ELPIDA EBD51RD8ABFA

PRELIMINARY DATA SHEET
512MB Registered DDR SDRAM DIMM
EBD51RD8ABFA (64M words × 72 bits, 1 Rank)
Features
The EBD51RD8ABFA is a 64M words × 72 bits, 1 rank
Double Data Rate (DDR) SDRAM Module, mounting 9
pieces of DDR SDRAM sealed in TSOP package.
Read and write operations are performed at the cross
points of the CK and the /CK. This high-speed data
transfer is realized by the 2-bit prefetch-pipelined
architecture. Data strobe (DQS) both for read and
write are available for high speed and reliable data bus
design. By setting extended mode register, the on-chip
Delay Locked Loop (DLL) can be set enable or disable.
This module provides high density mounting without
utilizing surface mount technology.
Decoupling
capacitors are mounted beside each TSOP on the
module board.
• 184-pin socket type dual in line memory module
(DIMM)
 PCB height: 30.48mm
 Lead pitch: 1.27mm
• 2.5V power supply
• Data rate: 333Mbps/266Mbps (max.)
• 2.5 V (SSTL_2 compatible) I/O
• Double Data Rate architecture; two data transfers per
clock cycle
• Bi-directional, data strobe (DQS) is transmitted
/received with data, to be used in capturing data at
the receiver
• Data inputs and outputs are synchronized with DQS
• 4 internal banks for concurrent operation
(Component)
• DQS is edge aligned with data for READs; center
aligned with data for WRITEs
• Differential clock inputs (CK and /CK)
• DLL aligns DQ and DQS transitions with CK
transitions
• Commands entered on each positive CK edge; data
referenced to both edges of DQS
• Data mask (DM) for write data
• Auto precharge option for each burst access
• Programmable burst length: 2, 4, 8
• Programmable /CAS latency (CL): 2, 2.5
• Refresh cycles: (8192 refresh cycles /64ms)
 7.8µs maximum average periodic refresh interval
• 2 variations of refresh
 Auto refresh
 Self refresh
• 1 piece of PLL clock driver, 2 pieces of register
drivers and 1 piece of serial EEPROM (2k bits
EEPROM) for Presence Detect (PD)
L
EO
Description
t
uc
od
Pr
Document No. E0376E10 (Ver. 1.0)
Date Published April 2003 (K) Japan
URL: http://www.elpida.com
This product became EOL in March, 2004.
Elpida Memory,Inc. 2003
EBD51RD8ABFA
Ordering Information
Part number
Data rate
Mbps (max.)
Component
JEDEC speed bin*1
(CL-tRCD-tRP)
Package
Contact
pad
Mounted devices
EBD51RD8ABFA-6B
333
DDR333B (2.5-3-3)
184-pin DIMM
Gold
EDD5108ABTA-6B
EBD51RD8ABFA-7A
266
DDR266A (2-3-3)
EDD5108ABTA-6B, -7A
DDR266B (2.5-3-3)
EDD5108ABTA-6B, -7A, -7B
EBD51RD8ABFA-7B
Notes: 1. Module /CAS latency = component CL + 1.
Pin Configurations
EO
Front side
1 pin
52 pin 53 pin
93 pin
92 pin
144 pin 145 pin 184 pin
Back side
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
1
VREF
47
DQS8
93
VSS
139
VSS
2
DQ0
48
A0
94
DQ4
140
DM8/DQS17
3
VSS
49
CB2
95
DQ5
141
A10
L
Pin No.
