZ32M5
17 of 32
PE-68678
T7015
PE-65540
DS3100DK
DESIGNATION
QTY
DESCRIPTION
U4, U6
2
3.3V linear regulator
(16-pin TSSOP-EP)
Maxim
MAX1793EUE-33
U8
1
1.8V linear regulator
(16-pin TSSOP-EP)
Maxim
MAX1793EUE-18
U27
1
3-line to 8-line decoder/demultiplexer
(16-pin SO )
Texas
Instruments
SN74HC138NSR
U41
1
Dual RS-232 transmitter/receiver
(16-pin, 300-mil SO)
Dallas
Semiconductor
DS232AS
U42
1
High-speed microcontroller
(44-pin TQFP, 0°C to +70°C)
Dallas
Semiconductor
DS87C520-ECL
U44
1
Microprocessor voltage monitor (3.08V reset
threshold) (4-pin SOT143)
Maxim
MAX811TEUS-T
U45
1
Microprocessor voltage monitor (4.38V reset
threshold) (4-pin SOT143)
Maxim
MAX812MEUS-T
U46
1
Single-chip USB to UART bridge
(28-pin QFN)
Silicon
Laboratories
CP2101
Y1
1
3.3V, 12.8MHz OCXO (5-pin) through-hole
DO NOT POPULATE
Vectron
MC853X4-035W
Y2
1
Vectron
C22601A1-0028
Y3
1
3.3V, 12.8MHz TCXO (4-pin SMD)
3.3V, 12.8MHz OCXO (4-pin SMD)
DO NOT POPULATE
Vectron
C4400A1-0044
Y7
1
Low-profile 11.0592MHz crystal
Pletronics
LP49-33-11.0592M
18 of 32
SUPPLIER
PART
DS3100DK
7.
APPENDIX 2: BITS MODE WRITE SEQUENCES
BITS Transmitter
BITS Receiver
DS1 ESF
address 04h, set TMODE[1:0]=00
address 21h, write 02h
address 21h, write 00h
address 27h, write 0Ch
address 29h, write 00h
address 21h, write 80h
address 21h, write C0h
DS1 ESF
address 04h, set RMODE[1:0]=00
address 0Ah, write 40h
address 20h, write 02h
address 20h, write 00h
address 22h, write 40h
address 20h, write 80h
address 20h, write C0h
DS1 SF/D4
address 04h, set TMODE[1:0]=00
address 21h, write 02h
address 21h, write 00h
address 27h, write 0Ch
address 29h, write 04h
address 21h, write 80h
address 21h, write C0h
DS1 SF/D4
address 04h, set RMODE[1:0]=00
address 0Ah, write 40h
address 20h, write 02h
address 20h, write 00h
address 22h, write 60h
address 20h, write 80h
address 20h, write C0h
E1
address 04h, set TMODE[1:0]=01
address 21h, write 02h
address 21h, write 00h
address 29h, write 00h
address 2Ah, write 05h
address 21h, write 81h
address 21h, write C1h
address 60h, write 1Bh
address 61h, write 40h
E1
address 04h, set RMODE[1:0]=01
address 20h, write 02h
address 20h, write 00h
address 24h, write 68h
address 20h, write 81h
address 20h, write C1h
2048 kHz
address 04h, set RMODE[1:0]=10
address 20h, write 02h
address 20h, write 00h
2048kHz
address 04h, set TMODE[1:0]=10
address 21h, write 02h
address 21h, write 00h
8.
6312 kHz
address 04h, set RMODE[1:0]=11
address 20h, write 02h
address 20h, write 00h
SCHEMATICS
The DS3100DK schematics are featured in the following 13 pages.
9.
DOCUMENT REVISION HISTORY
REVISION
DATE
091806
110206
DESCRIPTION
Initial DS3100DK data sheet release.
Updated document to describe software v0.7 features: (page 1) Features section; (page 6)
Section 3.1; (page 14) Section 4.12; (page 15) added Section 4.13, 4.13.1, 4.13.2; updated
table captions.
19 of 32
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2006 Maxim Integrated Products
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.
