ETC FAN8039D3

www.fairchildsemi.com
FAN8039D3
5-CH Motor Driver
Features
Description
•
•
•
•
•
•
•
The FAN8039D3 is a monolithic integrated circuit suitable
for a 5-ch motor driver which drives the tracking actuator,
focus actuator, sled motor, tray motor, spindle motor of the
DVDP/CAR-CD systems.
1 Phase, Full-wave, Linear DC Motor Driver
Built-in 5-CH Balanced TransFormerless (BTL) Driver
Built-in thermal shut down circuit (TSD)
Built-in Variable Regulator With Power Tr.
Built-in Power Save Circuit
Built-in stand by mode circuit
Wide Operating Supply Voltage : 4.5 ~ 13.2V
28-SSOPH-375SG2
Typical Applications
•
•
•
•
•
Compact disk player
Video compact disk player
Car compact disk player
Mixing with compact disk player and mini disk player
DVDP
Ordering Information
Device
Package
Operating Temp
FAN8039D3
28-SSOPH-375SG2
−35°C ~ 85°C
FAN8039D3TF 28-SSOPH-375SG2
−35°C ~ 85°C
Rev 1.0.0
©2001 Fairchild Semiconductor Corporation
FAN8039D3
Pin Assignments
28
25
24
23
22
21
20
19
GND3 DO4- DO4+ IN4
VCC
VREF
PS
VCC1
IN3
DO3+
27
26
18
17
16
15
DO3- DO5- DO5+ GND2
FAN8039D3
DO1- DO1+ IN1 REGVCC REB
1
2
3
4
GND1
REO RESX
5
6
7
8
CTL FWD
9
10
REV
IN2
11
12
DO2+ DO2-
13
14
Pin Definitions
NO
Symbol
1
DO1-
2
DO1+
3
IN1
4
REGVCC
5
Description
NO
Symbol
Description
CH1 Drive Output (-)
15
GND2
Power Ground1 (CH 2,3,5)
CH1 Drive Output (+)
16
DO5+
CH5 Drive Output (+)
CH1 Drive Input
17
DO5-
CH5 Drive Output(-)
Regulator Supply Voltage
18
DO3-
CH3 Drive Output(-)
REB
Regulator Output
19
DO3+
CH3 Drive Output (+)
6
REO
Regulator Feedback Input
20
IN3
CH3 Drive Input
7
RESX
Regulator Reset
21
VCC1
Supply Voltage1
8
GND1
Signal Ground
22
PS
Power Save
9
CTL
CH5 Motor Speed Control
23
VREF
Bias Voltage
10
FWD
CH5 Forward Input
24
VCC
Supply Voltage
11
REV
CH5 Reverse Input
25
IN4
CH4 Drive Input
12
IN2
CH2 Drive Input
26
DO4+
CH4 Drive Output (+)
13
DO2+
CH2 Drive Output (+)
27
DO4-
CH4 Drive Output (-)
14
DO2-
CH2 Drive Output (-)
28
GND3
Power Ground2 (CH 1,4)
2
FAN8039D3
DO5-
DO5+
GND2
22
DO3-
2
23
DO3+
2
24
IN3
25
FIN
(GND)
VCC1
IN4
26
PS
DO4+
27
VREF
DO4-
28
VCC
GND3
Internal Block Diagram
21
20
19
18
17
16
15
10K
Level
Shift
10K
PS
RESX
H
H
All Active
H
L
Reg. Only Deactive
L
H
Reg. Only Active
L
L
All Deactive
2
2
FUNCTION
Level
Shift
Level
Shift
10K
Regulator
2.5V
10K
10K
DO1+
IN1
REGVCC
REB
REO
RESX
FIN
(GND)
8
9
10
11
12
13
14
DO2-
7
DO2+
6
IN2
5
2
REV
4
2
FWD
3
CTL
2
GND1
1
Level
Shift
COMP
2
DO1-
2
10K
TSD