DQ1
50
VSS
96
VDD
142
CB6
5
DQS0
51
CB3
97
DM0/DQS9
143
VDD
6
DQ2
52
BA1
98
DQ6
144
CB7
7
VDD
53
8
DQ3
54
9
NC
55
Pr
4
DQ32
99
DQ7
145
VSS
VDD
100
VSS
146
DQ36
DQ33
101
NC
147
DQ37
/RESET
56
11
VSS
57
DQS4
102
NC
148
VDD
DQ34
103
NC
149
DM4/DQS13
12
DQ8
58
VSS
104
VDD
150
DQ38
13
DQ9
59
BA0
14
DQS1
60
DQ35
15
VDD
61
DQ40
16
NC
62
VDD
17
NC
63
/WE
18
VSS
64
DQ41
od
10
105
DQ12
151
DQ39
106
DQ13
152
VSS
107
DM1/DQS10
153
DQ44
108
VDD
154
/RAS
109
DQ14
155
DQ45
110
DQ15
156
VDD
DQ10
65
/CAS
111
NC
20
DQ11
66
VSS
112
VDD
21
CKE0
67
DQS5
113
NC
22
VDD
68
DQ42
114
23
DQ16
69
DQ43
115
24
DQ17
70
VDD
116
VSS
t
uc
19
157
/CS0
158
NC
159
DM5/DQS14
DQ20
160
VSS
A12
161
DQ46
162
DQ47
25
DQS2
71
NC
117
DQ21
163
NC
26
VSS
72
DQ48
118
A11
164
VDD
27
A9
73
DQ49
119
DM2/DQS11
165
DQ52
Preliminary Data Sheet E0376E10 (Ver. 1.0)
2
EBD51RD8ABFA
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
Pin No.
Pin name
28
DQ18
74
VSS
120
VDD
166
DQ53
29
A7
75
NC
121
DQ22
167
NC
30
VDD
76
NC
122
A8
168
VDD
31
DQ19
77
VDD
123
DQ23
169
DM6/DQS15
32
A5
78
DQS6
124
VSS
170
DQ54
33
DQ24
79
DQ50
125
A6
171
DQ55
34
VSS
80
DQ51
126
DQ28
172
VDD
DQ25
81
VSS
127
DQ29
173
NC
36
DQS3
82
VDDID
128
VDD
174
DQ60
37
A4
83
DQ56
129
DM3/DQS12
175
DQ61
38
VDD
84
DQ57
130
A3
176
VSS
39
DQ26
85
VDD
131
DQ30
177
DM7/DQS16
40
DQ27
86
DQS7
132
VSS
178
DQ62
41
A2
87
DQ58
133
DQ31
179
DQ63
42
VSS
88
DQ59
134
CB4
180
VDD
43
A1
89
VSS
135
CB5
181
SA0
44
CB0
90
NC
136
VDD
182
SA1
45
CB1
91
SDA
137
CK0
183
SA2
46
L
EO
35
VDD
SCL
138
/CK0
184
VDDSPD
92
t
uc
od
Pr
Preliminary Data Sheet E0376E10 (Ver. 1.0)
3
EBD51RD8ABFA
Pin Description
Function
A0 to A12
Address input
Row address
Column address
BA0, BA1
Bank select address
DQ0 to DQ63
Data input/output
CB0 to CB7
Check bit (Data input/output)
/RAS
Row address strobe command
/CAS
Column address strobe command
/WE
Write enable
/CS0
Chip select
EO
Pin name
A0 to A12
A0 to A9, A11
CKE0
Clock enable
CK0
Clock input
/CK0
Differential clock input
DQS0 to DQS8
Input and output data strobe
DM0 to DM8/DQS9 to DQS17
Input mask
SCL
Clock input for serial PD
SDA
VDD
VDDSPD
VREF
VDDID
/RESET
NC
Serial address input
Power for internal circuit
Power for serial EEPROM
Input reference voltage
Ground
Pr
VSS
Data input/output for serial PD
L
SA0 to SA2
VDD identification flag
Reset pin (forces register inputs low)
No connection
t
uc
od
Preliminary Data Sheet E0376E10 (Ver. 1.0)
4
EBD51RD8ABFA
1
Serial PD Matrix*
Byte No.
