ETC G1420?

G1420
Global Mixed-mode Technology Inc.
2W Stereo Audio Amplifier
Features
General Description
„Depop Circuitry Integrated
„Output Power at 1% THD+N, VDD=5V
G1420 is a stereo audio power amplifier in 24pin
TSSOP thermal pad package. It can drive 1.8W continuous RMS power into 4Ω load per channel in
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its
THD is smaller than 1% under the above operation
condition. To simplify the audio system design in the
notebook application, G1420 supports the Bridge-Tied
Load (BTL) mode for driving the speakers, Single-End
(SE) mode for driving the headphone. G1420 can
mute the output when Mute-In is activated. For the low
current consumption applications, the SHDN mode is
supported to disable G1420 when it is idle. The current consumption can be further reduced to below
5µA.
--1.8W/CH (typical) into a 4Ω
Ω Load
--1.2W/CH (typical) into a 8Ω
Ω Load
„Bridge-Tied Load (BTL), Single-Ended (SE)
„Stereo Input MUX
„Mute and Shutdown Control Available
„Surface-Mount Power Package
24-Pin TSSOP-P
Applications
„Stereo Power Amplifiers for Notebooks or
Desktop Computers
„Multimedia Monitors
„Stereo Power Amplifiers for Portable Audio
G1420 also supports two input paths, that means two
different gain loops can be set in the same PCB and
choosing either one by setting HP/ LINE pin. It enhances the hardware designing flexibility.
Systems
Ordering Information
ORDER
NUMBER
TEMP.
RANGE
G1420F31U -40°C to +85°C
G1420F31T -40°C to +85°C
PACKAGE
PACKING
TSSOP-24L
TSSOP-24L
Tape & Reel
Tube
Pin Configuration
G1420
GND/HS
GND/HS
1
24
TJ
LOUT+
2
3
23
NC
22
ROUT+
LLINEIN
4
21
RLINEIN
LHPIN
5
20
RHPIN
LBYPASS
6
19
RBYPASS
LVDD
18
RVDD
SHUTDOWN
7
8
17
NC
MUTE OUT
9
16
HP/LINE
LOUT- 10
MUTE IN 11
15
14
ROUTSE/BTL
12
13
GND/HS
GND/HS
Thermal
Pad
14
Top View
24Pin TSSOP
Bottom View
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
1
G1420
Global Mixed-mode Technology Inc.
Absolute Maximum Ratings
Power Dissipation (1)
TA ≤ 25°C…………………………………………..2.7W
TA ≤ 70°C…………………………………………..1.7W
TA ≤ 85°C………………….……………………….1.4W
Electrostatic Discharge, VESD
Human body mode..……………………...-3000 to 3000(2)
Supply Voltage, VCC…………………..…...…….……...6V
Operating Ambient Temperature Range
TA…….…………………………….……….-40°C to +85°C
Maximum Junction Temperature, TJ…..……….….150°C
Storage Temperature Range, TSTG….….-65°C to+150°C
Soldering Temperature, 10seconds, TS……….……260°C
Note:
(1)
: Recommended PCB Layout
(2)
: Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses
Electrical Characteristics
DC Electrical Characteristics, TA=+25°C
PARAMETER
SYMBOL
CONDITIONS
VDD =3.3V
Supply Current
DC Differential Output Voltage
Supply Current in Mute Mode
IDD in Shutdown
IDD
VO(DIFF)
MIN
TYP
MAX
7
9
3.5
8
4
5
5.6
11
6.5
30
Stereo BTL
8
11
STEREO SE
4
2
6.5
5
TYP
MAX
Stereo BTL
STEREO SE
Stereo BTL
VDD = 5V
STEREO SE
VDD = 5V,Gain = 2
IDD(MUTE)
VDD = 5V
ISD
VDD = 5V
UNIT
mV
mA
µA
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω
Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
Channel-to-channel output separation
Line/HP input separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
RSRR
CONDITIONS
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD = 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
MIN
1.8
1.12
2
1.4
500
320
650
400
90
500
150
20
10
20
60
75
85
82
80
85
2
90
55
UNIT
W
mW
m%
kHz
°
dB
dB
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
2
G1420
Global Mixed-mode Technology Inc.
