DATA SHEET 512MB Unbuffered DDR SDRAM DIMM HB54A5128FN-A75B/B75B/10B (64M words × 64 bits, 2 Banks) HB54A5129FN-A75B/B75B/10B (64M words × 72 bits, 2 Banks) Features The HB54A5128FN, HB54A5129FN are Double Data Rate (DDR) SDRAM Module, mounted 256M bits DDR SDRAM (HM5425801BTT) sealed in TSOP package, and 1 piece of serial EEPROM (2k bits EEPROM) for Presence Detect (PD). The HB54A5128FN is organized as 32M × 64 × 2 banks mounted 16 pieces of 256M bits DDR SDRAM. The HB54A5129FN is organized as 32M × 72 × 2 banks mounted 18 pieces of 256M bits DDR SDRAM. Read and write operations are performed at the cross points of the CK and the /CK. This high-speed data transfer is realized by the 2 bits prefetch-pipelined architecture. Data strobe (DQS) both for read and write are available for high speed and reliable data bus design. By setting extended mode register, the on-chip Delay Locked Loop (DLL) can be set enable or disable. An outline of the products is 184-pin socket type package (dual lead out). Therefore, it makes high density mounting possible without surface mount technology. It provides common data inputs and outputs. Decoupling capacitors are mounted beside each TSOP on the module board. • 184-pin socket type package (dual lead out) Outline: 133.35mm (Length) × 31.75mm (Height) × 4.00mm (Thickness) Lead pitch: 1.27mm • 2.5V power supply (VCC/VCCQ) • SSTL-2 interface for all inputs and outputs • Clock frequency: 143MHz/133MHz/125MHz (max.) • Data inputs, outputs and DM are synchronized with DQS • 4 banks can operate simultaneously and independently (Component) • Burst read/write operation • Programmable burst length: 2, 4, 8 Burst read stop capability • Programmable burst sequence Sequential Interleave • Start addressing capability Even and Odd • Programmable /CAS latency (CL): 2, 2.5 • 8192 refresh cycles: 7.8µs (8192/64ms) • 2 variations of refresh Auto refresh Self refresh L EO Description t uc od Pr Document No. E0087H40 (Ver. 4.0) Date Published August 2002 (K) Japan URL: http://www.elpida.com This product became EOL in May, 2004. Elpida Memory, Inc. 2001-2002 Hitachi, Ltd. 2000 Elpida Memory, Inc. is a joint venture DRAM company of NEC Corporation and Hitachi, Ltd. HB54A5128FN, HB54A5129FN-A75B/B75B/10B Ordering Information Part number Clock frequency MHz (max.) /CAS latency Package HB54A5128FN-A75B*1 HB54A5128FN-B75B*2 HB54A5128FN-10B*2 HB54A5129FN-A75B*1 HB54A5129FN-B75B*2 HB54A5129FN-10B*2 143 MHz 133 MHz 125 MHz 143 MHz 133 MHz 125 MHz 2.5 2.5 2.5 2.5 2.5 2.5 184-pin dual lead out socket Gold type Contact pad Notes: 1. 133 MHz operation at /CAS latency = 2. 2. 100 MHz operation at /CAS latency = 2. Pin Configurations EO Pin No. 1 VREF DQ0 52 pin 53 pin 93 pin 92 pin 144 pin 145 pin 184 pin Back side Pin No. 47 48 Pin name 1 DQS8 (NC)* L 2 Pin name Front side 1 pin A0 1 Pin No. Pin name Pin No. Pin name 93 VSS 139 VSS 94 DQ4 140 DM8/DQS17 (NC)*1 3 VSS 49 CB2 (NC)* 95 DQ5 141 A10 4 DQ1 50 VSS 96 VCCQ 142 CB6 (NC)*1 5 DQS0 51 CB3 97 DM0/DQS9 143 VCCQ 98 DQ6 144 CB7 (NC)*1 6 DQ2 BA1 (NC)* 7 VCC 53 8 DQ3 54 9 NC 55 10 NC 56 11 VSS 57 12 DQ8 58 VSS 13 DQ9 59 BA0 14 DQS1 60 DQ35 15 VCCQ 61 DQ40 16 CK1 62 VCCQ 17 /CK1 63 /WE 18 VSS 64 DQ41 19 DQ10 65 20 DQ11 66 21 CKE0 67 22 VCCQ 68 DQ42 114 DQ20 23 DQ16 69 DQ43 115 A12 24 DQ17 70 VCC 116 VSS 25 DQS2 71 NC 117 DQ21 26 VSS 72 DQ48 118 A11 Pr 52 