0
1
Function described
Number of bytes utilized by module
manufacturer
Total number of bytes in serial PD
device
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
1
0
0
0
0
0
0
0
80H
128
0
0
0
0
1
0
0
0
08H
256 byte
2
Memory type
0
0
0
0
0
1
1
1
07H
SDRAM DDR
3
Number of row address
0
0
0
0
1
1
0
1
0DH
13
Number of column address
0
0
0
0
1
0
1
1
0BH
11
5
Number of DIMM ranks
0
0
0
0
0
0
0
1
01H
1
6
Module data width
0
1
0
0
1
0
0
0
48H
72 bits
7
Module data width continuation
0
0
0
0
0
0
0
0
00H
0 (+)
8
Voltage interface level of this assembly 0
0
0
0
0
1
0
0
04H
SSTL 2.5V
9
DDR SDRAM cycle time, CL = X
-6B
0
1
1
0
0
0
0
0
60H
CL = 2.5*3
0
1
1
1
0
1
0
1
75H
0
1
1
1
0
0
0
0
70H
0.70ns*3
0
1
1
1
0
1
0
1
75H
0.75ns*3
EO
4
-7A, -7B
10
SDRAM access from clock (tAC)
-6B
-7A, -7B
DIMM configuration type
0
0
0
0
0
0
1
0
02H
ECC
12
Refresh rate/type
1
0
0
0
0
0
1
0
82H
7.8 µs
Self refresh
13
Primary SDRAM width
0
0
0
0
1
0
0
0
08H
×8
14
Error checking SDRAM width
0
0
0
0
1
0
0
0
08H
×8
0
0
0
0
0
0
0
1
01H
1 CLK
15
17
18
20
0
0
0
0
1
1
1
0
0EH
2, 4, 8
0
0
0
0
0
1
0
0
04H
4
0
0
0
0
1
1
0
0
0CH
2, 2.5
0
0
0
0
0
0
0
1
01H
0
0
0
0
0
0
0
1
0
02H
1
1
0
0
1
1
0
26H
Registered
0
0
0
0
0
0
C0H
± 0.2V
1
1
0
1
0
1
75H
1
0
0
0
0
0
A0H
21
SDRAM module attributes
0
0
22
SDRAM device attributes: General
1
1
23
Minimum clock cycle time at CLX - 0.5
0
-6B, -7A
1
-7B
1
0
Maximum data access time (tAC) from
0
clock at CLX - 0.5
-6B
1
1
1
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
0
-7A, -7B
25
26
27
Minimum clock cycle time at CLX - 1
Maximum data access time (tAC) from
0
clock at CLX - 1
Minimum row precharge time (tRP)
0
-6B
-7A, -7B
0
Preliminary Data Sheet E0376E10 (Ver. 1.0)
5
CL = 2*3
t
uc
24
od
19
SDRAM device attributes:
Minimum clock delay back-to-back
column access
SDRAM device attributes:
Burst length supported
SDRAM device attributes: Number of
banks on SDRAM device
SDRAM device attributes:
/CAS latency
SDRAM device attributes:
/CS latency
SDRAM device attributes:
/WE latency
Pr
16
L
11
0
0
70H
0.70ns*3
0
1
75H
0.75ns*3
0
0
00H
0
0
00H
0
0
48H
18ns
0
0
50H
20ns
EBD51RD8ABFA
Byte No.
Function described
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
28
Minimum row active to row active
delay (tRRD)
-6B
0
0
1
1
0
0
0
0
30H
12ns
0
0
1
1
1
1
0
0
3CH
15ns
29
Minimum /RAS to /CAS delay (tRCD)
-6B
0
1
0
0
1
0
0
0
48H
18ns
0
1
0
1
0
0
0
0
50H
20ns
30
Minimum active to precharge time
(tRAS)
-6B
0
0
1
0
1
0
1
0
2AH
42ns
0
0
1
0
1
1
0
1
2DH
45ns
-7A, -7B
-7A, -7B
-7A, -7B
Module rank density
1
0
0
0
0
0
0
0
80H
32
Address and command setup time
before clock (tIS)
-6B
0
1
1
1
0
1
0
1
75H
0.75ns*3
1
0
0
1
0
0
0
0
90H
0.9ns*3
Address and command hold time after
0
clock (tIH)
-6B
1
1
1
0
1
0
1
75H
0.75ns*3
1
0
0
1
0
0
0
0
90H
0.9ns*3
0
1
0
0
0
1
0
1
45H
0.45ns*3
0
1
0
1
0
0
0
0
50H
0.5ns*3
0
1
0
0
0
1
0
1
45H
0.45ns*3
0
1
0
1
0
0
0
0
50H
0.5ns*3
0
0
0
0
0
0
0
0
00H
Future use
0
0
1
1
1
1
0
0
3CH
60ns*3
0
1
0
0
0
0
0
1
41H
65ns*3
0
1
0
0
1
0
0
0
48H
72ns*3
0
1
EO
31
1 rank
512MB
-7A, -7B
33
-7A, -7B
Data input setup time before clock
(tDS)
-6B
L
34
-7A, -7B
35
Data input hold time after clock (tDH)
-6B
36 to 40
Superset information
41
Active command period (tRC)
-6B
-7A, -7B
42
Auto refresh to active/
Auto refresh command cycle (tRFC)
-6B
-7A, -7B
od
Pr
-7A, -7B
0
0
1
0
1
1
4BH
75ns*3
1
1
0
0
0
0
30H
12ns*3
1
0
1
1
0
1
2DH
0.45ns*3
1
1
0
0
1
0
32H
0.5ns*3
0
1
0
1
0
1
55H
0.55ns*3
SDRAM tCK cycle max. (tCK max.)
