G1420 Global Mixed-mode Technology Inc. 2W Stereo Audio Amplifier Features General Description Depop Circuitry Integrated Output Power at 1% THD+N, VDD=5V G1420 is a stereo audio power amplifier in 24pin TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in Bridge-Tied Load (BTL) mode at 5V supply voltage. Its THD is smaller than 1% under the above operation condition. To simplify the audio system design in the notebook application, G1420 supports the Bridge-Tied Load (BTL) mode for driving the speakers, Single-End (SE) mode for driving the headphone. G1420 can mute the output when Mute-In is activated. For the low current consumption applications, the SHDN mode is supported to disable G1420 when it is idle. The current consumption can be further reduced to below 5µA. --1.8W/CH (typical) into a 4Ω Ω Load --1.2W/CH (typical) into a 8Ω Ω Load Bridge-Tied Load (BTL), Single-Ended (SE) Stereo Input MUX Mute and Shutdown Control Available Surface-Mount Power Package 24-Pin TSSOP-P Applications Stereo Power Amplifiers for Notebooks or Desktop Computers Multimedia Monitors Stereo Power Amplifiers for Portable Audio G1420 also supports two input paths, that means two different gain loops can be set in the same PCB and choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility. Systems Ordering Information ORDER NUMBER TEMP. RANGE G1420F31U -40°C to +85°C G1420F31T -40°C to +85°C PACKAGE PACKING TSSOP-24L TSSOP-24L Tape & Reel Tube Pin Configuration G1420 GND/HS GND/HS 1 24 TJ LOUT+ 2 3 23 NC 22 ROUT+ LLINEIN 4 21 RLINEIN LHPIN 5 20 RHPIN LBYPASS 6 19 RBYPASS LVDD 18 RVDD SHUTDOWN 7 8 17 NC MUTE OUT 9 16 HP/LINE LOUT- 10 MUTE IN 11 15 14 ROUTSE/BTL 12 13 GND/HS GND/HS Thermal Pad 14 Top View 24Pin TSSOP Bottom View TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 1 G1420 Global Mixed-mode Technology Inc. Absolute Maximum Ratings Power Dissipation (1) TA ≤ 25°C…………………………………………..2.7W TA ≤ 70°C…………………………………………..1.7W TA ≤ 85°C………………….……………………….1.4W Electrostatic Discharge, VESD Human body mode..……………………...-3000 to 3000(2) Supply Voltage, VCC…………………..…...…….……...6V Operating Ambient Temperature Range TA…….…………………………….……….-40°C to +85°C Maximum Junction Temperature, TJ…..……….….150°C Storage Temperature Range, TSTG….….-65°C to+150°C Soldering Temperature, 10seconds, TS……….……260°C Note: (1) : Recommended PCB Layout (2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses Electrical Characteristics DC Electrical Characteristics, TA=+25°C PARAMETER SYMBOL CONDITIONS VDD =3.3V Supply Current DC Differential Output Voltage Supply Current in Mute Mode IDD in Shutdown IDD VO(DIFF) MIN TYP MAX 7 9 3.5 8 4 5 5.6 11 6.5 30 Stereo BTL 8 11 STEREO SE 4 2 6.5 5 TYP MAX Stereo BTL STEREO SE Stereo BTL VDD = 5V STEREO SE VDD = 5V,Gain = 2 IDD(MUTE) VDD = 5V ISD VDD = 5V UNIT mV mA µA (AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage SYMBOL P(OUT) THD+N BOM RSRR CONDITIONS THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD = 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz ZI Vn PO = 500mW, BTL Output noise voltage MIN 1.8 1.12 2 1.4 500 320 650 400 90 500 150 20 10 20 60 75 85 82 80 85 2 90 55 UNIT W mW m% kHz ° dB dB dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 2 G1420 Global Mixed-mode Technology Inc. (AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω Ω, unless otherwise noted) PARAMETER Output power (each channel) see Note Total harmonic distortion plus noise Maximum output power bandwidth Phase margin Power supply ripple rejection Mute attenuation Channel-to-channel output separation Line/HP input separation BTL attenuation in SE mode Input impedance Signal-to-noise ratio Output noise voltage SYMBOL P(OUT) THD+N BOM PSRR CONDITIONS THD = 1%, BTL, RL = 4Ω THD = 1%, BTL, RL = 8Ω THD = 10%, BTL, RL = 4Ω THD = 10%, BTL, RL = 8Ω THD = 1%, SE, RL = 4Ω THD = 1%, SE, RL = 8Ω THD = 10%, SE, RL = 4Ω THD = 10%, SE, RL L = 8Ω THD = 0.5%, SE, RL = 32Ω PO = 1.6W, BTL, RL = 4Ω PO = 1W, BTL, RL = 8Ω PO = 75mW, SE, RL = 32Ω VI = 1V, RL = 10KΩ, G = 1 G = 1, THD 1% RL = 4Ω, Open Load f = 120Hz f = 1kHz ZI Vn PO = 500mW, BTL Output noise voltage MIN TYP 0.8 0.5 1 0.6 230 140 290 180 43 270 100 20 10 20 60 75 85 80 80 85 2 90 55 MAX UNIT W mW m% kHz ° dB dB dB dB dB MΩ dB µV (rms) Note :Output power is measured at the output terminals of the IC at 1kHz. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 3 Global Mixed-mode Technology Inc. G1420 Pin Description PIN NAME 1,12,13,24 2 GND/HS TJ O 3 4 5 LOUT+ LLINE IN LHP IN O I I 6 7 8 LBYPASS LVDD SHUTDOWN I I 9 10 11 14 MUTE OUT LOUTMUTE IN SE/ BTL 15 16 HP/ LINE ROUT- 17,23 18 19 20 21 22 NC RVDD RBYPASS RHP IN RLINE IN ROUT+ I/O O O I I FUNCTION Ground connection for circuitry, directly connected to thermal pad. Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature measurement section of this document. Left channel + output in BTL mode, + output in SE mode. Left channel line input, selected when HP/ pin is held low. Left channel headphone input, selected when HP/pin is held high. Connect to voltage divider for left channel internal mid-supply bias. Supply voltage input for left channel and for primary bias circuits. Shutdown mode control signal input, places entire IC in shutdown mode when held high, IDD = 5µA. Follows MUTE IN pin, provides buffered output. Left channel - output in BTL mode, high impedance state in SE mode. Mute control signal input, hold low for normal operation, hold high to mute. Mode control signal input, hold low for BTL mode, hold high for SE mode. O I Right channel - output in BTL mode, high impedance state in SE mode. MUX control input, hold high to select headphone inputs (5,20), hold low to select line inputs (4,21). I Supply voltage input for right channel. Connect to voltage divider for right channel internal mid-supply bias. Right channel headphone input, selected when HP/pin is held high. Right channel line input, selected when HP/pin is held low. Right channel + output in BTL mode, + output in SE