1 DQ32 99 DQ7 145 VSS VCCQ 100 VSS 146 DQ36 DQ33 101 NC 147 DQ37 DQS4 102 NC 148 VCC DQ34 103 NC 149 DM4/DQS13 od 104 VCCQ 150 DQ38 DQ12 151 DQ39 DQ13 152 VSS 107 DM1/DQS10 153 DQ44 108 VCC 154 /RAS 109 DQ14 155 DQ45 110 DQ15 156 VCCQ /CAS 111 CKE1 157 /S0 VSS 112 VCCQ 158 /S1 DQS5 113 NC 159 DM5/DQS14 160 VSS 161 DQ46 162 DQ47 163 NC 164 VCCQ Data Sheet E0087H40 (Ver. 4.0) 2 t uc 105 106 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name 27 A9 73 DQ49 119 DM2/DQS11 165 DQ52 28 DQ18 74 VSS 120 VCC 166 DQ53 29 A7 75 /CK2 121 DQ22 167 NC 30 VCCQ 76 CK2 122 A8 168 VCC 31 DQ19 77 VCCQ 123 DQ23 169 DM6/DQS15 32 A5 78 DQS6 124 VSS 170 DQ54 33 DQ24 79 DQ50 125 A6 171 DQ55 VSS 80 DQ51 126 DQ28 172 VCCQ 35 DQ25 81 VSS 127 DQ29 173 NC 36 DQS3 82 VCCID 128 VCCQ 174 DQ60 37 A4 83 DQ56 129 DM3/DQS12 175 DQ61 38 VCC 84 DQ57 130 A3 176 VSS 39 DQ26 85 VCC 131 DQ30 177 DM7/DQS16 40 DQ27 86 DQS7 132 VSS 178 DQ62 41 A2 87 DQ58 133 DQ31 179 DQ63 42 VSS 88 DQ59 134 CB4 (NC)*1 180 VCCQ 1 EO 34 A1 89 VSS 135 CB5 (NC)* 181 SA0 44 CB0 (NC)*1 90 NC 136 VCCQ 182 SA1 45 CB1 (NC)*1 91 SDA 137 CK0 183 SA2 46 VCC 92 SCL 138 /CK0 184 VCCSPD L 43 Note: 1. The HB54A5128FN assign “NC”. t uc od Pr Data Sheet E0087H40 (Ver. 4.0) 3 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Pin Description Function A0 to A12 Address input Row address Column address BA0, BA1 Bank select address DQ0 to DQ63 Data input/output CB0 to CB7 Check bit (Data input/output) /RAS Row address strobe command /CAS Column address strobe command /WE Write enable /S0, /S1 Chip select CKE0, CKE1 Clock enable CK0 to CK2 Clock input /CK0 to /CK2 Differential clock input DQS0 to DQS8 Input and output data strobe DM0 to DM8/DQS9 to DQS17 Input mask SCL Clock input for serial PD SDA Data input/output for serial PD SA0 to SA2 VCC VCCQ VCCSPD L EO Pin name VREF VCCID NC Serial address input Power for internal circuit Power for DQ circuit Power for serial EEPROM Input reference voltage Pr VSS A0 to A12 A0 to A9 Ground VCC identification flag No connection t uc od Data Sheet E0087H40 (Ver. 4.0) 4 HB54A5128FN, HB54A5129FN-A75B/B75B/10B 1 Serial PD Matrix* Byte No. 0 1 Function described Number of bytes utilized by module manufacturer Total number of bytes in serial PD device Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 1 0 0 0 0 0 0 0 80 128 0 0 0 0 1 0 0 0 08 256 byte 2 Memory type 0 0 0 0 0 1 1 1 07 SDRAM DDR 3 Number of row address 0 0 0 0 1 1 0 1 0D 13 Number of column address 0 0 0 0 1 0 1 0 0A 10 5 Number of DIMM banks 0 0 0 0 0 0 1 0 02 2 6 Module data width HB54A5128FN 0 1 0 0 0 0 0 0 40 64 bits HB54A5129FN 0 1 0 0 1 0 0 0 48 72 bits 0 0 0 0 0 0 0 0 00 0 (+) 8 Voltage interface level of this assembly 0 0 0 0 0 1 0 0 04 SSTL 2.5V 9 DDR SDRAM cycle time, CL = X -A75B 0 1 1 1 0 0 0 0 70 CL = 2.5*5 -B75B 0 1 1 1 0 1 0 1 75 -10B 1 0 0 0 0 0 0 0 80 0 1 1 1 0 1 0 1 75 0.75ns*5 1 0 0 0 0 0 0 0 80 0.8ns*5 0 0 0 0 0 0 0 0 00 None HB54A5129FN 0 0 0 0 0 0 1 0 02 ECC 12 Refresh rate/type 1 0 0 0 0 0 1 0 82 7.8 µs Self refresh 13 Primary SDRAM width 14 Error checking SDRAM width HB54A5128FN EO 4 7 10 Module data width continuation SDRAM access from clock (tAC) -A75B/B75B L -10B 11 DIMM configuration type HB54A5128FN 15 17 18 19 0 0 1 0 0 0 08 ×8 0 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 08 ×8 0 0 0 0 0 0 0 1 01 1 CLK 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0E 