Level
Shift
3
FAN8039D3
Equivalent Circuits
BTL DRVER OUTPUT
BTL DRIVE INPUT
1
3
2
12
13
20KΩ
20
14
25Ω
25
16
17
18
30KΩ
19
REGULATOR OUTPUT
REGULATOR FEEDBACK INPUT
6
1KΩ
25Ω
20KΩ
5
REGULATOR RESET
MOTOR SPEED CONTROL
7
20KΩ
50KΩ
25Ω
9
1kΩ
25Ω
50KΩ
4
FAN8039D3
Equivalent Circuits (Continued)
FOWARD INPUT
REVERSE INPUT
10
30KΩ
30KΩ
30KΩ
30KΩ
11
25Ω
30KΩ
30KΩ
POWER SAVE
30KΩ
25Ω
30KΩ
BIAS VOLTAGE
23
25Ω
0.5KΩ
22
25Ω
50KΩ
20KΩ
50KΩ
5
FAN8039D3
Absolute Maximum Ratings (Ta = 25°°C)
Parameter
Symbol
Maximum Supply Voltage
Value
Unit
VCC
18
V
PD
2.5note
W
Operating Temperature
TOPR
−35 ~ +85
°C
Storge Temperature
TSTG
−55 ~ +150
°C
Maximum output current
IOMAX
1
A
IROMAX
400
mA
Power Dissipation
Regulator Maximum output current
Notes:
1. When mounted on 70mm × 70mm × 1.6mm PCB
2. Power dissipation reduces 20mW/°C for using above TA = 25°C
3. Do not exceed PD and SOA (Safe Operating Area)
Pd (mW)
3,000
2,000
1,000
0
0
25
50
75
100
125
150
175
Ambient temperature, Ta [°C]
Recommended Operating Conditions (Ta = 25°°C)
Parameter
Operating Supply Voltage
Symbol
Min.
Typ.
Max.
Unit
VCC
4.5
-
13.2
V
6
FAN8039D3
Electrical Characteristics
(VCC = VCC1 = 8V, TA = 25°C, unless otherwise specified)
Characteristics
Symbol
Quiescent Circuit Current
ICCQ
Power Save On Current
IPS
Condition
Min
Typ
Max
Unit
Under no - load
-
20
-
mA
Pin7=GND
-
1
2
mA
Power Save On Voltage
VPSON
Pin7=Variation
-
-
0.5
V
Power Save Off Voltage
VPSOFF
Pin7=Variation
2
-
-
V
-40
0
10
mV
VARIABLE REGULATOR PART
Load Regulation
∆VRL
IL = 0mA → 200mA
Line Regulation
∆VCC
IL = 200mA, VCC=6V → 9V
-20
0
30
mV
Regulator Output Voltage 1 VREG1
IL = 100mA
4.75
5
5.25
V
Regulator Output Voltage 2 VREG2
IL = 100mA
3.135
3.3
3.465
V
*Regulator Output Peak
Current
IPK
Tj = 25°C
Output Offset Voltage
VOO
VIN=2.5V
-40
0
40
mV
Maximum Output Voltage1
VOM1
VCC=Vcc1=8V, RL = 12Ω
5.5
6.5
-
V
Maximum Output Voltage2
VOM2
VCC=Vcc1=13V, RL = 24Ω
10.5
11.5
-
V
10.5
12
13.5
dB
-
2
-
V/µs
700
mA
BLT DRIVER PART
Close Loop Voltage Gain
AVF
VIN=0V, 1Vrms, f = 1KHz
Slew rate
SR
VOUT=4VP-P, f = 120KHz, Square
LOADING MOTOR DRIVER PART
Input High Level Voltage
VIH
-
2
-
-
V
Input Low Level Voltage
VIL
-
-
-
0.5
V
Output Voltage1
VO1
VCC=VCC1=8V, VCTL=OPEN, RL=12Ω
5.5
6.5
-
V
Output Voltage2
VO2
VCC=VCC1=12V, VCTL=OPEN,
RL=24Ω
9.5
10.5
-
V
Output Offset Voltage1
VOO1
VIN=5V , 5V
-40
-
40
mV
Output Offset Voltage2
VOO2
VIN=0V , 0V
-40
-
40
mV
*.Pulse Testing with Low Duty.