0
0
44
Dout to DQS skew
-6B
0
0
0
0
0
1
0
1
1
1
0
1
-7A, -7B
45
Data hold skew (tQHS)
-6B
-7A, -7B
46 to 61
Superset information
0
0
0
0
0
0
62
SPD revision
0
0
0
0
0
0
63
Checksum for bytes 0 to 62
-6B
0
1
0
1
1
0
-7A
0
0
0
1
0
0
-7B
0
0
1
1
1
0
64 to 65
Manufacturer’s JEDEC ID code
0
1
1
1
1
1
66
Manufacturer’s JEDEC ID code
1
1
1
1
1
1
67 to 71
Manufacturer’s JEDEC ID code
0
0
0
0
0
0
Preliminary Data Sheet E0376E10 (Ver. 1.0)
6
0
1
75H
0.75ns*3
0
0
00H
Future use
0
0
00H
Initial
0
1
59H
89
0
0
10H
16
59
t
uc
43
1
1
3BH
1
1
7FH
1
0
FEH
0
0
00H
Elpida Memory
EBD51RD8ABFA
Byte No.
Function described
Bit7
Bit6
Bit5 Bit4
Bit3
Bit2
Bit1 Bit0
Hex value
Comments
72
Manufacturing location
×
×
×
×
×
×
×
×
××
*2 (ASCII-8bit
code)
73
Module part number
0
1
0
0
0
1
0
1
45H
E
74
Module part number
0
1
0
0
0
0
1
0
42H
B
Module part number
0
1
0
0
0
1
0
0
44H
D
76
Module part number
0
0
1
1
0
1
0
1
35H
5
77
Module part number
0
0
1
1
0
0
0
1
31H
1
78
Module part number
0
1
0
1
0
0
1
0
52H
R
79
Module part number
0
1
0
0
0
1
0
0
44H
D
80
Module part number
0
0
1
1
1
0
0
0
38H
8
81
Module part number
0
1
0
0
0
0
0
1
41H
A
82
Module part number
0
1
0
0
0
0
1
0
42H
B
83
Module part number
0
1
0
0
0
1
1
0
46H
F
84
Module part number
0
1
0
0
0
0
0
1
41H
A
85
Module part number
0
0
1
0
1
1
0
1
2DH
—
86
Module part number
-6B
0
0
1
1
0
1
1
0
36H
6
0
0
1
1
0
1
1
1
37H
7
0
1
0
0
0
0
0
1
41H
A
EO
75
-7A, -7B
Module part number
-7A
0
1
0
0
0
0
1
0
42H
B
88 to 90
Module part number
0
0
1
0
0
0
0
0
20H
(Space)
91
Revision code
0
0
1
1
0
0
0
0
30H
Initial
92
Revision code
0
0
1
0
0
0
0
0
20H
L
87
-6B, -7B
Pr
93
Manufacturing date
94
Manufacturing date
95 to 98
Module serial number
99 to 127
Manufacturer specific data
×
×
×
×
×
×
×
×
××
×
×
×
×
×
×
×
×
××
(Space)
Year code
(HEX)
Week code
(HEX)
*2
t
uc
od
Notes: 1. All serial PD data are not protected. 0: Serial data, “driven Low”, 1: Serial data, “driven High”