2, 4, 8 0 0 0 1 0 0 04 4 0 0 1 1 0 0 0C 2, 2.5 0 0 0 0 0 1 01 0 0 0 0 0 0 21 SDRAM module attributes 0 0 1 0 0 0 22 SDRAM device attributes: General 1 1 0 0 0 0 23 Minimum clock cycle time at CLX - 0.5 -A75B 0 1 1 1 0 1 1 0 1 0 0 0 Maximum data access time (tAC) from clock at CLX - 0.5 0 -A75B/B75B 1 1 1 0 1 0 0 0 0 0 -B75B/10B 24 -10B 1 Data Sheet E0087H40 (Ver. 4.0) 5 t uc 20 0 od 16 Pr HB54A5129FN SDRAM device attributes: Minimum clock delay back-to-back column access SDRAM device attributes: Burst length supported SDRAM device attributes: Number of banks on SDRAM device SDRAM device attributes: /CAS latency SDRAM device attributes: /CS latency SDRAM device attributes: /WE latency 0 1 0 02 1 0 0 20 Unbuffered 0 0 C0 ± 0.2V 0 1 75 CL = 2*5 0 0 A0 0 1 75 0.75ns*5 0 0 80 0.8ns*5 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Byte No. 25 26 Function described Bit7 Minimum clock cycle time at 0 CLX - 1 Maximum data access time (tAC) from 0 clock at CLX - 1 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 Comments 27 Minimum row precharge time (tRP) 0 1 0 1 0 0 0 0 50 20ns 28 Minimum row active to row active delay (tRRD) 0 0 1 1 1 1 0 0 3C 15ns 29 Minimum /RAS to /CAS delay (tRCD) 0 1 0 1 0 0 0 0 50 20ns 30 Minimum active to precharge time (tRAS) -A75B/B75B 0 0 1 0 1 1 0 1 2D 45ns 0 0 1 1 0 0 1 0 32 50ns -10B Module bank density 0 1 0 0 0 0 0 0 40 2 banks 256MB 32 Address and command setup time before clock (tIS) -A75B/B75B 1 0 0 1 0 0 0 0 90 0.9ns*5 1 0 1 1 0 0 0 0 B0 1.1ns*5 Address and command hold time after clock (tIH) 1 -A75B/B75B 0 0 1 0 0 0 0 90 0.9ns*5 1 0 1 1 0 0 0 0 B0 1.1ns*5 0 1 0 1 0 0 0 0 50 0.5ns*5 0 1 1 0 0 0 0 0 60 0.6ns*5 0 1 0 1 0 0 0 0 50 0.5ns*5 0 1 1 0 0 0 0 0 60 0.6ns*5 0 0 0 0 0 0 0 0 00 Future use 0 1 0 0 0 0 0 1 41 65ns*5 0 1 0 0 0 1 1 0 46 70ns*5 0 1 0 0 1 0 1 1 4B 75ns*5 0 1 EO 31 -10B 33 -10B Data input setup time before clock (tDS) -A75B/B75B L 34 -10B 35 Data input hold time after clock (tDH) -A75B/B75B 36 to 40 Superset information 41 Active command period (tRC) -A75B/B75B -10B 42 Auto refresh to active/ Auto refresh command cycle (tRFC) -A75B/B75B -10B SDRAM tCK cycle max. (tCK max.) 0 0 44 Dout to DQS skew -A75B/B75B 0 0 0 0 0 1 1 0 -10B 45 Data hold skew (tQHS) -A75B/B75B -10B 0 1 0 0 0 0 50 80ns*5 1 1 0 0 0 0 30 12ns*5 1 1 0 0 1 0 32 500ps*5 1 1 1 1 0 0 3C 600ps*5 1 1 0 1 0 1 75 750ps*5 1 0 0 0 0 0 A0 1000ps*5 0 0 00 Future use 0 0 00 Initial 46 to 61 Superset information 0 0 0 0 0 0 62 SPD revision 0 0 0 0 0 0 Data Sheet E0087H40 (Ver. 4.0) 6 t uc 43 od Pr -10B HB54A5128FN, HB54A5129FN-A75B/B75B/10B Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments 63 Checksum for bytes 0 to 62 HB54A5128FN-A75B 1 0 1 1 0 0 1 1 B3 179 HB54A5128FN-B75B 1 1 1 0 0 0 1 1 E3 227 HB54A5128FN-10B 1 0 1 0 1 0 0 0 A8 168 HB54A5129FN-A75B 1 1 0 0 0 1 0 1 C5 197 HB54A5129FN-B75B 1 1 1 1 0 1 0 1 F5 245 HB54A5129FN-10B 1 0 1 1 1 0 1 0 BA 186 HITACHI Manufacturer’s JEDEC ID code 0 0 0 0 0 1 1 1 07 65 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00 72 Manufacturing location × × × × × × × × ×× *2 (ASCII-8bit code) 73 Module part number 0 1 0 0 1 0 0 0 48 H 74 Module part number 0 1 0 0 0 0 1 0 42 B 75 Module part number 0 0 1 1 0 1 0 1 35 5 76 Module part number 0 0 1 1 0 1 0 0 34 4 77 Module part number 0 1 0 0 0 0 0 1 41 A 78 Module part number 