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω
Ω, unless otherwise noted)
PARAMETER
Output power (each channel) see Note
Total harmonic distortion plus noise
Maximum output power bandwidth
Phase margin
Power supply ripple rejection
Mute attenuation
Channel-to-channel output separation
Line/HP input separation
BTL attenuation in SE mode
Input impedance
Signal-to-noise ratio
Output noise voltage
SYMBOL
P(OUT)
THD+N
BOM
PSRR
CONDITIONS
THD = 1%, BTL, RL = 4Ω
THD = 1%, BTL, RL = 8Ω
THD = 10%, BTL, RL = 4Ω
THD = 10%, BTL, RL = 8Ω
THD = 1%, SE, RL = 4Ω
THD = 1%, SE, RL = 8Ω
THD = 10%, SE, RL = 4Ω
THD = 10%, SE, RL L = 8Ω
THD = 0.5%, SE, RL = 32Ω
PO = 1.6W, BTL, RL = 4Ω
PO = 1W, BTL, RL = 8Ω
PO = 75mW, SE, RL = 32Ω
VI = 1V, RL = 10KΩ, G = 1
G = 1, THD 1%
RL = 4Ω, Open Load
f = 120Hz
f = 1kHz
ZI
Vn
PO = 500mW, BTL
Output noise voltage
MIN
TYP
0.8
0.5
1
0.6
230
140
290
180
43
270
100
20
10
20
60
75
85
80
80
85
2
90
55
MAX
UNIT
W
mW
m%
kHz
°
dB
dB
dB
dB
dB
MΩ
dB
µV (rms)
Note :Output power is measured at the output terminals of the IC at 1kHz.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
3
Global Mixed-mode Technology Inc.
G1420
Pin Description
PIN
NAME
1,12,13,24
2
GND/HS
TJ
O
3
4
5
LOUT+
LLINE IN
LHP IN
O
I
I
6
7
8
LBYPASS
LVDD
SHUTDOWN
I
I
9
10
11
14
MUTE OUT
LOUTMUTE IN
SE/ BTL
15
16
HP/ LINE
ROUT-
17,23
18
19
20
21
22
NC
RVDD
RBYPASS
RHP IN
RLINE IN
ROUT+
I/O
O
O
I
I
FUNCTION
Ground connection for circuitry, directly connected to thermal pad.
Source a current inversely to the junction temperature. This pin should be left unconnected during normal operation. For more information, see the junction temperature
measurement section of this document.
Left channel + output in BTL mode, + output in SE mode.
Left channel line input, selected when HP/ pin is held low.
Left channel headphone input, selected when HP/pin is held high.
Connect to voltage divider for left channel internal mid-supply bias.
Supply voltage input for left channel and for primary bias circuits.
Shutdown mode control signal input, places entire IC in shutdown mode when held high,
IDD = 5µA.
Follows MUTE IN pin, provides buffered output.
Left channel - output in BTL mode, high impedance state in SE mode.
Mute control signal input, hold low for normal operation, hold high to mute.
Mode control signal input, hold low for BTL mode, hold high for SE mode.
O
I
Right channel - output in BTL mode, high impedance state in SE mode.
MUX control input, hold high to select headphone inputs (5,20), hold low to select line
inputs (4,21).
I
Supply voltage input for right channel.
Connect to voltage divider for right channel internal mid-supply bias.
Right channel headphone input, selected when HP/pin is held high.
Right channel line input, selected when HP/pin is held low.
Right channel + output in BTL mode, + output in SE mode.
I
I
O
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
4
G1420
Global Mixed-mode Technology Inc.