2. Bytes 95 through 98 are assembly serial number.
3. These specifications are defined based on component specification, not module.
Preliminary Data Sheet E0376E10 (Ver. 1.0)
7
EBD51RD8ABFA
Block Diagram
/RCS0
/CS
RS
DM0/DQS9
DM
RS
DQS0
RS
DQS
8
RS
DQ0 to DQ7
DQS4
D0
/CS
EO
DQ8 to DQ15
DQS5
D1
/CS
DQ16 to DQ23
DQS6
D2
L
8
RS
DQ24 to DQ31
RS
DQ48 to DQ55
/CS
I/O0 to
I/O7
/CS
RS
DM7/DQS16
DM
DM
RS
DQS3
D6
DQS
8
I/O0 to
I/O7
RS
DM3/DQS12
/CS
DM
RS
DQS
RS
I/O0 to
I/O7
RS
DM6/DQS15
RS
8
RS
DQ40 to DQ47
DM
DQS2
D5
DQS
8
I/O0 to
I/O7
RS
DM2/DQS11
/CS
DM
RS
DQS
RS
I/O0 to
I/O7
RS
DM5/DQS14
RS
8
RS
DQ32 to DQ39
DM
DQS1
D4
DQS
8
I/O0 to
I/O7
RS
DM1/DQS10
/CS
RS
DM4/DQS13
DM
RS
DQS
DQS7
D3
I/O0 to
I/O7
D7
DQS
8
RS
DQ56 to DQ63
I/O0 to
I/O7
/CS
Pr
RS
DM8/DQS17
DM
RS
DQS8
DQS
8
RS
CB0 to CB7
/CS0
A0 to A12
/RAS
/CAS
CKE0
/WE
RS
RS
RS
RS
RS
RS
RS
/RCS0 -> /CS: SDRAMs D0 to D8
R
E
G
I
S
T
E
R
PCK
/PCK
RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D8
RA0 to RA12 -> A0 to A12: SDRAMs D0 to D8
/RRAS -> /RAS: SDRAMs D0 to D8
Serial PD
/RCAS -> /CAS: SDRAMs D0 to D8
RCKE0 -> CKE: SDRAMs D0 to D8
SCL
SCL
A0
VDD
D0 to D8
VREF
D0 to D8
SDA
A1
A2
SA0 SA1 SA2
Notes:
1. The SDA pull-up resistor is required due to
the open-drain/open-collector output.
2. The SCL pull-up resistor is recommended
because of the normal SCL line inacitve
"high" state.
t
uc
D0 to D8
SDA
U0
/RWE -> /WE: SDRAMs D0 to D8
/RESET
VSS
* D0 to D8: 512M bits DDR SDRAM
U0: 2k bits EEPROM
RS: 22Ω
PLL: CDCV857
Register: SSTV16857
od
BA0 to BA1
D8
I/O0 to
I/O7
VDDID
open
CK0, /CK0
PLL*
Note: Wire per Clock loading table/Wiring diagrams.
Preliminary Data Sheet E0376E10 (Ver. 1.0)
8
EBD51RD8ABFA
Differential Clock Net Wiring (CK0, /CK0)
0ns (nominal)
SDRAM
PLL
120Ω
OUT1
Capacitance
120Ω
CK0
EO
IN
240Ω
/CK0
120Ω
Register1
(Typically two registers per DIMM)
OUT'N'
C
Feedback
240Ω
Register2
L
t
uc
od
Pr
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register will
be set to 0 ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for feedback path clocks are located after the pins of the PLL.
5. SDRAM clock pair inputs have a parallel capacitor equal to one-half nominal SDRAM
input clock load.
Preliminary Data Sheet E0376E10 (Ver. 1.0)
9
EBD51RD8ABFA
Electrical Specifications
• All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Voltage on any pin relative to VSS
VT
–1.0 to +3.6
V
Supply voltage relative to VSS
VDD
–1.0 to +3.6
V
Short circuit output current
IOS
50
mA
Power dissipation
PD
9
W
Operating ambient temperature
TA
0 to +70
°C
Storage temperature
Tstg
–55 to +125
°C
Note
1
EO
Note: 1. DDR SDRAM component specification
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TA = 0 to +70°C)
(DDR SDRAM component Specification)
L
Parameter
Symbol
Supply voltage
Min
Typ
Max
Unit
Notes
1
2.3
2.5
2.7
V
0
0
0
V
VREF
0.49 × VDDQ
0.50 × VDDQ
0.51 × VDDQ
V
Termination voltage
VTT
VREF – 0.04
VREF
VREF + 0.04
V
Input high voltage
VIH (DC)
VREF + 0.15
—
VDDQ + 0.3
V
2
Input low voltage
VIL (DC)
–0.3
—
VREF – 0.15
V
3
VIN (DC)
–0.3
—
VDDQ + 0.3
V
4
VIX (DC)
0.5 × VDDQ − 0.2V
0.5 × VDDQ
0.5 × VDDQ + 0.2V V
VID (DC)
0.36
Input reference voltage
Notes: 1.