mode. I I O TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 4 G1420 Global Mixed-mode Technology Inc. Typical Characteristics Table of Graphs FIGURE vs Frequency 2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33 vs Output power 1,3,6,9,10,13,16,19,22,25,28,31 vs Frequency 34,35 Supply ripple rejection ratio vs Frequency 36,37 Crosstalk vs Frequency 38,39,40,41 Closed loop response vs Frequency 42,43,44,45 vs supply voltage 46 vs supply voltage 47,48 vs Load resistance 49,50 vs Output power 51,52,53,54 THD +N Total harmonic distortion plus noise Vn Output noise voltage IDD Supply ripple rejection ratio PO Output power PD Power dissipation TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 5 20kHz 2 2 1 1 1kHz 0.5 Po=1.8W 0.5 % % 0.2 0.1 0.2 0.1 20 Hz VDD=5V RL=3Ω BTL 0.05 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m 1 0.05 0.02 2 0.01 20 3 W 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 1 Ver: 1.1 May 23, 2003 VDD=5V RL=3Ω BTL Av=-2V/V Po=1.5W Figure 2 5 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY 10 10 5 5 Av=-4V/V 20kHz 2 2 1 1 0.5 Av=-2V/V 0.5 1kHz % % 0.2 0.2 0.1 0.1 VDD=5V RL=4Ω BTL 20 Hz 0.05 0.02 0.01 3m 5m 10m 20m 50m 100m 200m 500m 1 VDD=5V RL=4Ω BTL Po=1.5W Av=-1V/V 0.05 0.02 2 0.01 20 3 50 100 200 500 W 1k 2k 5k 10k 20k Hz Figure 3 Figure 4 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=5V RL=4Ω BTL Av=-2V/V VDD=5V RL=8Ω BTL Av=-2V/V 5 Po=1.5W 20kHz 2 1 Po=0.25W 0.5 0.5 % % 0.2 0.2 Po=0.75W 0.1 0.05 0.05 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 3m 20k Hz 20Hz 5m 10m 20m 50m 100m 200m 500m 1 2 3 W Figure 5 Ver: 1.1 May 23, 2003 1kHz 0.1 Figure 6 6 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 5 2 1 10 VDD=5V RL=8Ω BTL Av=-2V/V 5 Po=1W 2 1 Po=0.25W 0.5 VDD=5V RL=8Ω BTL Po=1W Av=-4V/V 0.5 % Av=-2V/V % 0.2 0.2 0.1 0.1 Po=0.5W 0.05 0.05 0.02 Av=-1V/V 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 20 20k 50 100 200 500 Hz 1k 2k 5k 10k 20k Hz Figure 8 Figure 7 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT POWER 10 10 5 5 20kHz 20kHz 2 2 1 1 1kHz 0.5 1kHz 0.5 % % 0.2 0.1 0.05 0.02 0.01 1m 0.2 0.1 VDD=3.3V RL=3Ω BTL 2m 5m 20Hz 0.05 0.02 10m 20m 50m 100m 200m 500m 0.01 1m 1 W 2m 5m 20Hz 10m 20m 50m 100m 200m 500m 1 W Figure 9 Ver: 1.1 May 23, 2003 VDD=3.3V RL=4Ω BTL Figure 10 7 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 VDD=3.3V RL=4Ω BTL Po=0.65W 5 Av=-4V/V 2 Av=-2V/V 1 VDD=3.3V RL=4Ω BTL Av=-2V/V Po=0.7W 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 0.1 Av=-1V/V 0.05 0.05 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 20 20k Po=0.35W 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 11 Figure 12 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 VDD=3.3V RL=8Ω BTL 5 20kHz 2 5 2 1 1 0.5 VDD=3.3V RL=8Ω BTL Po=0.4W Av=-4V/V Av=-2V/V 0.5 % % 1kHz 0.2 0.2 0.1 0.1 0.05 0.05 Av=-1V/V 20Hz 0.02 0.01 1m 0.02 2m 5m 10m 20m 50m 100m 200m 500m 0.01 20 1 W 100 200 500 1k 2k 5k 10k 20k Hz Figure 13 Ver: 1.1 May 23, 2003 50 Figure 14 8 