Typical Characteristics
Table of Graphs
FIGURE
vs Frequency
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33
vs Output power
1,3,6,9,10,13,16,19,22,25,28,31
vs Frequency
34,35
Supply ripple rejection ratio
vs Frequency
36,37
Crosstalk
vs Frequency
38,39,40,41
Closed loop response
vs Frequency
42,43,44,45
vs supply voltage
46
vs supply voltage
47,48
vs Load resistance
49,50
vs Output power
51,52,53,54
THD +N Total harmonic distortion plus noise
Vn Output noise voltage
IDD Supply ripple rejection ratio
PO Output power
PD Power dissipation
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
5
20kHz
2
2
1
1
1kHz
0.5
Po=1.8W
0.5
%
%
0.2
0.1
0.2
0.1
20 Hz
VDD=5V
RL=3Ω
BTL
0.05
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
1
0.05
0.02
2
0.01
20
3
W
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 1
Ver: 1.1
May 23, 2003
VDD=5V
RL=3Ω
BTL
Av=-2V/V
Po=1.5W
Figure 2
5
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
10
10
5
5
Av=-4V/V
20kHz
2
2
1
1
0.5
Av=-2V/V
0.5
1kHz
%
%
0.2
0.2
0.1
0.1
VDD=5V
RL=4Ω
BTL
20 Hz
0.05
0.02
0.01
3m
5m
10m
20m
50m
100m
200m
500m
1
VDD=5V
RL=4Ω
BTL
Po=1.5W
Av=-1V/V
0.05
0.02
2
0.01
20
3
50
100
200
500
W
1k
2k
5k
10k
20k
Hz
Figure 3
Figure 4
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=5V
RL=4Ω
BTL
Av=-2V/V
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1.5W
20kHz
2
1
Po=0.25W
0.5
0.5
%
%
0.2
0.2
Po=0.75W
0.1
0.05
0.05
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
3m
20k
Hz
20Hz
5m
10m
20m
50m
100m
200m
500m
1
2
3
W
Figure 5
Ver: 1.1
May 23, 2003
1kHz
0.1
Figure 6
6
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
5
2
1
10
VDD=5V
RL=8Ω
BTL
Av=-2V/V
5
Po=1W
2
1
Po=0.25W
0.5
VDD=5V
RL=8Ω
BTL
Po=1W
Av=-4V/V
0.5
%
Av=-2V/V
%
0.2
0.2
0.1
0.1
Po=0.5W
0.05
0.05
0.02
Av=-1V/V
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
50
100
200
500
Hz
1k
2k
5k
10k
20k
Hz
Figure 8
Figure 7
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT POWER
10
10
5
5
20kHz
20kHz
2
2
1
1
1kHz
0.5
1kHz
0.5
%
%
0.2
0.1
0.05
0.02
0.01
1m
0.2
0.1
VDD=3.3V
RL=3Ω
BTL
2m
5m
20Hz
0.05
0.02
10m
20m
50m
100m
200m
500m
0.01
1m
1
W
2m
5m
20Hz
10m
20m
50m
100m
200m
500m
1
W
Figure 9
Ver: 1.1
May 23, 2003
VDD=3.3V
RL=4Ω
BTL
Figure 10
7
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
VDD=3.3V
RL=4Ω
BTL
Po=0.65W
5
Av=-4V/V
2
Av=-2V/V
1
VDD=3.3V
RL=4Ω
BTL
Av=-2V/V
Po=0.7W
0.5
0.5
%
%
Po=0.1W
0.2
0.2
0.1
0.1
Av=-1V/V
0.05
0.05
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
Po=0.35W
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 11
Figure 12
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
VDD=3.3V
RL=8Ω
BTL
5
20kHz
2
5
2
1
1
0.5
VDD=3.3V
RL=8Ω
BTL
Po=0.4W
Av=-4V/V
Av=-2V/V
0.5
%
%
1kHz
0.2
0.2
0.1
0.1
0.05
0.05
Av=-1V/V