R82
R8
2
R10
10K
1
A
INTEL MUX
VCC
2
1 DNP
B
R7
8
R99 0.0
1
IC14
IC13
IC12
IC11
IC10
IC9
IC8
IC7
IC6NEG
IC6POS
IC5NEG
IC5POS
IC4
IC3
IC2A
IC2
A<4>
A<5>
A<6>
G15
F16
G14
7
A<3>
H14
A<8>
A<2>
G16
A<7>
A<1>
H15
F15
A<0>
H16
A8 E16
2
JTDI
TP28
GPIO2
GPIO1
IFSEL<2>
IFSEL<1>
JTCLK
RST*
JTRST*
REFCLK
IC1A
6
GPIO3
MASTSLV
IC1
SYNC2K
0L_SMT0603_1PCT
B14
CJ10-000F SYNC2K
IC1 A10
IC1A P6
IC2 B10
IC2A P7
IC3 C10
IC4 A11
IC5POS
B5
IC5NEG
A5
IC6POS
B4
IC6NEG
A4
IC7 B11
IC8 C11
IC9 A12
IC10B12
IC11 A13
IC12C12
IC13B13
IC14A14
U1
NA
CONTROL
DS3100_U1
SONSDH
RESREF
JTRST
JTCLK
JTDI
JTMS
JTDO
JTDO
IFSEL<0>
RESREF
GPIO1
GPIO2
GPIO3
GPIO4
GPIO4
0.0
R80
SRCSW
2
SRFAIL
10K
TST_RB1
WR_RW*
1
TST_RB2
RD_DS*
R1
TM1
NA NA NA NA NA NA NA NA NA NA NA NA
TP29
TP31
TP32
TP34
TP36
TP37TP38
TP39
TP40
TP41
TP42
TP61
TST_RC1
RDY*
R13 1 TM1
2
R81 0.0
T15 1 TM2 2
TM2
WDT
5
5
TST_TA1
6
TST_TA2
NC1
7
TST_RA1
ALE
C
2
1
TST_TB1
NC2
D
8
R9
DNP
IFSEL0
2
1
R12
IFSEL11 10K
2
R83
DNP
IFSEL2
2
1
AD6 1 DNP
AD7 1 DNP
2
2
2
2
1
R84
10K
R91
DNP
R92
DNP
1
TST_TB2
NC3
T7
T8
R8
R9
T9
P9
JTMS
HIZ*
REFCLKH1
PORNOTB6
HIZ 1 R14
TP1TP2 TP3TP4TP5
B7
C7
A8
B3
A3
C2
C1
C8
B8
A9
B9
OC3
OC4
OC5
OC6POS
OC6NEG
OC7POS
OC7NEG
OC8POS
OC8NEG
OC9
OC10
E15
D16
C16
D15
C15
E14
D14
C14
AD<1>_SDI
AD<2>_SCLK
AD<3>
AD<4>
AD<5>
AD<6>_CPHA
AD<7>_CPOL
C9
A7
OC2
OC11
C6
OC1
4
4
AD<0>_SDO
TST_TC1
E2
F3
H2
J1
IFSEL0
N1
IFSEL1N2
IFSEL2
P1
TST_RA2
CS*
TST_TC2
R6 1
L14 1
T6 1
K16 1
R7 1
K15 1
TST_RC2
INTREQ
MASTSLV
R11
SONSDHM3
SRCSW M2
SRFAILJ2
WDT C5
ALE K14
CS_3100
J16
WR J15
RD J14
RDY
1 B15
INTREQ
1 A15
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
OC1
OC2
OC3
OC4
OC5
OC6POS
OC6NEG
OC7POS
OC7NEG
OC8POS
OC8NEG
OC9
OC10
OC11
1
R98DNP
2
3
3
ENGINEER:
TITLE:
2
JML
2
NA
VCC
DS10
RED
330
DS3100DK01B0
MASTSLV
SRCSW
SONSDH
R94
INTREQ
2
1
1
2
R95
2
2
3
3
VCC
1
PAGE:
DATE:
1
1 OF 13
110705
Wed May 10 13:21:44 2006
SPDT
SW9 1
SPDT
SW8 1
3
SW7 1
SPDT
NA
2
NA
WDT
R97
C8
P2 1
R15 1
N3 1
P13 1
P3 1
P14 1
NC1
1 P12
NC2
1 C13
NC3
1 F14
10K
2
2
1 R96
1 10K
10K
.1UF
2
1
1
2
A
B
C
D
A
B
C
I30
TP10
8
I31
TP18
R12
RSER
RSER2T11