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=3.3V RL=8Ω BTL Av=-2V/V 5 2 Po=0.4W VDD=5V RL=4Ω SE 20kHz 1 0.5 0.5 % % Po=0.1W 0.2 0.2 0.1 1kHz 0.1 0.05 0.05 Po=0.25W 100Hz 0.02 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 0.01 1m 20k 2m 5m 10m 20m 50m Hz 100m 200m 500m 1 W Figure 15 Figure 16 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 5 2 1 10 VDD=5V RL=4Ω SE Po=0.5W 5 Av=-4V/V 2 1 0.5 0.2 % 0.2 0.1 Po=0.1W 0.1 0.05 0.05 Av=-1V/V Po=0.25W 0.02 0.02 50 100 200 500 1k 2k 5k 10k 0.01 20 20k Hz 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 18 Figure 17 Ver: 1.1 May 23, 2003 Po=0.4W 0.5 Av=-2V/V % 0.01 20 VDD=5V RL=4Ω SE Av=-2V/V 9 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 VDD=5V RL=8Ω SE 5 2 1 1 20kHz VDD=5V RL=8Ω SE Po=0.25W 0.5 0.5 Av=-2V/V % % 0.2 0.2 0.1 0.1 1kHz 0.05 0.02 0.01 1m 100Hz 2m 5m Av=-4V/V 0.05 Av=-1V/V 0.02 10m 20m 50m 100m 200m 500m 0.01 20 1 50 100 200 500 1k 2k 5k 10k 20k Hz W Figure 19 Figure 20 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 5 VDD=5V RL=8Ω SE Av=-2 2 1 0.5 0.2 Po=0.05W % 0.1 0.2 0.05 0.1 0.02 Po=0.1W 0.005 Po=0.25W 1kHz 0.002 50 100 200 500 1k 2k 5k 10k 0.001 1m 20k Hz 2m 5m 10m 20m 50m 100m 200m W Figure 21 Ver: 1.1 May 23, 2003 20Hz 0.01 0.02 0.01 20 20kHz 0.5 % 0.05 VDD=5V RL=32Ω SE Figure 22 10 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 0.5 5 VDD=5V RL=32Ω SE Po=75mW 2 1 Av=-4V/V 0.5 Po=25mW 0.2 0.2 % VDD=5V RL=32Ω SE % 0.1 Av=-2V/V 0.05 0.1 0.05 0.02 0.02 0.01 0.01 0.005 0.005 Av=-1V/V 0.002 0.002 0.001 20 0.001 20 50 100 200 500 1k 2k 5k 10k 20k Po=50mW Po=75mW 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 23 Figure 24 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 VDD=3.3V RL=4Ω,SE Av=-2 5 2 20kHz 1 1 Av=-4V/V 0.5 0.5 % % 1kHz 0.2 0.2 Av=-2V/V 0.1 0.1 0.05 0.05 100Hz 0.02 0.01 1m VDD=3.3V RL=4Ω SE Po=0.2W 2m 5m 10m 20m 50m 100m 200m 500m 0.01 20 1 50 100 200 500 1k 2k 5k 10k 20k Hz W Figure 25 Ver: 1.1 May 23, 2003 Av=-1V/V 0.02 Figure 26 11 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT POWER 10 5 2 1 10 VDD=3.3V RL=4Ω SE Av=-2 5 Po=50mW 2 VDD=3.3V RL=8Ω,SE Av=-2 20kHz 1 0.5 0.5 % % 0.2 0.2 Po=100mW 0.1 0.1 0.05 0.05 Po=150mW 0.02 0.01 20 50 100 200 500 1k 2k 5k 10k 20k 1kHz 0.02 100Hz 0.01 1m 2m 5m Hz 10m 20m 50m 100m 200m W Figure 27 Figure 28 TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT FREQUENCY vs OUTPUT FREQUENCY 10 10 5 2 1 5 VDD=3.3V RL=8Ω SE Po=100mW 2 VDD=3.3V RL=8Ω SE 1 Av=-4V/V Po=25mW 0.5 0.5 % % 0.2 0.2 Av=-2V/V 0.1 0.05 0.05 Av=-1V/V 0.02 0.01 20 50 100 200 500 1k 2k 5k 0.02 10k 0.01 20 20k Po=100mW 50 100 200 500 1k 2k 5k 10k 20k Hz Hz Figure 29 Ver: 1.1 May 23, 2003 Po=50mW 0.1 Figure 30 12 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. TOTAL HARMONIC DISTORTION PLUS NOISE TOTAL HARMONIC DISTORTION PLUS NOISE vs OUTPUT POWER vs OUTPUT FREQUENCY 10 10 5 2 5 VDD=3.3V RL=32Ω SE 2 1kHz 1 0.5 1 20kHz 0.5 VDD=3.3V RL=32Ω SE Po=30mW 0.2 % % 0.2 Av=-4V/V Av=-2V/V 0.1 0.05 0.1 0.02 20Hz 0.05 0.01 