20Hz
0.02
0.01
1m
0.02
2m
5m
10m
20m
50m
100m
200m
500m
0.01
20
1
W
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 13
Ver: 1.1
May 23, 2003
50
Figure 14
8
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=3.3V
RL=8Ω
BTL
Av=-2V/V
5
2
Po=0.4W
VDD=5V
RL=4Ω
SE
20kHz
1
0.5
0.5
%
%
Po=0.1W
0.2
0.2
0.1
1kHz
0.1
0.05
0.05
Po=0.25W
100Hz
0.02
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
0.01
1m
20k
2m
5m
10m
20m
50m
Hz
100m
200m
500m
1
W
Figure 15
Figure 16
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
5
2
1
10
VDD=5V
RL=4Ω
SE
Po=0.5W
5
Av=-4V/V
2
1
0.5
0.2
%
0.2
0.1
Po=0.1W
0.1
0.05
0.05
Av=-1V/V
Po=0.25W
0.02
0.02
50
100
200
500
1k
2k
5k
10k
0.01
20
20k
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 18
Figure 17
Ver: 1.1
May 23, 2003
Po=0.4W
0.5
Av=-2V/V
%
0.01
20
VDD=5V
RL=4Ω
SE
Av=-2V/V
9
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
VDD=5V
RL=8Ω
SE
5
2
1
1
20kHz
VDD=5V
RL=8Ω
SE
Po=0.25W
0.5
0.5
Av=-2V/V
%
%
0.2
0.2
0.1
0.1
1kHz
0.05
0.02
0.01
1m
100Hz
2m
5m
Av=-4V/V
0.05
Av=-1V/V
0.02
10m
20m
50m
100m
200m
500m
0.01
20
1
50
100
200
500
1k
2k
5k
10k
20k
Hz
W
Figure 19
Figure 20
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
5
VDD=5V
RL=8Ω
SE
Av=-2
2
1
0.5
0.2
Po=0.05W
%
0.1
0.2
0.05
0.1
0.02
Po=0.1W
0.005
Po=0.25W
1kHz
0.002
50
100
200
500
1k
2k
5k
10k
0.001
1m
20k
Hz
2m
5m
10m
20m
50m
100m
200m
W
Figure 21
Ver: 1.1
May 23, 2003
20Hz
0.01
0.02
0.01
20
20kHz
0.5
%
0.05
VDD=5V
RL=32Ω
SE
Figure 22
10
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
0.5
5
VDD=5V
RL=32Ω
SE
Po=75mW
2
1
Av=-4V/V
0.5
Po=25mW
0.2
0.2
%
VDD=5V
RL=32Ω
SE
%
0.1
Av=-2V/V
0.05
0.1
0.05
0.02
0.02
0.01
0.01
0.005
0.005
Av=-1V/V
0.002
0.002
0.001
20
0.001
20
50
100
200
500
1k
2k
5k
10k
20k
Po=50mW
Po=75mW
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 23
Figure 24
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
VDD=3.3V
RL=4Ω,SE
Av=-2
5
2
20kHz
1
1
Av=-4V/V
0.5
0.5
%
%
1kHz
0.2
0.2
Av=-2V/V
0.1
0.1
0.05
0.05
100Hz
0.02
0.01
1m
VDD=3.3V
RL=4Ω
SE
Po=0.2W
2m
5m
10m
20m
50m
100m
200m
500m
0.01
20
1
50
100
200
500
1k
2k
5k
10k
20k
Hz
W
Figure 25
Ver: 1.1
May 23, 2003
Av=-1V/V
0.02
Figure 26
11
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT POWER
10
5
2
1
10
VDD=3.3V
RL=4Ω
SE
Av=-2
5
Po=50mW
2
VDD=3.3V
RL=8Ω,SE
Av=-2
20kHz
1
0.5
0.5
%
%
0.2
0.2
Po=100mW
0.1
0.1
0.05
0.05
Po=150mW
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
1kHz
0.02
100Hz
0.01
1m
2m
5m
Hz
10m
20m
50m
100m
200m
W
Figure 27
Figure 28
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT FREQUENCY
vs OUTPUT FREQUENCY
10
10
5
2
1
5
VDD=3.3V
RL=8Ω
SE
Po=100mW
2
VDD=3.3V
RL=8Ω
SE
1
Av=-4V/V
Po=25mW
0.5
0.5
%
%
0.2
0.2
Av=-2V/V
0.1
0.05
0.05
Av=-1V/V
0.02
0.01
20
50
100