0 0 1 1 0 1 0 1 35 5 79 Module part number 0 0 1 1 0 0 0 1 31 1 80 Module part number 0 0 1 1 0 0 1 0 32 2 81 Module part number HB54A5128FN 0 0 1 1 1 0 0 0 38 8 HB54A5129FN 0 0 1 1 1 0 0 1 39 9 82 Module part number 0 1 0 0 0 1 1 0 46 F 83 Module part number 0 1 0 0 1 1 1 0 4E N 84 Module part number 0 0 1 0 1 1 0 1 2D — 85 Module part number -A75B 0 1 0 0 0 0 0 1 41 A 0 1 0 0 0 0 1 0 42 B 0 0 1 1 0 0 0 1 31 1 0 0 1 1 0 1 1 1 37 7 0 0 1 1 0 0 0 0 30 0 0 0 1 1 0 1 0 1 35 5 0 1 0 0 0 0 1 0 42 B 0 1 0 0 0 0 1 0 42 B 0 0 1 0 0 0 0 0 20 (Space) 0 0 20 (Space) 0 0 30 Initial 0 0 20 (Space) × × ×× × × ×× L EO 64 -10B 87 Module part number -A75B/B75B 88 Module part number -A75B/B75B -10B -10B 89 to 90 Module part number 0 0 1 0 0 0 91 Revision code 0 0 1 1 0 0 92 Revision code 0 0 1 0 0 0 93 Manufacturing date × × × × × × 94 Manufacturing date × × × × × × 95 to 98 Module serial number *3 99 to 127 Manufacturer specific data *4 Data Sheet E0087H40 (Ver. 4.0) 7 t uc -10B od 86 Module part number -A75B/B75B Pr -B75B Year code (BCD) Week code (BCD) HB54A5128FN, HB54A5129FN-A75B/B75B/10B Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High” These SPD are based on JEDEC Committee Ballot JC-42.5-99-129. 2. Byte72 is manufacturing location code. (ex: In case of Japan, byte72 is 4AH. 4AH shows “J” on ASCII code.) 3. Bytes 95 through 98 are assembly serial number. 4. All bits of 99 through 127 are not defined (“1” or “0”). 5. These specifications are defined based on component specification, not module. Block Diagram (HB54A5128FN) /S0 RS RS /S1 DM0/DQS9 DQS0 8 RS DQ0 to DQ7 EO DQS /CS DQ D0 DM DQS /CS DQ D8 DM RS RS DM1/DQS10 DQS1 8 RS DQ8 to DQ15 DQS /CS DQ D1 DM DQS /CS DQ D9 DM RS RS DM2/DQS11 DQS2 8 RS DQ16 to DQ23 DQS /CS DQ D2 DM DQS /CS DM DQ D10 RS RS DM3/DQS12 DQS3 8 RS L DQ24 to DQ31 DQS /CS DQ D3 DM DQS /CS DQ D11 DM RS RS DM4/DQS13 DQS4 8 RS DQ32 to DQ39 DQS /CS DQ D4 DM DQS /CS DQ D12 DM RS RS DM5/DQS14 DQS5 DQS /CS DM DQS /CS Pr 8 RS DQ40 to DQ47 D5 DQ DM D13 DQ RS RS DM6/DQS15 DQS6 8 RS DQ48 to DQ55 DQS /CS DQ D6 DM DQS /CS DM DQ D14 RS RS DM7/DQS16 DQS7 8 RS * D0 to D15: HM5425801 U0: 2k bits EEPROM RS: 22Ω /CS DQ D7 DM DQS /CS DQ D15 A0 to A12 BA0, BA1 A0 to A12 (D0 to D15) BA0, BA1 (D0 to D15) /RAS /RAS (D0 to D15) /CAS /CAS (D0 to D15) /WE (D0 to D15) VCC, VCCQ D0 to D15 /WE VREF D0 to D15 CKE0 VSS D0 to D15 CKE1 VCCID DM od DQ56 to DQ63 DQS CKE (D0 to D7) CKE (D8 to D15) SCL Clock wiring Clock input DDR SDRAMS CK0/ /CK0 4DRAM loads CK1/ /CK1 6DRAM loads CK2/ /CK2 6DRAM loads SCL t uc Serial PD open SDA SDA U0 A0 Note: Wire per Clock loading table/Wiring diagrams. Data Sheet E0087H40 (Ver. 4.0) 8 A1 A2 SA0 SA1 SA2 Notes: 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. HB54A5128FN, HB54A5129FN-A75B/B75B/10B Block Diagram (HB54A5129FN) /S0 RS RS /S1 DM0/DQS9 DQS0 8 RS DQ0 to DQ7 DQS /CS DQ D0 DM DQS /CS DQ D9 DM RS RS DM1/DQS10 DQS1 8 RS DQ8 to DQ15 DQS /CS DQ D1 DM DQS /CS DQ D10 DM RS RS DM2/DQS11 DQS2 8 RS DQ16 to DQ23 DQS /CS DQ D2 DM DQS /CS DM DQ D11 RS RS DM3/DQS12 DQS3 EO 8 RS DQ24 to DQ31 DQS /CS DQ D3 DM DQS /CS DM DQ D12 RS RS DM4/DQS13 DQS4 8 RS DQ32 to DQ39 DQS /CS DQ D4 DM DQS /CS DQ D13 DM RS RS DM5/DQS14 DQS5 8 RS DQ40 to DQ47 DQS /CS DQ D5 DM DQS /CS DM DQ D14 RS RS DM6/DQS15 DQS6 L 8 RS DQ48 to DQ55 DQS /CS DQ D6 DM DQS /CS DQ D15 DM RS RS DM7/DQS16 DQS7 8 RS DQ56 