Av=-1V/V 0.005 0.02 0.002 0.01 1m 2m 5m 10m 20m 50m 0.001 20 100m 50 100 200 500 1k Figure 31 OUTPUT NOISE VOLTAGE vs OUTPUT FREQUENCY vs FREQUENCY 10 2 1 100u 90u VDD=3.3V RL=32Ω SE 80u 70u 60u VDD=5V 20k 5k 10k 20k BW=22Hz to 20kHz RL=4Ω 40u 0.2 % 10k 50u Po=10m 0.5 5k Figure 32 TOTAL HARMONIC DISTORTION PLUS NOISE 5 2k Hz W 0.1 V Vo BTL 30u Po=20mW 0.05 0.02 Vo SE 20u 0.01 0.005 Po=30mW 0.002 0.001 20 50 100 200 500 1k 2k 5k 10k 10u 20 20k Hz 100 200 500 1k 2k Hz Figure 33 Ver: 1.1 May 23, 2003 50 Figure 34 13 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. OUTPUT NOISE VOLTAGE SUPPLY RIPPLE REJECTION RATIO vs FREQUENCY vs FREQUENCY 100u 90u 80u 70u +0 VDD=3.3V BW=22Hz to 20kHz RL=4Ω -10 -20 60u 50u -30 Vo BTL 40u V VDD=5V RL=4Ω CB=4.7uF -40 d B 30u -50 BTL -60 20u -70 Vo SE -80 SE -90 10u 20 50 100 200 500 1k 2k 5k 10k -100 20 20k 50 100 200 Hz 500 1k 2k 5k 10k 20k 5k 10k 20k Hz Figure 35 Figure 36 SUPPLY RIPPLE REJECTION RATIO CROSSTALK vs FREQUENCY vs FREQUENCY -20 +0 -25 -10 -20 -30 VDD=3.3V RL=4Ω CB=4.7uF -30 -35 -40 -45 -50 -40 d B VDD=5V Po=1.5W RL=4Ω BTL -55 -50 d B BTL -60 -65 -60 L to R -70 -75 -70 -80 -80 -85 SE -90 -90 R to L -95 -100 20 50 100 200 500 1k 2k 5k 10k -100 20 20k Hz 100 200 500 1k 2k Hz Figure 37 Ver: 1.1 May 23, 2003 50 Figure 38 14 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. CROSSTALK vs FREQUENCY CROSSTALK vs FREQUENCY -30 -20 -25 -30 -35 -40 -45 -50 -35 VDD=3.3V Po=0.75W RL=4Ω BTL -40 -45 -50 -55 -60 -55 d B d B -60 -65 -70 VDD=5V Po=75mW RL=32Ω SE L to R -65 R to L -70 -75 -75 -80 -80 -85 -85 -90 R to L -90 L to R -95 -95 -100 20 50 100 200 500 1k 2k 5k 10k -100 20 20k Hz 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 39 Figure 40 CROSSTALK vs FREQUENCY -30 -35 -40 -45 -50 -55 VDD=3.3V Po=35mW RL=32Ω SE -60 d B -65 R to L -70 -75 -80 -85 -90 L to R -95 -100 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 41 Ver: 1.1 May 23, 2003 15 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1420 CLOSED LOOP RESPONSE Figure 42 CLOSED LOOP RESPONSE Figure 43 Ver: 1.1 May 23, 2003 16 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1420 CLOSED LOOP RESPONSE Figure 44 CLOSED LOOP RESPONSE Figure 45 Ver: 1.1 May 23, 17 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. SUPPLY CURRENT vs SUPPLY VOLTAGE OUTPUT POWER vs SUPPLY VOLTAGE 2.5 10 THD+N=1% BTL Each Channel 9 Supply Current(mA) Po-Output Power (W) Stereo BTL 8 7 6 Stereo SE 5 4 3 2 2 RL=4Ω 1.5 RL=3Ω 1 RL=8Ω 0.5 1 0 0 3 4 5 2.5 6 3.5 4.5 6.5 SUPPLY VOLTAGE(V) SUPPLY VOLTAGE(V) Figure 46 Figure 47 OUTPUT POWER vs LOAD RESISTANCE OUTPUT POWER vs SUPPLY VOLTAGE 0.7 2 1.8 THD+N=1% SE Each Channel 0.5 0.4 THD+N=1% BTL Each Channel 1.6 Po-Output Power(W) 0.6 Po-Output Power(W) 5.5 RL=8Ω RL=4Ω 0.3 0.2 RL=32Ω 0.1 1.4 VDD=5V 1.2 1 0.8 0.6 0.4 VDD=3.3V 0.2 0 0 2.5 3.5 4.5 5.5 6.5 0 Supply Voltage(V) 8 12 16 20 24 28 32 Load Resistance(Ω) Figure 48 Ver: 1.1 May 23, 2003 4 Figure 49 18 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. OUTPUT