TSER
P11
TIN
T13
T12
TOUT
ROUT
T14
P16
TRINGB
THZE
P15
TRINGA
N16
N15
TCLK
7
TTIPA
TTIPB
RCLK
MCLK
RRING
RRING2
L15
PORT
L3
MCLK2T10
RCLK2R10
ROUT2P10
RTIP
RTIP2L16
DS3100_U1
U1
NA
L1
TIN
TSER
RSER
RSER1 J3
L2
M1
TOUT
ROUT
K3
TCLK
RCLK
T2
THZE
R2
TRINGB
T3
TRINGA
R3
TTIPA
TTIPB
MCLK
RRING
RRING1 R5
PORT
DS3100_U1
MCLK1 F2
RCLK1 K1
ROUT1 K2
RTIP
RTIP1 T5
U1
1
TTIPA1
TTIPA1
TRINGA1
TRINGA1
TP6
THZE1
TP8
TCLK1
TOUT1
TIN1
TSER1
6
TTIPA2
TTIPA2
TRINGA2
TRINGA2 I14
THZE2 TP7 I15
TP9
TCLK2
TOUT2
TIN2
TSER2
RCLK2
TIN2
ROUT2
RSER2
TSER2
RCLK1
TIN1
ROUT1
RSER1
TSER1
6
5
4
3
2
1
J1
6
5
4
3
2
1
J2
5
CONN_6P_U
6
5
4
3
2
1
NA
CONN_6P_U
6
5
4
3
2
1
B16
D7
D10
E7
E8
E9
E10
G4
G5
G12
G13
H5
H12
J5
J12
K4
K5
K12
K13
M7
M8
M9
M10
N7
N10
R1
R16
DUT33
B1
VDDIO1
VDDIO2
VDDIO3
VDDIO4
VDDIO5
VDDIO6
VDDIO7
VDDIO8
VDDIO9
VDDIO10
VDDIO11
VDDIO12
VDDIO13
VDDIO14
VDDIO15
VDDIO16
VDDIO17
VDDIO18
VDDIO19
VDDIO20
VDDIO21
VDDIO22
VDDIO23
VDDIO24
VDDIO25
VDDIO26
VDDIO27
VDDIO28
4
DUT18
RVSS_P1
RVSS_P2
TVSS_P1
TVSS_P2
NA
4
VSS_ICDIFF
VSS_OC6
VSS_OC7
D
5
DVSS
3
DUT33
2
PWR & GND
U1
DS3100_U1
NA
VSS1
VSS2
VSS3
VSS4
VSS5
VSS6
VSS7
VSS8
VSS9
VSS10
VSS11
VSS12
VSS13
VSS14
VSS15
VSS16
VSS17
VSS18
VSS19
VSS20
VSS21
VSS22
VSS23
VSS24
VSS25
VSS26
VSS27
VSS28
3
ENGINEER:
TITLE:
JML
2
DS3100DK01B0
GND
PAGE:
DATE:
1
2 OF 13
110705
Wed May 10 13:21:51 2006
A1
A16
D4
D5
D12
D13
E4
E5
E12
E13
F6
F7
F8
F9
F10
F11
G6
G7
G8
G9
G10
G11
H6
H7
H8
H9
H10
H11
1
1
2
6
DVDD
1
2
7
R13
R14
AVDD_PLL1
AVDD_PLL2
AVDD_PLL3
AVDD_PLL4
C163.1UF
1
8
2
1
2
1
1
1
1
1
R15
VDD1
VDD2
VDD3
VDD4
VDD5
VDD6
VDD7
VDD8
VDD9
VDD10
VDD11
VDD12
VDD13
VDD14
VDD15
VDD16
VDD17
VDD18
VDD19
VDD20
VDD21
VDD22
VDD23
VDD24
AVSS_PLL1
AVSS_PLL2
AVSS_PLL3
AVSS_PLL4
10K
1
10K
RVDD_P1
RVDD_P2
TVDD_P1
TVDD_P2
C164.1UF
1
2
0.0
0.0
0.0
0.0
R22
1AVDD_PLL1
2
R23
1AVDD_PLL2
2
R24
1AVDD_PLL3
2
1AVDD_PLL4
2
D6
D8
D9
D11
E6
E11
F4
F5
F12
F13
H4
H13
J4
J13
L4
L5
L12
L13
M6
M11
N6
N8
N9
N11
D1
E1
F1
G1
H3
T4
M15
R4
M16
A6
B2
C3
VDD_ICDIFF
VDD_OC6
VDD_OC7
VSS29
VSS30
VSS31
VSS32
VSS33
VSS34
VSS35
VSS36
VSS37
VSS38
VSS39
VSS40
VSS41
VSS42
VSS43