to DQ63 DQS /CS DQ D7 DM DQS /CS DM DQ D16 RS RS DM8/DQS17 Pr DQS8 8 RS CB0 to CB7 DQS /CS DQ D8 DM /CS DQ D17 D0 to D17 A0 to A12 (D0 to D17) BA0, BA1 (D0 to D17) /RAS (D0 to D17) /CAS /CAS (D0 to D17) /WE /WE (D0 to D17) od /RAS VREF D0 to D17 CKE0 VSS D0 to D17 CKE1 VCCID DM A0 to A12 BA0, BA1 * D0 to D17: HM5425801 U0: 2k bits EEPROM RS: 22Ω VCC, VCCQ DQS CKE (D0 to D8) CKE (D9 to D17) Serial PD open SCL Clock wiring Clock input DDR SDRAMS CK0/ /CK0 6DRAM loads CK1/ /CK1 6DRAM loads CK2/ /CK2 6DRAM loads SCL SDA SDA U0 A0 Data Sheet E0087H40 (Ver. 4.0) 9 A2 SA0 SA1 SA2 Notes: 1. The SDA pull-up resistor is required due to the open-drain/open-collector output. 2. The SCL pull-up resistor is recommended because of the normal SCL line inacitve "high" state. t uc Note: Wire per Clock loading table/Wiring diagrams. A1 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Logical Clock Net Structure 6DRAM loads CK 5DRAM loads DRAM1 DRAM2 R = 120Ω DRAM1 R = 120Ω DRAM3 DRAM2 DRAM3 DIMM connector DIMM connector DRAM4 Capacitance DRAM5 DRAM5 DRAM6 DRAM6 /CK EO 4DRAM loads 3DRAM loads DRAM1 DRAM2 R = 120Ω R = 120Ω Capacitance DIMM connector L Capacitance Capacitance DRAM5 DRAM5 DRAM6 Capacitance 1DRAM loads DRAM1 Capacitance Pr R = 120Ω Capacitance R = 120Ω Capacitance DIMM connector Capacitance DRAM3 DIMM connector 2DRAM loads DRAM1 Capacitance DRAM3 DIMM connector Capacitance Capacitance DRAM5 od Capacitance Capacitance t uc Data Sheet E0087H40 (Ver. 4.0) 10 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Pin Functions (1) CK (CLK), /CK (/CLK) (input pin): The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK. /S (/CS) (input pin): When /S is Low, commands and data can be input. When /S is High, all inputs are ignored. However, internal operations (bank active, burst operations, etc.) are held. /RAS, /CAS, and /WE (input pins): These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels. See "Command operation". EO A0 to A12 (input pins): Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the VREF level in a bank active command cycle. Column address (AY0 to AY9) is loaded via the A0 to the A9 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This column address becomes the starting address of a burst operation. L A10 (AP) (input pin): A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If A10 = High when a precharge command is issued, all banks are precharged. If A10 = Low when a precharge command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = High when read or write command, auto-precharge function is enabled. While A10 = Low, auto-precharge function is disabled. BA0, BA1 (input pin): BA0/BA1 are bank select signals. The memory array is divided into bank 0, bank 1, bank 2 and bank 3. If BA1 = Low and BA0 = Low, bank 0 is selected. If BA1 = High and BA0 = Low, bank 1 is selected. If BA1 = Low and BA0 = High, bank 2 is selected. If BA1 = High and BA0 = High, bank 3 is selected. od Pin Functions (2) Pr CKE (input pin): CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the CKE is driven Low and exited when it resumes to High. The CKE level must be kept for 1 CK cycle (= LCKEPW) at least, that is, if CKE changes at the cross point of the CK rising edge and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold time tIH. DQ, CB (input and output pins): Data are input to and output