200
500
1k
2k
5k
0.02
10k
0.01
20
20k
Po=100mW
50
100
200
500
1k
2k
5k
10k
20k
Hz
Hz
Figure 29
Ver: 1.1
May 23, 2003
Po=50mW
0.1
Figure 30
12
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
TOTAL HARMONIC DISTORTION PLUS NOISE
TOTAL HARMONIC DISTORTION PLUS NOISE
vs OUTPUT POWER
vs OUTPUT FREQUENCY
10
10
5
2
5
VDD=3.3V
RL=32Ω
SE
2
1kHz
1
0.5
1
20kHz
0.5
VDD=3.3V
RL=32Ω
SE
Po=30mW
0.2
%
%
0.2
Av=-4V/V
Av=-2V/V
0.1
0.05
0.1
0.02
20Hz
0.05
0.01
Av=-1V/V
0.005
0.02
0.002
0.01
1m
2m
5m
10m
20m
50m
0.001
20
100m
50
100
200
500
1k
Figure 31
OUTPUT NOISE VOLTAGE
vs OUTPUT FREQUENCY
vs FREQUENCY
10
2
1
100u
90u
VDD=3.3V
RL=32Ω
SE
80u
70u
60u
VDD=5V
20k
5k
10k
20k
BW=22Hz to 20kHz
RL=4Ω
40u
0.2
%
10k
50u
Po=10m
0.5
5k
Figure 32
TOTAL HARMONIC DISTORTION PLUS NOISE
5
2k
Hz
W
0.1
V
Vo BTL
30u
Po=20mW
0.05
0.02
Vo SE
20u
0.01
0.005
Po=30mW
0.002
0.001
20
50
100
200
500
1k
2k
5k
10k
10u
20
20k
Hz
100
200
500
1k
2k
Hz
Figure 33
Ver: 1.1
May 23, 2003
50
Figure 34
13
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
OUTPUT NOISE VOLTAGE
SUPPLY RIPPLE REJECTION RATIO
vs FREQUENCY
vs FREQUENCY
100u
90u
80u
70u
+0
VDD=3.3V
BW=22Hz to 20kHz
RL=4Ω
-10
-20
60u
50u
-30
Vo BTL
40u
V
VDD=5V
RL=4Ω
CB=4.7uF
-40
d
B
30u
-50
BTL
-60
20u
-70
Vo SE
-80
SE
-90
10u
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
50
100
200
Hz
500
1k
2k
5k
10k
20k
5k
10k
20k
Hz
Figure 35
Figure 36
SUPPLY RIPPLE REJECTION RATIO
CROSSTALK vs FREQUENCY
vs FREQUENCY
-20
+0
-25
-10
-20
-30
VDD=3.3V
RL=4Ω
CB=4.7uF
-30
-35
-40
-45
-50
-40
d
B
VDD=5V
Po=1.5W
RL=4Ω
BTL
-55
-50
d
B
BTL
-60
-65
-60
L to R
-70
-75
-70
-80
-80
-85
SE
-90
-90
R to L
-95
-100
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
Hz
100
200
500
1k
2k
Hz
Figure 37
Ver: 1.1
May 23, 2003
50
Figure 38
14
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
CROSSTALK vs FREQUENCY
CROSSTALK vs FREQUENCY
-30
-20
-25
-30
-35
-40
-45
-50
-35
VDD=3.3V
Po=0.75W
RL=4Ω
BTL
-40
-45
-50
-55
-60
-55
d
B
d
B
-60
-65
-70
VDD=5V
Po=75mW
RL=32Ω
SE
L to R
-65
R to L
-70
-75
-75
-80
-80
-85
-85
-90
R to L
-90
L to R
-95
-95
-100
20
50
100
200
500
1k
2k
5k
10k
-100
20
20k
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 39
Figure 40
CROSSTALK vs FREQUENCY
-30
-35
-40
-45
-50
-55
VDD=3.3V
Po=35mW
RL=32Ω
SE
-60
d
B
-65
R to L
-70
-75
-80
-85
-90
L to R
-95
-100
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
Figure 41
Ver: 1.1
May 23, 2003
15
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
CLOSED LOOP RESPONSE
Figure 42
CLOSED LOOP RESPONSE
Figure 43
Ver: 1.1
May 23, 2003
16
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
CLOSED LOOP RESPONSE
Figure 44
CLOSED LOOP RESPONSE
Figure 45
Ver: 1.1
May 23,
17
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