VSS44
VSS45
VSS46
VSS47
VSS48
VSS49
VSS50
VSS51
VSS52
VSS53
VSS54
VSS55
VSS56
D2
E3
G2
G3
P5
M14
P4
N14
C4
A2
D3
P8
J6
J7
J8
J9
J10
J11
K6
K7
K8
K9
K10
K11
L6
L7
L8
L9
L10
L11
M4
M5
M12
M13
N4
N5
N12
N13
T1
T16
C165.1UF
AVDD_PLL1
AVDD_PLL2
AVDD_PLL3
AVDD_PLL4
C166.1UF
2
A
B
C
D
A
B
C
D
8
INPUT CLOCKS
DNP
R101
DNP
1R100
OSC331
2
2
VCCD
VOSC
VCC
VREF
FOUT
7
J14
DS4026_U
GNDD
GNDOSC
GND
SCL
SDA
U29
GNDA
14
RF_OUT
12.8MHZ
GND
VCC
OSC_OCXO
EFC
3
4
8
14
1
16
4
3
2
15
1
1
1
1
OSC33
12.8MHZ_3.3V
RF_OUT
Y3
GND
VS
OSC_TCXO
VC
1
5
12.8MHZ_3.3V
Y2
1
5
RF_OUT
OSC_MC853X4
GND
11
13
12
7
1
2
1
2
SUPPLY_V
.1UF
Y1
DNP
DNP
R18
R102
DNP
R11
33.2
R28
DNP
R17
ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE
12.8MHZ_3.3V
7
1
2
1
2
2
6
2
2
2
6
REFCLK
5
5
J12
J11
J10
J9
J8
J7
J6
4
1
1
1
1
1
1
1
4
3
3
ENGINEER:
TITLE:
JML
2
DS3100DK01B0
2
51.1
51.1
8
1
C1
C2
C3
R16
2
1
.1UF
.1UF
1
1
2
2
1
1
C12DNP
2
C11DNP
2
DNP
1
C15DNP
2
1
C19DNP
2
C21DNP
2
R29
R30
R31
R32
R33
R34
R35
2
1
2
1
2
1
2
1
2
1
51.1
51.1
51.1
51.1
51.1
2
1
2
1
PAGE:
DATE:
1
3 OF 13
110705
Wed May 10 13:21:45 2006
IC9
IC8
IC7
IC4
IC3
IC2
IC1
1
A
B
C
D
A
B
C
D
8
INPUT CLOCKS
J33
J32
J31
J30
J29
J28
1
1
1
1
1
1
7
ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE
7
6
6
GND
51.1
51.1
5
SYNC2K
IC14
IC13
IC12
IC11
IC10
5
4
J37
J36
J35
J34
4
TP49
1
3
ENGINEER:
TITLE:
I59
TP53I60
TP54
2
I61
TP55I62
TP56
JML
2
DS3100DK01B0
PLACE TESTPOINTS ON 100 MIL CENTER
TP51
TP52
1
1
1
3
PLACE TESTPOINTS ON 100 MIL CENTER
1
8
R59
R60
R61
R62
R63
R64
2
1
2
1
2
1
2
1
51.1
51.1
51.1
51.1
2
1
2
1
TP50
1
1
1
1
1
R65
R66
R67
R68
1
1
2
2 1
1
1
51.1
51.1
1
51.1
NA
IC6POS
IC6NEG
2
JMP37
NA
IC5NEG
2
JMP36
IC5POS
1
PAGE:
DATE:
1
4 OF 13
110705
Wed May 10 13:21:49 2006
51.1
2
2 1
1
A
B
C
D
A
B
C
D
1
1
1
1
1
1
8
OUTPUT CLOCKS
OC9
OC5
OC4
OC3
OC2
OC1
8
0.0
R51
0.0
R49
0.0
R47
0.0
R45
0.0
R43
0.0
R41
B
A
NA
NA
C
U9
4
B
A
NA
C
B
A
NA
C
U11
4
4
B
A
NA
C
B
A
NA
C
4
U13
4
B
A
NA
C
B
A
NA
C
4
U15
4
B
A
NA
C
B
A
NA
C
4
U17
4
B
A
NA
C
B
A
NA
C
4
U19
4
B
A
C
NC7SZ32
2
1
4
NC7SZ32
U20
2
2 1
NC7SZ32
2
1
NC7SZ32
U18
2
2 1
NC7SZ32
2
1