from these pins. DQS (input and output pin): DQS provide the read data strobes (as output) and the write data strobes (as input). DM (input pins): DM is the reference signal of the data input mask function. DMs are sampled at the cross point of DQS and VREF t uc VCC and VCCQ (power supply pins): 2.5V is applied. (VCC is for the internal circuit and VCCQ is for the output buffer.) VCCSPD (power supply pin): 2.5V is applied (For serial EEPROM). VSS (power supply pin): Ground is connected. Detailed Operation Part, AC Characteristics and Timing Waveforms Refer to the HM5425161B/HM5425801B/HM5425401B Series datasheet (E0086H10). Data Sheet E0087H40 (Ver. 4.0) 11 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Electrical Specifications Absolute Maximum Ratings Symbol Value Unit Note Voltage on any pin relative to VSS VT –1.0 to +4.6 V 1 Supply voltage relative to VSS VCC, VCCQ –1.0 to +4.6 V 1 Short circuit output current IOUT 50 mA Power dissipation HB54A5128FN PT 8 W HB54A5129FN PT 9 W Operating temperature Topr 0 to +55 °C Storage temperature Tstg –50 to +100 °C EO Parameter Notes: 1. Respect to VSS. DC Operating Conditions (TA = 0 to +55°C) Parameter Symbol min. Typ max. Unit Notes Supply voltage VCC, VCCQ 2.3 2.5 2.7 V 1, 2 VSS 0 0 0 V VREF 1.15 1.25 1.35 V 1 Termination voltage VTT VREF – 0.04 VREF VREF + 0.04 V 1 VIH VREF + 0.18 — VCCQ + 0.3 V 1, 3 L Input reference voltage DC Input high voltage DC Input low voltage VIL –0.3 — VREF – 0.18 V 1, 4 DC Input signal voltage VIN (dc) –0.3 — VCCQ + 0.3 V 5 DC differential input voltage VSWING (dc) 0.36 — VCCQ + 0.6 V 6 All parameters are referred to VSS, when measured. VCCQ must be lower than or equal to VCC. VIH is allowed to exceed VCC up to 4.6V for the period shorter than or equal to 5ns. VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns. VIN (dc) specifies the allowable dc execution of each differential input. VSWING (dc) specifies the input differential voltage required for switching. t uc od Pr Notes: 1. 2. 3. 4. 5. 6. Data Sheet E0087H40 (Ver. 4.0) 12 HB54A5128FN, HB54A5129FN-A75B/B75B/10B DC Characteristics 1 (TA = 0 to 55°C, VCC, VCCQ = 2.5V ± 0.2V, VSS = 0V) Parameter Symbol Operating current (ACTV-PRE) ICC0 ICC1 Idle power down standby current ICC2P Idle standby current ICC2N Active power down standby current ICC3P Active standby current ICC3N Operating current (Burst read operation) ICC4R × 72 max. max. -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B -A75B -B75B -10B 1200 1120 960 1640 1520 1360 288 240 192 640 560 480 400 320 240 800 720 640 2200 2080 1960 2040 1920 1800 2040 1960 1760 1350 1260 1080 1845 1710 1530 324 270 216 720 630 540 450 360 270 900 810 720 2475 2340 2205 2295 2160 2025 2295 2205 1980 48 54 L EO Operating current (ACTVREAD-PRE) × 64 Grade ICC4W Auto refresh current ICC5 Self refresh current ICC6 Test condition mA CKE ≥ VIH, tRC = min. 1, 2, 5 mA CKE ≥ VIH, BL = 2, CL = 2.5, tRC = min. 1, 2, 5 mA CKE ≤ VIL 4 mA CKE ≥ VIH, /CS ≥ VIH 4 mA CKE ≤ VIL mA CKE ≥ VIH, /CS ≥ VIH 3 tRAS = max. mA CKE ≥ VIH, BL = 2, CL = 2.5 1, 2, 5, 6 mA CKE ≥ VIH, BL = 2, CL = 2.5 1, 2, 5, 6 mA tRFC = min., Input ≤ VIL or ≥ VIH mA Input ≥ VCC – 0.2V Input ≤ 0.2V. Notes 3 These ICC data are measured under condition that DQ pins are not connected. One bank operation. One bank active. All banks idle. Command/Address transition once per one cycle. Data/Data mask transition twice per one cycle. The ICC data on this table are measured with regard to tCK = min. in general. od Notes. 