2.
3.
4.
5.
6.
od
Input voltage level,
CK and /CK inputs
Input differential cross point
voltage, CK and /CK inputs
Input differential voltage,
CK and /CK inputs
Pr
VDD,VDDQ
VSS
—
VDDQ + 0.6
V
5, 6
t
uc
VDDQ must be lower than or equal to VDD.
VIH is allowed to exceed VDD up to 3.6V for the period shorter than or equal to 5ns.
VIL is allowed to outreach below VSS down to –1.0V for the period shorter than or equal to 5ns.
VIN (DC) specifies the allowable DC execution of each differential input.
VID (DC) specifies the input differential voltage required for switching.
VIH (CK) min assumed over VREF + 0.18V, VIL (CK) max assumed under VREF – 0.18V
if measurement.
Preliminary Data Sheet E0376E10 (Ver. 1.0)
10
EBD51RD8ABFA
DC Characteristics 1 (TA = 0 to +70°C, VDD = 2.5V ± 0.2V, VSS = 0V)
Parameter
Symbol
Operating current (ACTV-PRE)
IDD0
Operating current
(ACTV-READ-PRE)
IDD1
Grade
max.
-6B
-7A, -7B
-6B
-7A, -7B
1740
1605
2010
1830
Idle power down standby current IDD2P
-6B
-7A, -7B
Unit
mA
mA
417
mA
750
705
mA
Floating idle standby current
IDD2F
Quiet idle standby current
IDD2Q
615
mA
Active power down standby
current
IDD3P
570
mA
EO
Active standby current
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
-6B
-7A, -7B
IDD3N
Operating current
(Burst read operation)
Operating current
(Burst write operation)
IDD4R
IDD4W
IDD5
Self refresh current
IDD6
Operating current
(4 banks interleaving)
IDD7A
L
Auto refresh current
1020
930
2280
2010
2280
2010
3000
2820
-6B
-7A, -7B
mA
mA
mA
mA
426
mA
4260
3720
mA
Test condition
CKE ≥ VIH,
tRC = tRC (min.)
CKE ≥ VIH, BL = 4,
CL = 3.5, tRC = tRC (min.)
CKE ≤ VIL
CKE ≥ VIH, /CS ≥ VIH,
DQ, DQS, DM = VREF
CKE ≥ VIH, /CS ≥ VIH,
DQ, DQS, DM = VREF
CKE ≤ VIL
CKE ≥ VIH, /CS ≥ VIH
tRAS = tRAS (max.)
CKE ≥ VIH, BL = 2,
CL = 3.5
CKE ≥ VIH, BL = 2,
CL = 3.5
tRFC = tRFC (min.),
Input ≤ VIL or ≥ VIH
Input ≥ VDD – 0.2 V
Input ≤ 0.2 V
BL = 4
Notes
1, 2, 9
1, 2, 5
4
4, 5
4, 10
3
3, 5, 6
1, 2, 5, 6
1, 2, 5, 6
5, 6, 7
od
Pr
Notes. 1. These IDD data are measured under condition that DQ pins are not connected.
2. One bank operation.
3. One bank active.
4. All banks idle.
5. Command/Address transition once per one cycle.
6. DQ, DM and DQS transition twice per one cycle.
7. 4 banks active. Only one bank is running at tRC = tRC (min.)
8. The IDD data on this table are measured with regard to tCK = tCK (min.) in general.
9. Command/Address transition once every two clock cycles.
10. Command/Address stable at ≥ VIH or ≤ VIL.
DC Characteristics 2 (TA = 0 to +70°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
(DDR SDRAM component Specification)
Symbol
min.
max.
Unit
Test condition
Input leakage current
ILI
–2
2
µA
VDD ≥ VIN ≥ VSS
Output leakage current
ILO
–5
5
µA
VDDQ ≥ VOUT ≥ VSS
Output high current
IOH
–15.2
—
mA
VOUT = 1.95V
Output low current
IOL
15.2
—
mA
Preliminary Data Sheet E0376E10 (Ver. 1.0)
11
Notes
t
uc
Parameter
VOUT = 0.35V
EBD51RD8ABFA
Pin Capacitance (TA = 25°C, VDD = 2.5V ± 0.2V)
Parameter
Symbol
Pins
max.