7
FAN8039D3
Application Information
1. Driver (Except For Loading Motor Driver)
10K
10K
DO+
10K
VREF
23
12
20
3
25
LEVEL
SHIFT
10K
13
19
26
1
14
18
27
I
+
M
-
-
I
10K
0.1K
2
10K
VCC
DO-
10K
10K
60K
VP
62K
The voltage, VREF is the reference voltage given by the external bias voltage of the pin #23. The input signal (VIN) through
pin #12,20 is amplified by 10k/10k times and then fed to the level shift. The level shift produces the current due to the difference between the input signal and the arbitary reference signal. The current produced as + ∆I and -∆I is fed into the driver
Amp. The driver Amp. operates the power TR. of the output stage as the 2 times gain(1+10k/10k) according to the state of the
input signal.
∆VV IN = V REF + ∆V∆I = ---------10K
10K
DO + = V P + ∆I • 10K •  1 + ----------- = V P + 2∆V

10K
10K
DO – = V P – ∆I • 10K •  1 + ----------- = V P – 2∆V

10K
V OUT = ( DO+ ) – ( DO- ) = 4∆V
V OUT
GAIN = 20 log  -------------- = 12dB
 ∆V 
If it is desired to change the gain, then the pin #3 or 25 can be used.
The output stage is the balanced transformerless (BTL) driver.
The bias voltage VP is expressed as
62K
V P = ( VCC – V BE – V CE ( SAT ) ) × ---------------------------- + V CE ( SAT )
60K + 62K
VCC – V BE – V CE ( SAT )
= ------------------------------------------------------------ + V CE ( SAT )
1.97
8
FAN8039D3
2. Thermal Shutdown
VCC
When the chip temperature reaches to 175°C, then the TSD circuit is
activated.
IREF
This shuts down the bias current of the output drivers, and all the output
drivers are in cut-off state. Thus the chip temperature begins to decrease.
Output driver
bias
R1
Q0
R2
when the chip temperature falls to 150°C, the TSD circuit is deactivated
and the output drivers are normally operated.
Hysteresis
Ihys
R3
The TSD circuit has the hysteresis temperature of 25°C.
3. Power Save Function
When the pin22 is high, the TR Q3 is turned on and Q4 is off, so the bias
circuit is enabled. On the other hand, when the pin22 is Low (GND) ,
the TR Q3 is turned off and Q4 is on, so the bias circuit is disabled.
That is, this function will cause all the circuit blocks of the chip except
for the variable regulator to be in the off state. thus the low power quiescent state is established
VCC
Main Bias
(except for
variable reg.)
Q4
22
Q3
Truth table is as follows;
Pin#22
FAN8039D3
High
Power Save Off
Low
Power Save On
4. Variable Regulator
The VREF is the output voltage of the referenced biasing circuit
and is the reference voltage of the regulator. (VREF=2.5V) The
external circuit is composed of a capacitor, 33uF, which is used
as a ripple eliminator The output voltage, VOUT is decided as
follows.
R
V OUT = V REF •  1 + ------1- = 2.5 × 2 = 5V ( R1 = R2 )

R 
2
REGVCC
IMAX
R3
4
VREF
Q1
2.5V
5
Resistor R3 should be used, it can reduce the heating problem of
regulator output TR Q1. R3 value is decided as follows
( REGVCC – ( Vout + 1.5 ) )
R3 = ----------------------------------------------------------------------I MAX
7 RESX
V OUT
R1
6
33uF
R2
9
FAN8039D3
5. Loading Motor Driver
DO2+
DO214
M
13
D
D
LEVEL SHIFT
M.S.C
CTL
9
S.W
IN
IN
FWD
REV
10
11
• Rotational direction control
The forward and reverse rotational direction is controlled by FWD (pin10) and REV (pin11) and the input conditions are as
follows.
INPUT
OUTPUT
FWD
REV
OUT 1
OUT 2
State
H
H
Vp
Vp
High Impedence
H
L
H
L
Forward
L
H
L
H
Reverse
L
L
-
-
Short Brake
• Where Vp(Power reference voltage) is approximately about 3.75V at VCC1,VCC = 8V
• Motor speed control (When VCC=VCC1=8V)
- The almost maximum torque is obtained when the pin 9,(CTL) is open.
- If the voltage of the pin 9,(CTL) is 0V, the motor will not operate.