1. 2. 3. 4. 5. 6. 7. Pr Operating current (Burst write operation) Unit DC Characteristics2 (TA = 0 to 55°C, VCC, VCCQ = 2.5V ± 0.2V, VSS = 0V) Symbol min. Input leakage current ILI –10 Output leakage current ILO –10 max. Unit Test condition 10 µA VCC ≥ VIN ≥ VSS 10 µA VCC ≥ VOUT ≥ VSS Output high voltage VOH VTT + 0.76 — V Output low voltage VOL — VTT – 0.76 V Data Sheet E0087H40 (Ver. 4.0) 13 Notes t uc Parameter IOH (max.) = –15.2mA IOL (min.) = 15.2mA HB54A5128FN, HB54A5129FN-A75B/B75B/10B Pin Capacitance (TA = 25°C, VCC, VCCQ = 2.5V ± 0.2V) [HB54A5128FN] Parameter Symbol Pins min. max. Unit Notes Input capacitance CI1 Address, Cont. 110 pF 1 Input capacitance CI2 CKE, /S 75 pF 1 Input capacitance CI3 CK, /CK 79 Data and DQS input/output capacitance CO DQ, DQS 20 pF 1, 2 Parameter Symbol Pins min. max. Unit Notes Input capacitance CI1 Address, Cont. 117 pF 1 pF 1 pF 1, 2 [HB54A5129FN] EO Input capacitance CI2 CKE, /S 82 Input capacitance CI3 CK, /CK 79 Data and DQS input/output capacitance CO DQ, DQS, CB 20 Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VCCQ/2, ∆VOUT = 0.2V. 2. Dout circuits are disabled. Timing Parameter Measured in Clock Cycle for Unbuffered DIMM L Parameter Number of clock cycle Symbol min. Write to pre-charge command delay (same bank) tWPD 3 + BL/2 Read to pre-charge command delay (same bank) tRPD BL/2 Write to read command delay (to input all data) tWRD 2 + BL/2 Pr tBSTW 2 (CL = 2.5) tBSTW 3 tBSTZ 2 tBSTZ 2.5 tRWD 2 + BL/2 tRWD 3 + BL/2 tHZP 2 tHZP 2.5 tWCD 1 tWR 2 tDMD 0 Burst stop command to DQ High-Z (CL = 2) (CL = 2.5) Read command to write command delay (to output all data) (CL = 2) (CL = 2.5) Pre-charge command to High-Z (CL = 2) (CL = 2.5) Write command to data in latency Write recovery t uc DM to data in latency od Burst stop command to write command delay (CL = 2) max. Register set command to active or register set command tMRD 2 Self refresh exit to non-read command tSNR 10 Self refresh exit to read command tSRD 200 Power down entry tPDEN Power down exit to command input tPDEX CKE minimum pulse width tCKEPW Data Sheet E0087H40 (Ver. 4.0) 14 1 1 1 HB54A5128FN, HB54A5129FN-A75B/B75B/10B Physical Outline Unit: mm 133.35 ± 0.15 128.95 4.00 max 4.00 min (DATUM -A-) (64.48) 2.30 Component area (Front) 1 92 EO B A 64.77 1.27 ± 0.10 49.53 R 2.00 3.00 min Detail A Detail B (DATUM -A-) 1.27 typ 6.62 0.20 ± 0.15 Pr 2.50 ± 0.20 31.75 ± 0.15 Component area (Back) 17.80 184 L 4.00 ± 0.10 93 10.00 2 – φ 2.50 ± 0.10 2.175 R 0.90 1.00 ± 0.05 3.80 6.35 1.80 ± 0.10 od Note: Tolerance on all dimensions ± 0.13 unless otherwise specified. ECA-TS2-0040-01 t uc Data Sheet E0087H40 (Ver. 4.0) 15 HB54A5128FN, HB54A5129FN-A75B/B75B/10B CAUTION FOR HANDLING MEMORY MODULES When handling or inserting memory modules, be sure not to touch any components on the modules, such as the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on these components to prevent damaging them. In particular, do not push module cover or drop the modules in order to protect from mechanical defects, which would be electrical defects. When re-packing memory modules, be sure the modules are not touching each other. Modules in contact with other modules may