POWER vs LOAD RESISTANCE POWER DISSIPATION vs OUTPUT POWER 0.7 1.8 0.5 Power Dissipation(W) Po-Output Power(W) 1.6 THD+N=1% SE Each Channel 0.6 VDD=5V 0.4 0.3 0.2 0.1 1.2 1 RL=4Ω 0.8 0.6 0.4 VDD=5V BTL Each Channel RL=8Ω 0.2 VDD=3.3V 0 0 0 4 8 12 16 20 24 28 32 0 0.5 1 1.5 2 Load Resistance(Ω) Po-Output Power(W) Figure 50 Figure 51 2.5 POWER DISSIPATION vs OUTPUT POWER POWER DISSIPATION vs OUTPUT POWER 0.35 0.8 0.7 0.3 RL=3Ω Power Dissipation(W) Power Dissipation(W) RL=3Ω 1.4 0.6 0.5 RL=4Ω 0.4 0.3 VDD=3.3V BTL Each Channel RL=8Ω 0.2 0.1 RL=4Ω 0.25 0.2 RL=8Ω 0.15 0.1 RL=32Ω 0.05 0 VDD=5V SE Each Channel 0 0 0.25 0.5 0.75 1 0 Output Power(W) 0.4 0.6 0.8 Output Power(W) Figure 52 Ver: 1.1 May 23, 2003 0.2 Figure 53 19 TEL: 886-3-5788833 http://www.gmt.com.tw Global Mixed-mode Technology Inc. G1420 Recommended PCB Layout POWER DISSIPATION vs OUTPUT POWER POWER DISSIPATION (W) 0.16 0.14 RL=4Ω 0.12 VDD=3.3V SE Each Channel 0.1 0.08 0.06 RL=8Ω 0.04 RL=32Ω 0.02 0 0 0.05 0.1 0.15 0.2 0.25 0.3 OUTPUT POWER(W) Figure 54 Ver: 1.1 May 23, 2003 20 TEL: 886-3-5788833 http://www.gmt.com.tw G1420 Global Mixed-mode Technology Inc. Block Diagram 20k 21 RLINEIN 20 RHPIN 19 RBYPASS 11 RIGHT MUX MUTEIN 9 MUTEOUT 8 SHUTDOWN 6 LBYPASS 5 LHPIN 4 LLINEIN _ ROUT+ 22 ROUT- 15 RVDD 18 + HP/LINE 16 SE/BTL 14 TJ 2 LVDD 7 + LOUT- 10 _ LOUT+ 3 BIAS CIRCUITS MODES CONTROL CIRCUITS LEFT MUX 20k Parameter Measurement Information 11 8 MUTEIN SHUTDOWN HP/LINE 16 SE/BTL 14 LVDD 7 RL 4/8/32ohm 6 LBYPASS CB 4.7µF CI AC source 5 LHPIN 4 LLINEIN LEFT MUX + LOUT- 10 _ LOUT+ 3 RI RF BTL Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 21 G1420 Global Mixed-mode Technology Inc. Parameter Measurement Information (Continued) 11 8 6 MUTEIN CI 16 SE/BTL 14 LVDD 7 + LOUT- 10 _ LOUT+ 3 VDD LBYPASS CB 4.7µF AC source HP/LINE SHUTDOWN 5 LHPIN 4 LLINEIN LEFT MUX RI RL 32ohm RF SE Mode Test Circuit TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 22 G1420 Global Mixed-mode Technology Inc. Application Circuits GND/HS TJ LOUT+ CIR RFL CFR AUDIO SOURCE LLINEIN RIR LHPIN LBYPASS RBYPASS SHUTDWON MUTE OUT LOUTMUTE IN GND/HS 1 24 2 23 3 22 4 21 5 NC ROUT+ RHPIN RVDD 18 8 17 9 16 10 15 11 14 12 13 RFL RIL CFL AUDIO SOURCE LVDD 7 G1420 CIL RLINEIN 20 6 19 GND/HS R NC CSR 100KΩ COUTR HP/LINE ROUTR SE/BTL 100KΩ 1KΩ 1 3 4 2 GND/HS PHONOJACK COUTR 1KΩ Logical Truth Table Shutdown OUTPUT Mute Out X Low High X X X ---High High High ------- ---High High X X X Low Low Low Low Low L/R Line Low High Low Low Low L/R HP High Low Low Low Low L/R Line High High Low Low Low L/R HP SE/ BTL INPUTS Mute In HP/ LINE Input AMPLIFIER STATES L/R Out+ L/R Out---VDD/2 VDD/2 BTL Output BTL Output SE Output SE Output Mode ---VDD/2 ---BTL Output BTL Output Mute Mute Mute ---- SE ---- SE BTL BTL TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 23 G1420 Global Mixed-mode Technology Inc. Application Information Input MUX Operation There are two input signal paths – HP & Line. With the prompt setting, G1420 allows the setting