Unit
Notes
Input capacitance
CI1
Address, /RAS, /CAS, /WE,
/CS, CKE
10
pF
1, 3
Input capacitance
CI2
CK, /CK
20
pF
1, 3
Data and DQS input/output
capacitance
CO
DQ, DQS, CB, DM
15
pF
1, 2, 3
Notes: 1. These parameters are measured on conditions: f = 100MHz, VOUT = VDDQ/2, ∆VOUT = 0.2V.
2. Dout circuits are disabled.
3. This parameter is sampled and not 100% tested.
EO
AC Characteristics (TA = 0 to +70°°C, VDD, VDDQ = 2.5V ± 0.2V, VSS = 0V)
(DDR SDRAM component Specification)
-6B
-7A
-7B
Symbol
min.
max
min.
max
min.
max
Unit Notes
Clock cycle time
(CL = 2)
tCK
7.5
12
7.5
12
10
12
ns
(CL = 2.5)
tCK
6
12
7.5
12
7.5
12
ns
CK high-level width
tCH
0.45
0.55
0.45
0.55
0.45
0.55
tCK
CK low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
tCK
tHP
min
(tCH, tCL)
—
min
(tCH, tCL)
—
min
(tCH, tCL)
—
tCK
tAC
–0.7
0.7
–0.75
0.75
–0.75
0.75
ns
2, 11
DQS output access time from CK, /CK tDQSCK –0.6
0.6
–0.75
0.75
–0.75
0.75
ns
2, 11
DQS to DQ skew
0.45
—
0.5
—
0.5
ns
3
CK half period
L
Parameter
DQ output access time from
CK, /CK
Data hold skew factor
tDQSQ
—
tQH
tHP – tQHS —
tHP – tQHS —
tHP – tQHS —
ns
tQHS
—
0.55
—
0.75
—
0.75
ns
–0.7
0.7
–0.75
0.75
–0.75
0.75
ns
5, 11
–0.7
0.7
–0.75
0.75
–0.75
0.75
ns
6, 11
Data-out high-impedance time from
tHZ
CK, /CK
Data-out low-impedance time from CK,
tLZ
/CK
Read preamble
tRPRE
0.9
Read postamble
tRPST
0.4
DQ and DM input setup time
tDS
0.45
DQ and DM input hold time
tDH
0.45
DQ and DM input pulse width
tDIPW
1.75
tWPRES 0
Write preamble
tWPRE
0.25
Write postamble
tWPST
Write command to first DQS latching
transition
DQS falling edge to CK setup time
1.1
0.9
1.1
0.9
1.1
tCK
0.6
0.4
0.6
0.4
0.6
tCK
—
0.5
—
0.5
—
ns
8
—
0.5
—
0.5
—
ns
8
—
1.75
—
1.75
—
ns
7
—
0
—
0
—
ns
—
0.25
—
0.25
—
tCK
0.4
0.6
0.4
0.6
0.4
0.6
tCK
tDQSS
0.75
1.25
0.75
1.25
0.75
1.25
tCK
tDSS
0.2
—
0.2
—
0.2
—
tCK
t
uc
Write preamble setup time
od
Pr
DQ/DQS output hold time from DQS
10
DQS falling edge hold time from CK
tDSH
0.2
—
0.2
—
0.2
—
tCK
DQS input high pulse width
tDQSH
0.35
—
0.35
—
0.35
—
tCK
DQS input low pulse width
tDQSL
0.35
—
0.35
—
0.35
—
tCK
9
Address and control input setup time
tIS
0.75
—
0.9
—
0.9
—
ns
8
Address and control input hold time
tIH
0.75
—
0.9
—
0.9
—
ns
8
Preliminary Data Sheet E0376E10 (Ver. 1.0)
12
EBD51RD8ABFA
-6B
-7A
-7B
Parameter
Symbol
min.
max
min.
max
min.
max
Unit Notes
Address and control input pulse width
tIPW
2.2
—
2.2
—
2.2
—
ns
Mode register set command cycle time tMRD
2
—
2
—
2
—
tCK
Active to Precharge command period
42
120000
45
120000
45
120000
ns
60
—
65
—
65
—
ns
72
—
75
—
75
—
ns
tRAS
Active to Active/Auto refresh command
tRC
period
Auto refresh to Active/Auto refresh
tRFC
command period
Active to Read/Write delay
tRCD
18
—
20
—
20
—
ns
Precharge to active command period
tRP
18
—
20
—
20
—
ns
Active to auto precharge delay
tRAP
tRCD min.