NC7SZ32
U16
2
2 1
NC7SZ32
2
1
NC7SZ32
U14
2
2 1
NC7SZ32
2
1
NC7SZ32
U12
2
2 1
NC7SZ32
2
1
NC7SZ32
U10
2
2 1
7
7
6
6
1
1
1
1
1
1
J25
J24
J23
J22
J21
J20
5
50 OHM VERT
50 OHM VERT
50 OHM VERT
50 OHM VERT
50 OHM VERT
50 OHM VERT
5
1
1
0.0
R55
0.0
R53
I114
TP60
I113
TP59
I116
TP58
I115
TP57
B
A
C
NA
NA
C
4
B
A
C
NA
C
NC7SZ32
2
1
B
A
4
U23
4
4
NC7SZ32
U24
2
2 1
NC7SZ32
2
1
B
A
NA
U21
NC7SZ32
U22
2
2 1
3
4
3
ENGINEER:
TITLE:
2
JML
2
DS3100DK01B0
PLACE TESTPOINTS ON 100 MIL CENTER
OC7NEG
OC7POS
OC6NEG
OC6POS
OC11
OC10
4
1
1
1
1
1
1
1
1
1
1
50 OHM VERT
50 OHM VERT
PAGE:
DATE:
1
5 OF 13
092205
Thu Oct 13 10:14:03 2005
I111
J39
I109
J38
I107
J41
I105
J40
J27
J26
1
A
B
C
D
A
B
C
GPIO
8
7
7
2
R19
R20
GPIO1
JMP1
I20
11
I36
R21
2
2
1
GPIO2
VCC
1.0K
2
1
B
A
C
I19
U3
6
VCC
B
A
I35
C
U7
6
NC7SZ32
2
1
NC7SZ32
10K
1.0K
10K
2
11
JMP2
R25
4
4
R26470
R27470
2
2
1
2
11
2
2
11
2
DS6
I31
RED
DS5
I15
RED
5
5
2
R40
I8
GPIO3
2
2
1
D
8
GPIO4
I24
VCC
B
A
C
I9
U2
VCC
B
A
4
I25
C
4
U25
NC7SZ32
2
1
NC7SZ32
2
1
4
DS8
I27
RED
DS7
I11
RED
4
3
I5
JMP5
2
1
3
2
1
B
A
C
I1
ENGINEER:
4
U26
DS9
I4
RED
2
JML
2
DS3100DK01B0
NC7SZ32
TITLE:
SRFAIL
R52470
11
JMP3
R42
R44
1.0K
10K
1.0K
10K
2
JMP4
R46
R48470
R50470
11
2
2
1
2
11
2
2
11
2
2
11
2
PAGE:
DATE:
1
6 OF 13
092205
Thu Oct 13 10:14:03 2005
1
A
B
C
D
A
B
C
D
8
BITS TRANSCEIVER
8
2
5
T
R
I13
2
5
T
R
7
1
CONN_BANTAM
I28
J58
J56
I27
1
CONN_BANTAM
I14
J57
J55
7
2
2
6
3
1:1
14
1
2
15
16
T2
I25
3
1:1
14
1
2
T1
15
16
I12
6
R85
R86
R87
R88
2
2 1
1
2
2
2
DNP
C26
DNP
C27
RRING2
1
RTIP2
RRING1
1
RTIP1
5
5
4
R89
3
T1
1:2
T2
10
9
7
11
8
6
0.0
3
ENGINEER:
TITLE:
I3
I17
R
5
JML
I1
J85
R
5
J86
I15
2
1
1
PAGE:
DATE:
1
7 OF 13
110705
Wed May 10 13:21:42 2006
CONN_BANTAM
I16
J84
T
2
1
CONN_BANTAM
I2
J83
T
2
2
DS3100DK01B0
9
8
1:2
10
11
7
6
0L_SMT1206_5PCT
ERJ-8GEYJ0R00V
I19
1
2
R90
0.0
0L_SMT1206_5PCT
ERJ-8GEYJ0R00V
I5
1
2
TRINGA2
TTIPA2
TRINGA1
TTIPA1
4
2
1
2
1
2
DNP
DNP
DNP
DNP
1
2
1
JMP11
2
1
JMP12
2
1
560PF
2
C28
C29
560PF
A
B
C
D
A
B
C
5
R
J90
2
5
R
C9
330PF
T
NA
CONN_BANTAM
COMPOSITE CLOCK
8
2
T
C10
330PF
CONN_BANTAM
J89
7
10
11
12
7
8
9
NA