10
FAN8039D3
Typical Performance Characteristics
Temp vs Ips
Temp vs Avf
1.5
1.3
Ips(mA)
0.9
0.7
Vcc1=8V
Vcc=8V
0.5
Avf(dB)
1.1
0.3
0.1
-0.1
-35
-10
15
40
Temp(℃)
65
16
14
12
10
8
6
4
2
0
-35
Vcc=8V
Vcc1=8V
Vin=1kHz
-10
0
0
Vcc(mV)
Vrl(mV)
10
-10
-20
Vcc=8V
Vcc1=8V
IL=0~200mA
-30
15
40
65
Temp vs V Reg1
5.25
Reg1(V)
5.15
5.05
4.95
Vcc=8V
Vcc1=8V
IL=100mA
4.85
-10
15
40
Temp(℃)
11
-10
-20
-30
-40
-50
-35
IL=200mA
Vcc=5~9V
-10
15
40
Temp(℃)
Temp(℃)
4.75
-35
65
Temp vs ∆ V cc
10
-10
40
Temp(℃)
Temp vs ∆ V rl
-40
-35
15
65
65
FAN8039D3
Typical Performance Characteristics
V cc vs V om
35
14
30
12
25
10
Vom(V)
Icc(mA)
V cc vs Icc
20
15
6
10
4
5
2
No Load
0
4.5
5.5
6.5
7.5
8.5
9.5
Vcc=8V
Vcc1=8V
RL=12V
0
10.5 11.5 12.5
4.5
5
12.5
12
11.5
Vcc=8V
Vcc1=8V
RL=12Ω
11
10.5
8.5
10.5
4
Vcc=8V
Vcc1=8V
IL=100mA
3.5
3
4
12.5
5
6
7
8
9
10
11
12
13
V cc(V )
Temp vs Icc
Temp vs V om
30
7
25
6
5
20
Vom(V)
Icc(mA)
9.5 10.5 11.5 12.5
4.5
V cc(V )
15
10
4
3
2
5
No Load
-10
15
40
Temp(℃)
12
8.5
V cc vs V reg
13
0
-35
7.5
V cc vs Avf
5.5
6.5
6.5
V cc(V )
13.5
4.5
5.5
V cc(V )
Vreg(V)
Avf(dB)
8
65
Vcc=8V
Vcc1=8V
RL=12Ω
1
0
-35
-10
15
40
Temp(℃)
65
FAN8039D3
Test Circuit
VCC
12Ω
2
24Ω
1
1
1
+ 100uF
SW8
2
SW9
28
2
3
2.5V
12Ω
SW7
104
24Ω
12Ω
24Ω
3
1
10KΩ
1
2
SW6
2
SW5
25
24
23
22
21
20
19
GND3 DO4- DO4+ IN4
VCC
VREF
PS
VCC1
IN3
DO3+ DO3- DO5- DO5+ GND2
27
26
18
17
16
15
FAN8039D3
DO1- DO1+ IN1 REGVCC REB
1
2
SW1
3
4
6
2
8
9
FWD
REV
IN2
DO2+ DO2-
10
11
12
13
24Ω
14
SW4
SW2
1
SW3
1
3
2
1
+
2
3
2
33uF
13
7
GND1 CTL
10KΩ
1
12Ω
5
REO RESX
12Ω
24Ω
FAN8039D3
Application Circuit
CONTROLLER
SERVO PRE-AMP
SPINDLE TRACKING
BIAS
SLED
FORWARD
REVERSE
FOCUS
SLED
VCC
27
LOADING
MOTOR
M
M
P
S
TRACK
28
CONTROL
26
25
GND3 DO4- DO4+ IN4
24
23
100uF 102
22
21
VCC VREF PS
20
VCC1 IN3
19
18
17
16
15
DO3+ DO3- DO5- DO5+ GND2
FAN8039D3
DO1- DO1+ IN1 REGVCC REB
1
2
3
4
5
REO RESX
6
7
GND1 CTL FWD
8
9
10
REV IN2
11
12
DO2+ DO213
14
Reg
out
M
SPINDLE
14
33uF
R
E
S
X
FOCUS
FAN8039D3
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
4/28/01 0.0m 001
Stock#DSxxxxxxxx
 2001 Fairchild Semiconductor Corporation