of different gains for BTL and SE modes. Generally, speakers typically require approximately a factor of 10 more gain for similar volume listening levels as compared with headphones. SE Gain(HP) = -3 dB -(RF(HP)/RI(HP)) BTL Gain(LINE) = fc -2(RF(LINE)/RI(LINE)) Figure 2 To achieve headphones and speakers listening parity, (RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/ RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested. Bridged-Tied Load Mode Operation G1420 has two linear amplifiers to drive both ends of the speaker load in Bridged-Tied Load (BTL) mode operation. Figure 3 shows the BTL configuration. The differential driving to the speaker load means that when one side is slewing up, the other side is slewing down, and vice versa. This configuration in effect will double the voltage swing on the load as compared to a ground reference load. In BTL mode, the peak-to-peak voltage VO(PP) on the load will be two times than a ground reference configuration. The voltage on the load is doubled, this will also yield 4 times output power on the load at the same power supply rail and loading. Another benefit of using differential driving configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is needed to cancelled dc offsets in the ground reference configuration. Low-frequency performance is then limited only by the input network and speaker responses. Cost and PCB space can be minimized by eliminating the dc coupling capacitors. Single Ended Mode Operation G1420 can drive clean, low distortion SE output power into headphone loads (generally 16Ω or 32Ω) as in Figure 1. Please refer to Electrical Characteristics to see the performances. A coupling capacitor is needed to block the dc offset voltage, allowing pure ac signals into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass filter network, as Figure 2. fC=1/(2πRLCC) For example, a 68uF capacitor with 32Ω headphone load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well chosen to achieve the excellent bass performance when in SE mode operation. VDD VDD Vo(PP) Vo(PP) VDD CC RL RL 2xVo(PP) -Vo(PP) Vo(PP) Figure 1 Figure 3 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 24 G1420 Global Mixed-mode Technology Inc. MUTE and SHUTDOWN Mode Operations G1420 implements the mute and shutdown mode operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for battery-power conservation. When the shutdown pin (pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1420 enters an extra low current consumption state, IDD is smaller than 5µA. If pulling mute-in pin (pin 11) high, it will force the activated linear amplifier to supply the VDD/2 dc voltage on the output to mute the AC performance. In mute mode operation, the current consumption will be a little different between BTL, SE. (SE < BTL) Typically, the supply current is about 2.5mA in BTL mute operation. Shutdown and Mute-In pins should never be left unconnected, this floating condition will cause the amplifier operations