2:1
T3
NA
2:1
T3
3
1
6
4
1
1
1
0.0
R56
0.0
R54
0.0
R58
0.0
2
2
2
24
6
2
2
1
1
IC1A
NA
JMP6 3
1
IC2A
JMP7 3
.47UF
C49
1
NA
.47UF
C48
5
OC8POS
C4
OC8NEG
C5
2
4
4
1
1
1
1
R770.0
R76
90.9
90.9
R75
0.0
R74
2
2
2
2
R78
R57
5
DNP
DNP
NA
1
6
1
2
7
2
1
1
1
1
3
R79
3
301
ENGINEER:
TITLE:
2
JMP9
NA
JMP103
NA
2
JMP8
NA
357
D
8
1
2
1
2
R72
R93
R73
R69
R70
R71
2
21
2 1
1
2
2.4
4.7
24
2.4
4.7
21
2 1
1
2
2
2
1
2
1
2
2
1
.01UF
C6
1
1:1
4
6
JML
2
DS3100DK01B0
3
2
1:1
T4
2
R
5
J117
PAGE:
DATE:
1
8 OF 13
110705
Wed May 10 13:21:43 2006
CONN_BANTAM
T
2
NA
1
A
B
C
D
A
B
C
8
1
T2IN
T1IN
R2IN
R1IN
C1NEG
TXD0
J
H
G
F
E
D
C
B
A
J50
10UF
C38
1
TX232
5
4
TX232
3 RX232
2
1
7
CONN_DB9P
9
8
7
6
7
14
9
12
5
4 2
15
16
V5_0
RXD0
JMP633
USB_RXD
1
T2OUT
T1OUT
R2OUT
R1OUT
C2NEG
C2POS
GND
VNEG
C1POS
VCC
VPOS
U41
DS232A
JMP62
USB_TXD
3
10
11
8
13
3
1 1
10UF
RX232
2 C37
10UF
12
10UF
2 C36
16
2
C35
2
1
C34
2
RS232
2
D
6
6
SCS
AD2
AD1
C
14
330
AD3
AD4
P2_1
P2_0
P1_3
P1_4
P1_5
P1_6
P1_7
RST
P3_0
P3_1
P3_2
P3_3
P3_4
P3_5
P3_6
P3_7
XTAL1
XTAL2
GND<2-0>
44
1
2
3
4
5
7
8
9
10
11
12
13
14
11.0592MHZ 15
1
Y7
2
WR
RD
RXD0
TXD0
INTREQ
5
18
19
20
21
22
23
24
25
26
27
29
30
31
32
33
34
35
36
37
38
4
DS87C520_TQFP
P2_2
P2_3
P2_4
P2_5
P2_6
P2_7
PSEN
ALE
EA
AD7
AD6
AD5
AD2
AD1
AD0
P1_2
VCC
43
POR
1
DS16
2
42
2
GREEN
P1_1
U42
NC7SZ32
B
A
R108
41
0.0
2
0.0
2
0.0
2
1
2
NA
U5
4
P1_0
1R2
1R3
1R4
5
40
22PF
7
1
C39
2
1
2
8
22PF C40
A8
A12
ALE
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
V5_0
VCC
2
1
10UF
R110
10K
3
3
ENGINEER:
TITLE:
5
SLAVE
CS_3100
5
2
4
6
3
2
A12 1
V5_0
2
R5 DNP
2
R6 0.0
JML
6
5
9
10
8
4
3
7
2
1
NA
J15
10
8
6
4
2
SW6
DPDT
NA
Y7*
Y6*
Y5*
Y4*
Y3*
Y2*
Y1*
Y0*
4
6
3
1
CSS
CSM
CSM
SLAVE
CSS
7
9
10
11
12
13
14
15
1
PAGE:
DATE:
1
9 OF 13
092205
Thu Oct 13 10:14:03 2005
74AHC138
G2A*
G1
C
B
A
G2B*
U27
CONN_10P
2
DS3100DK01B0
SCS 1
GND 1
9
7
(SCLK) AD2
1
(SDIO) AD1
3
SLAVE 5
2
A
B
C
D
A
B
8
4
3
1
2
I42
SW5
3
1
9
7
5
3
1
8
MR*
GND
7
10
8
6
4
2
CONN_10P
10
7
9
6
4
3
5
2
1
RESET*
VCC
U44
MAX811_U
I40
3.08V
JTCLK
JTDO
JTMS
JTRST
JTDI
2
4
1
0.0
R111
VCC
2
3
GND
MR*
6
PORNOT
1
RESET
VCC