SUPPLY CURRENT vs SUPPLY VOLTAGE
OUTPUT POWER vs SUPPLY VOLTAGE
2.5
10
THD+N=1%
BTL
Each Channel
9
Supply Current(mA)
Po-Output Power (W)
Stereo BTL
8
7
6
Stereo SE
5
4
3
2
2
RL=4Ω
1.5
RL=3Ω
1
RL=8Ω
0.5
1
0
0
3
4
5
2.5
6
3.5
4.5
6.5
SUPPLY VOLTAGE(V)
SUPPLY VOLTAGE(V)
Figure 46
Figure 47
OUTPUT POWER vs LOAD RESISTANCE
OUTPUT POWER vs SUPPLY VOLTAGE
0.7
2
1.8
THD+N=1%
SE
Each Channel
0.5
0.4
THD+N=1%
BTL
Each Channel
1.6
Po-Output Power(W)
0.6
Po-Output Power(W)
5.5
RL=8Ω
RL=4Ω
0.3
0.2
RL=32Ω
0.1
1.4
VDD=5V
1.2
1
0.8
0.6
0.4
VDD=3.3V
0.2
0
0
2.5
3.5
4.5
5.5
6.5
0
Supply Voltage(V)
8
12
16
20
24
28
32
Load Resistance(Ω)
Figure 48
Ver: 1.1
May 23, 2003
4
Figure 49
18
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
OUTPUT POWER vs LOAD RESISTANCE
POWER DISSIPATION vs OUTPUT POWER
0.7
1.8
0.5
Power Dissipation(W)
Po-Output Power(W)
1.6
THD+N=1%
SE
Each Channel
0.6
VDD=5V
0.4
0.3
0.2
0.1
1.2
1
RL=4Ω
0.8
0.6
0.4
VDD=5V
BTL
Each Channel
RL=8Ω
0.2
VDD=3.3V
0
0
0
4
8
12
16
20
24
28
32
0
0.5
1
1.5
2
Load Resistance(Ω)
Po-Output Power(W)
Figure 50
Figure 51
2.5
POWER DISSIPATION vs OUTPUT POWER
POWER DISSIPATION vs OUTPUT POWER
0.35
0.8
0.7
0.3
RL=3Ω
Power Dissipation(W)
Power Dissipation(W)
RL=3Ω
1.4
0.6
0.5
RL=4Ω
0.4
0.3
VDD=3.3V
BTL
Each Channel
RL=8Ω
0.2
0.1
RL=4Ω
0.25
0.2
RL=8Ω
0.15
0.1
RL=32Ω
0.05
0
VDD=5V
SE
Each Channel
0
0
0.25
0.5
0.75
1
0
Output Power(W)
0.4
0.6
0.8
Output Power(W)
Figure 52
Ver: 1.1
May 23, 2003
0.2
Figure 53
19
TEL: 886-3-5788833
http://www.gmt.com.tw
Global Mixed-mode Technology Inc.
G1420
Recommended PCB Layout
POWER DISSIPATION vs OUTPUT POWER
POWER DISSIPATION (W)
0.16
0.14
RL=4Ω
0.12
VDD=3.3V
SE
Each Channel
0.1
0.08
0.06
RL=8Ω
0.04
RL=32Ω
0.02
0
0
0.05
0.1
0.15
0.2
0.25
0.3
OUTPUT POWER(W)
Figure 54
Ver: 1.1
May 23, 2003
20
TEL: 886-3-5788833
http://www.gmt.com.tw
G1420
Global Mixed-mode Technology Inc.
Block Diagram
20k
21
RLINEIN
20
RHPIN
19
RBYPASS
11
RIGHT
MUX
MUTEIN
9
MUTEOUT
8
SHUTDOWN
6
LBYPASS
5
LHPIN
4
LLINEIN
_
ROUT+
22
ROUT-
15
RVDD
18
+
HP/LINE
16
SE/BTL
14
TJ
2
LVDD
7
+
LOUT-
10
_
LOUT+
3
BIAS CIRCUITS
MODES CONTROL
CIRCUITS
LEFT
MUX
20k
Parameter Measurement Information
11
8
MUTEIN
SHUTDOWN
HP/LINE
16
SE/BTL
14
LVDD
7
RL 4/8/32ohm
6
LBYPASS
CB
4.7µF
CI
AC source
5
LHPIN
4
LLINEIN
LEFT
MUX
+
LOUT-
10
_
LOUT+
3
RI
RF
BTL Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
21
G1420
Global Mixed-mode Technology Inc.
Parameter Measurement Information (Continued)
11
8
6
MUTEIN
CI
16
SE/BTL
14
LVDD
7
+
LOUT-
10
_
LOUT+
3
VDD
LBYPASS
CB
4.7µF
AC source
HP/LINE
SHUTDOWN
5
LHPIN
4
LLINEIN
LEFT
MUX
RI
RL 32ohm
RF
SE Mode Test Circuit
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
22
G1420
Global Mixed-mode Technology Inc.