cause excessive mechanical stress, which may damage the modules. MDE0202 NOTES FOR CMOS DEVICES EO 1 PRECAUTION AGAINST ESD FOR MOS DEVICES 2 L Exposing the MOS devices to a strong electric field can cause destruction of the gate oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it, when once it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. MOS devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. MOS devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor MOS devices on it. HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES 3 od Pr No connection for CMOS devices input pins can be a cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. The unused pins must be handled in accordance with the related specifications. STATUS BEFORE INITIALIZATION OF MOS DEVICES t uc Power-on does not necessarily define initial status of MOS devices. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the MOS devices with reset function have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. MOS devices are not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for MOS devices having reset function. CME0107 Data Sheet E0087H40 (Ver. 4.0) 16 HB54A5128FN, HB54A5129FN-A75B/B75B/10B The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Elpida Memory, Inc. Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights (including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or third parties by or arising from the use of the products or information listed in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Elpida Memory, Inc. or others. Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of the customer's equipment shall be done under the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. EO [Product applications] Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability. However, users are instructed to contact Elpida Memory's sales office before using the product in aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment, medical equipment for life support, or other such application in which especially high quality and reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk of bodily injury. L [Product usage] Design your application so that the product is used within the ranges and conditions guaranteed by Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no responsibility for failure or damage when the product is used beyond the guaranteed ranges and conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other consequential damage due to the operation of the Elpida Memory, Inc. product. [Usage environment] This product is not designed to be resistant to electromagnetic waves or radiation. This product must be used in a non-condensing environment. Pr If you export the products or technology described in this document that are controlled by the Foreign Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by U.S. export control regulations, or another country's export control laws or regulations, you must follow the necessary procedures in accordance with such laws or regulations. If these products/technology are sold, leased, or transferred to a third party, or a third party is granted license to use these products, that third party must be made aware that they are responsible for compliance with the relevant laws and regulations. M01E0107 t uc od Data Sheet E0087H40 (Ver. 4.0) 17