U45
MAX812_U
I37
4.38V
2
4
1
5
0.0
R112
V5_0
2
POR
VDD
DATDAT+
GND
SH
J54
USB
C
1
2
3
4
1
C41
10K
2
2
1
4
.1UF
C43
NA
5
J51
1
2
10K
VCC
12
11
7
9
8
4
5
SUSPEND_HIGH
ENGINEER:
TITLE:
3
U46
NA
CP2101_U1
SUSPEND_LOW*
REGIN
RST*
VBUS
USBDP
USBDM
21
22
NC11
18
NC7
NC10
21
RI*
19
11
DCD*
20
2
27
1
DSR*
NC9
2
28
1
DTR*
NC8
2
23
1
CTS*
JML
2
2
24
1
RTS*
2
25
1
RXD
R117
0.0 2
R118 0.0
26
1
TXD
2
DS3100DK01B0
GND
2
10K
3
NC1
3
2
1
4
NC2
R113
5
2
1
6
VDD
NC3
1
6
NC4
7
NC5
D
8
NC6
10
13
14
15
16
17
TP84 TP83
NA
R121
10K
R122
10K
R123
10K
R120
10K
USB_TXD
USB_RXD
1
PAGE:
DATE:
1
10 OF 13
092205
Thu Oct 13 10:14:03 2005
NA
1UF R116
4.7UF
C42
R115
A
B
C
D
A
B
C
8
7
7
B
A
1
2
B
A
C
41
U28
NA
DUT331
OSC331
1
6
330
R39
330
R38
330
R37
330
R36
V5_0
1
2 1
DS4
2 1
DS3
2 1
DS2
2 1
DS1
V5_0
1
2
CONN_BANANA_2P
J19
1
2
2.1MM/5.5MM
J3
NC7SZ32
2
DUT18 1
B
A
CONN_BANANA_2P
J13
1
V5_0
2
2
2
2
C7
2
68UF
2
5
5
4
4
1
2
6
V5_0
V5_0
V5_0
IN2
IN3
IN4
SHDN*
3
4
5
7
10
GND
IN2
IN3
IN4
SHDN*
3
4
5
7
11
10
SET
GND
15
6
RST*
14
13
12
OUT4
OUT3
OUT2
OUT1
IN2
IN3
IN4
3
4
5
GND
SET
RST*
OUT4
OUT3
OUT2
OUT1
10
11
6
15
14
13
12
3
ENGINEER:
TITLE:
MAX1793_U2
SHDN*
IN1
2
MAX1793_U2
U8
IN1
2
7
11
6
RST*
SET
15
14
13
12
OUT4
OUT3
OUT2
OUT1
MAX1793_U2
U6
IN1
2
U4
3
1
2
D
8
C13
C14
C16
4.7UF
4.7UF
4.7UF
1
2
1
2
C17
C18
C20
1
1
1
2
DUT33
VCC
2
DUT18
JML
2
DS3100DK01B0
2
JMP15
NA
1 AMP
D7
JMP14 OSC33
2
NA
JMP13
6.8UF
6.8UF
6.8UF
1
2
1
2
1
2
D1
PAGE:
DATE:
1
11 OF 13
110705
Wed May 10 13:21:47 2006
1
A
B
C
D
A
B
C52
C51
8
1
2
VCC
VCC
1
10UF
C60
1
GND
DUT18
2
10UF
C56
2
2
2
1
2
I112I111
I113
TP65
2
1
.1UF
C71
1
2
1
2
1
7
7
I96 I97 I92 I91
I99 I98
TP68TP69
.1UF
C79
2
1
.1UF
C83
1
2
1
.1UF
C87
1
2
1
.1UF
C91
1
2
1
.1UF
C95
1
2
1
.1UF
C99
1
2
1
6
2
1
6
I79 I78 I77 I76
I90
TP74
.1UF
C103
1
.1UF
C107
1
2
1
.1UF
C111
1
2
1
C115
.1UF
1
2
1
.1UF
C119
1
2
1
2
1
.1UF
C127
1
2
1
.1UF
C131
1
2
5
5
I69 I70 I60
I71
TP79
.1UF
C123
1
1
.1UF
1
.1UF
C67
1
1
.1UF
C75
1
1
1
1
1
1
1
1
2
1
10UF
C59
.1UF
C63
1
1
.1UF
C72
2
1
.1UF
C80
1
.1UF
C84
2
1
.1UF
C92
2
1
.1UF
C100
1
.1UF
C104
2
1
.1UF
C112
2
1
.1UF
C120
1