Application Circuits
GND/HS
TJ
LOUT+
CIR
RFL
CFR
AUDIO SOURCE
LLINEIN
RIR
LHPIN
LBYPASS
RBYPASS
SHUTDWON
MUTE OUT
LOUTMUTE IN
GND/HS
1
24
2
23
3
22
4
21
5
NC
ROUT+
RHPIN
RVDD
18
8
17
9
16
10
15
11
14
12
13
RFL
RIL
CFL
AUDIO SOURCE
LVDD
7
G1420
CIL
RLINEIN
20
6
19
GND/HS
R
NC
CSR
100KΩ
COUTR
HP/LINE
ROUTR
SE/BTL
100KΩ
1KΩ
1
3
4
2
GND/HS
PHONOJACK
COUTR
1KΩ
Logical Truth Table
Shutdown
OUTPUT
Mute Out
X
Low
High
X
X
X
---High
High
High
-------
---High
High
X
X
X
Low
Low
Low
Low
Low
L/R Line
Low
High
Low
Low
Low
L/R HP
High
Low
Low
Low
Low
L/R Line
High
High
Low
Low
Low
L/R HP
SE/ BTL
INPUTS
Mute In
HP/ LINE
Input
AMPLIFIER STATES
L/R Out+
L/R Out---VDD/2
VDD/2
BTL
Output
BTL
Output
SE
Output
SE
Output
Mode
---VDD/2
---BTL
Output
BTL
Output
Mute
Mute
Mute
----
SE
----
SE
BTL
BTL
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
23
G1420
Global Mixed-mode Technology Inc.
Application Information
Input MUX Operation
There are two input signal paths – HP & Line. With the
prompt setting, G1420 allows the setting of different
gains for BTL and SE modes. Generally, speakers
typically require approximately a factor of 10 more
gain for similar volume listening levels as compared
with headphones.
SE Gain(HP) =
-3 dB
-(RF(HP)/RI(HP))
BTL Gain(LINE) =
fc
-2(RF(LINE)/RI(LINE))
Figure 2
To achieve headphones and speakers listening parity,
(RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)/
RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by
the applications. When the optimum distortion performance into the headphones (clear sound) is important, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested.
Bridged-Tied Load Mode Operation
G1420 has two linear amplifiers to drive both ends of
the speaker load in Bridged-Tied Load (BTL) mode
operation. Figure 3 shows the BTL configuration. The
differential driving to the speaker load means that
when one side is slewing up, the other side is slewing
down, and vice versa. This configuration in effect will
double the voltage swing on the load as compared to a
ground reference load. In BTL mode, the peak-to-peak
voltage VO(PP) on the load will be two times than a
ground reference configuration. The voltage on the
load is doubled, this will also yield 4 times output
power on the load at the same power supply rail and
loading. Another benefit of using differential driving
configuration is that BTL operation cancels the dc offsets, which eliminates the dc coupling capacitor that is
needed to cancelled dc offsets in the ground reference
configuration. Low-frequency performance is then limited only by the input network and speaker responses.
Cost and PCB space can be minimized by eliminating
the dc coupling capacitors.
Single Ended Mode Operation
G1420 can drive clean, low distortion SE output power
into headphone loads (generally 16Ω or 32Ω) as in
Figure 1. Please refer to Electrical Characteristics to
see the performances. A coupling capacitor is needed
to block the dc offset voltage, allowing pure ac signals
into headphone loads. Choosing the coupling capacitor will also determine the 3 dB point of the high-pass
filter network, as Figure 2.
fC=1/(2πRLCC)
For example, a 68uF capacitor with 32Ω headphone
load would attenuate low frequency performance below 73Hz. So the coupling capacitor should be well
chosen to achieve the excellent bass performance
when in SE mode operation.
VDD
VDD
Vo(PP)
Vo(PP)
VDD
CC
RL
RL
2xVo(PP)
-Vo(PP)
Vo(PP)
Figure 1
Figure 3
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
24
G1420
Global Mixed-mode Technology Inc.