unpredictable. VDD 100 kΩ 50 kΩ Bypass 100 kΩ Figure 4 Junction Temperature Measurement Optimizing DEPOP Operation Characterizing a PCB layout with respect to thermal impedance is very difficult, as it is usually impossible to know the junction temperature of the IC. G1420 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ sources–120µA for a 5V supply at 25°C. And the slope is approximately 0.22µA/°C. As the resistors have a tolerance of ±20%, these values should be calibrated on each device. When the temperature sensing function is not used, TJ pin can be left floating or tied to VDD to reduce the current consumption. Temperature sensing circuit is shown on Figure 5. Circuitry has been implemented in G1420 to minimize the amount of popping heard at power-up and when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the speaker and making the differential voltage generated at the two ends of the speaker. To avoid the popping heard, the bypass capacitor should be chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)). Where 100kΩ is the output impedance of the mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input impedance, RF is the gain setting impedance which is on the feedback path. CB is the most important capacitor. Besides it is used to reduce the popping, CB can also determine the rate at which the amplifier starts up during startup or recovery from shutdown mode. VDD R De-popping circuitry of G1420 is shown on Figure 4. The PNP transistor limits the voltage drop across the 50kΩ by slewing the internal node slowly when power is applied. At start-up, the voltage at BYPASS capacitor is 0. The PNP is ON to pull the mid-point of the bias circuit down. So the capacitor sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while the PNP transistor is conducting), followed by the expected exponential ramp of an R-C circuit. R 5R TJ Figure 5 TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 25 G1420 Global Mixed-mode Technology Inc. Package Information C D 24 L 1.88 3.85 1.88 E1 E 2.8 0.71 1 Note 5 θ A2 A A1 e b NOTE: 1. Package body sizes exclude mold flash protrusions or gate burrs 2. Tolerance ±0.1mm unless otherwise specified 3. Coplanarity : 0.1mm 4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact. 5. Die pad exposure size is according to lead frame design. 6. Follow JEDEC MO-153 SYMBOL A A1 A2 b C D E E1 e L y θ MIN. DIMENSION IN MM NOM. MAX. MIN. ----0.00 0.80 0.19 0.09 7.70 6.20 4.30 ----0.45 ----0º --------1.00 --------7.80 6.40 4.40 0.65 0.60 --------- 1.15 0.10 1.05 0.30 0.20 7.90 6.60 4.50 ----0.75 0.10 8º ----0.000 0.031 0.007 0.004 0.303 0.244 0.169 ----0.018 ----0º DIMENSION IN INCH NOM. --------0.039 --------0.307 0.252 0.173 0.026 0.024 --------- MAX. 0.045 0.004 0.041 0.012 0.008 0.311 2.260 0.177 ----0.030 0.004 8º Taping Specification Feed Direction Typical TSSOP Package Orientation GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications. TEL: 886-3-5788833 http://www.gmt.com.tw Ver: 1.1 May 23, 2003 26