.1UF
C124
2
1
.1UF
C132
2
1
.1UF
1
10UF
C55
2
2
.1UF
C64
1
2
1
2
2
1
2
1
2
2
1
2
1
2
2
1
2
1
.1UF
C136
C137 .1UF
VCC
DUT33
1
1
10UF
C61
1
.1UF
C65
2
.1UF
C68
1
.1UF
C73
2
.1UF
C76
1
.1UF
C81
1
.1UF
C85
2
.1UF
C88
1
.1UF
C93
2
.1UF
C96
1
.1UF
C101
1
.1UF
C105
2
.1UF
C108
1
.1UF
C113
2
.1UF
C116
1
.1UF
C121
1
.1UF
C125
2
.1UF
C128
1
2
C
C53
2
10UF
C57
2
2
1
2
1
2
2
1
2
1
2
2
1
2
1
2
2
1
2
.1UF
C133
1
2
.1UF
8
1
1
10UF
C62
1
.1UF
C66
.1UF
C69
1
.1UF
C74
.1UF
C77
1
.1UF
C82
1
.1UF
C86
.1UF
C89
1
.1UF
C94
.1UF
C97
1
.1UF
C102
1
.1UF
C106
.1UF
C109
1
.1UF
C114
.1UF
C117
1
.1UF
C122
1
.1UF
C126
.1UF
C129
1
.1UF
C134
2
C138 .1UF
D
C54
2
10UF
C58
2
2
2
.1UF
C70
2
2
.1UF
C78
2
2
2
.1UF
C90
2
2
.1UF
C98
2
2
2
.1UF
C110
2
2
.1UF
C118
2
2
2
.1UF
C130
2
1
2
TP67TP66
TP73TP72TP71TP70
TP78TP77TP76TP75
TP82TP81TP80
1
.1UF
C135
1
2
1
.1UF
4
4
C153
2
C139
1
2
1
OSC33
10UF
C141
2
1
V5_0
1
V5_0
10UF
C154
2
10UF
C155
2
10UF
C143
1
2
.1UF
C168
2
1
.1UF
C145
1
2
1
.1UF
C147
3
ENGINEER:
TITLE:
1
3
.1UF
C169
2
2
.1UF
1
.1UF
C149
2
1
.1UF
C151
2
1
JML
1
1
.1UF
2
2
DS3100DK01B0
.1UF
C140
2
.1UF
C142
2
PAGE:
DATE:
1
12 OF 13
092205
Thu Oct 13 10:14:03 2005
1
A
B
C
D
A
B
C
D
8
8
7
-
01
02
03
04
05
A0
B0
050206
012106
011306
010406
112105
111905
110705
REVISION HISTORY -
7
-
-
-
-
-
-
-
6
6
4
3
2
5
4
ADDED BUFFER TO 1.8V LED
ADDED 0 OHM RESISTORS AT SDIO,SCLK,SCS
ADDED INTEL BUS CONNECTIONS
MADE INTEL MUX MODE DEFAULT
ADDED 330PF CAPS AT COMPOSITE CLOCK INPUT
FIXED COMPOSITE CLOCK TERMINATION RES
CHANGED 138 TO AHC FROM HC
MOVED UP OK LED TO P1.1 AND REVERSED LOGIC
CHANGED CAP ON COMPOSITE CLOCK TX TO .01UF
ADDED SHORTED JUMPERS AT REGULATORS FOR ACCESS
MOVED CSM TO 1000 AND CSS TO 0
ADDED DS4026 TCXO AND SUPPORTING COMPONENTS
RELEASE TO FAB
3
ENGINEER:
TITLE:
JML
2
DS3100DK01B0
REMOVED 5V CAPS, LEDS AND SWITCHES FROM MICRO, LOW Z TP FROM ICN
CHANGED REF DESIGNATORS TO MATCH EE
MOVED MEMORY MAP,OTHER MISCELLANEOUS
FIX TRANSFORMER ISSUES,ADDED POWER JACK,FIXED CSM/CSS LOGIC,ADDED TPS
RELEASE FOR REVIEW
5
PAGE:
DATE:
1
13 OF 13
092205
Thu Oct 13 10:14:03 2005
1
A
B
C
D