MUTE and SHUTDOWN Mode Operations
G1420 implements the mute and shutdown mode
operations to reduce supply current, IDD, to the absolute minimum level during nonuse periods for
battery-power conservation. When the shutdown pin
(pin 8) is pulled high, all linear amplifiers will be deactivated to mute the amplifier outputs. And G1420
enters an extra low current consumption state, IDD is
smaller than 5µA. If pulling mute-in pin (pin 11) high,
it will force the activated linear amplifier to supply
the VDD/2 dc voltage on the output to mute the AC
performance. In mute mode operation, the current
consumption will be a little different between BTL,
SE. (SE < BTL) Typically, the supply current is
about 2.5mA in BTL mute operation. Shutdown and
Mute-In pins should never be left unconnected, this
floating condition will cause the amplifier operations
unpredictable.
VDD
100 kΩ
50 kΩ
Bypass
100 kΩ
Figure 4
Junction Temperature Measurement
Optimizing DEPOP Operation
Characterizing a PCB layout with respect to thermal
impedance is very difficult, as it is usually impossible to know the junction temperature of the IC.
G1420 TJ (pin 2) sources a current inversely proportional to the junction temperature. Typically TJ
sources–120µA for a 5V supply at 25°C. And the
slope is approximately 0.22µA/°C. As the resistors
have a tolerance of ±20%, these values should be
calibrated on each device. When the temperature
sensing function is not used, TJ pin can be left
floating or tied to VDD to reduce the current consumption.
Temperature sensing circuit is shown on Figure 5.
Circuitry has been implemented in G1420 to minimize the amount of popping heard at power-up and
when coming out of shutdown mode. Popping occurs whenever a voltage step is applied to the
speaker and making the differential voltage generated at the two ends of the speaker. To avoid the
popping heard, the bypass capacitor should be
chosen promptly, 1/(CBx100kΩ) ≦ 1/(CI*(RI+RF)).
Where 100kΩ is the output impedance of the
mid-rail generator, CB is the mid-rail bypass capacitor, CI is the input coupling capacitor, RI is the input
impedance, RF is the gain setting impedance which
is on the feedback path. CB is the most important
capacitor. Besides it is used to reduce the popping,
CB can also determine the rate at which the amplifier
starts up during startup or recovery from shutdown
mode.
VDD
R
De-popping circuitry of G1420 is shown on Figure 4.
The PNP transistor limits the voltage drop across
the 50kΩ by slewing the internal node slowly when
power is applied. At start-up, the voltage at
BYPASS capacitor is 0. The PNP is ON to pull the
mid-point of the bias circuit down. So the capacitor
sees a lower effective voltage, and thus the charging is slower. This appears as a linear ramp (while
the PNP transistor is conducting), followed by the
expected exponential ramp of an R-C circuit.
R
5R
TJ
Figure 5
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
25
G1420
Global Mixed-mode Technology Inc.
Package Information
C
D
24
L
1.88
3.85
1.88
E1 E
2.8
0.71
1
Note 5
θ
A2
A
A1
e
b
NOTE:
1. Package body sizes exclude mold flash protrusions or gate burrs
2. Tolerance ±0.1mm unless otherwise specified
3. Coplanarity : 0.1mm
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.
5. Die pad exposure size is according to lead frame design.
6. Follow JEDEC MO-153
SYMBOL
A
A1
A2
b
C
D
E
E1
e
L
y
θ
MIN.
DIMENSION IN MM
NOM.
MAX.
MIN.
----0.00
0.80
0.19
0.09
7.70
6.20
4.30
----0.45
----0º
--------1.00
--------7.80
6.40
4.40
0.65
0.60
---------
1.15
0.10
1.05
0.30
0.20
7.90
6.60
4.50
----0.75
0.10
8º
----0.000
0.031
0.007
0.004
0.303
0.244
0.169
----0.018
----0º
DIMENSION IN INCH
NOM.
--------0.039
--------0.307
0.252
0.173
0.026
0.024
---------
MAX.
0.045
0.004
0.041
0.012
0.008
0.311
2.260
0.177
----0.030
0.004
8º
Taping Specification
Feed Direction
Typical TSSOP Package Orientation
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.
TEL: 886-3-5788833
http://www.gmt.com.tw
Ver: 1.1
May 23, 2003
26