—
tRCD min.
—
tRCD min.
—
ns
tRRD
12
—
15
—
15
—
ns
Write recovery time
tWR
15
—
15
—
15
—
ns
Auto precharge write recovery and
precharge time
tDAL
(tWR/tCK)+
—
(tRP/tCK)
(tWR/tCK)+
—
(tRP/tCK)
(tWR/tCK)+
—
(tRP/tCK)
tCK
Internal write to Read command delay tWTR
1
—
1
—
1
—
tCK
Average periodic refresh interval
—
7.8
—
7.8
—
7.8
µs
EO
Active to active command period
tREF
7
13
L
Notes: 1. All the AC parameters listed in this data sheet is component specifications. For AC testing conditions,
refer to the corresponding component data sheet.
2. This parameter defines the signal transition delay from the cross point of CK and /CK. The signal
transition is defined to occur when the signal level crossing VTT.
3. The timing reference level is VTT.
4. Output valid window is defined to be the period between two successive transition of data out or DQS
(read) signals. The signal transition is defined to occur when the signal level crossing VTT.
5. tHZ is defined as DOUT transition delay from Low-Z to High-Z at the end of read burst operation. The
timing reference is cross point of CK and /CK. This parameter is not referred to a specific DOUT voltage
level, but specify when the device output stops driving.
6. tLZ is defined as DOUT transition delay from High-Z to Low-Z at the beginning of read operation. This
parameter is not referred to a specific DOUT voltage level, but specify when the device output begins
driving.
7. Input valid windows is defined to be the period between two successive transition of data input or DQS
(write) signals. The signal transition is defined to occur when the signal level crossing VREF.
8. The timing reference level is VREF.
9. The transition from Low-Z to High-Z is defined to occur when the device output stops driving. A specific
reference voltage to judge this transition is not given.
10. tCK (max.) is determined by the lock range of the DLL. Beyond this lock range, the DLL operation is not
assured.
11. tCK = tCK (min.) when these parameters are measured. Otherwise, absolute minimum values of these
values are 10% of tCK.
12. VDD is assumed to be 2.5V ± 0.2V. VDD power supply variation per cycle expected to be less than
0.4V/400 cycle.
13. tDAL = (tWR/tCK)+(tRP/tCK)
For each of the terms above, if not already an integer, round to the next highest integer.
Example: For –7A Speed at CL = 2.5, tCK = 7.5ns, tWR = 15ns and tRP= 20ns,
tDAL = (15ns/7.5ns) + (20ns/7.5ns) = (2) + (3)
tDAL = 5 clocks
t
uc
od
Pr
Preliminary Data Sheet E0376E10 (Ver. 1.0)
13
EBD51RD8ABFA
Timing Parameter Measured in Clock Cycle for Registered DIMM
Number of clock cycle
tCK
6ns
Parameter
7.5ns
Symbol
min.
tWPD
4 + BL/2
3 + BL/2
tCK
tRPD
BL/2
BL/2
tCK
tWRD
2 + BL/2
2 + BL/2
tCK
tBSTW
—
2
tCK
(CL = 3.5)
tBSTW
3
3
tCK
Burst stop command to DQ High-Z
(CL = 3)
tBSTZ
—
—
3
3
tCK
(CL = 3.5)
tBSTZ
3.5
3.5
3.5
3.5
tCK
Read command to write command
delay (to output all data)
(CL = 3)
tRWD
—
—
2 + BL/2
tCK
(CL = 3.5)
tRWD
3 + BL/2
3 + BL/2
tCK
Pre-charge command to High-Z
(CL = 3)
tHZP
—
—
3
3
tCK
(CL = 3.5)
tHZP
3.5
3.5
3.5
3.5
tCK
Write command to data in latency
tWCD
2
2
2
2
tCK
Write recovery
tWR
2
1
tCK
tMRD
2
2
tCK
Write to pre-charge command delay
(same bank)
Read to pre-charge command delay
(same bank)
Write to read command delay (to input
all data)
Burst stop command to write command
delay
(CL = 3)
L
EO
—
Pr
Register set command to active or
register set command
max.
min.
max.
Unit
Self refresh exit to non-read command tSNR
12
10
tCK
Self refresh exit to read command
tSRD
200
200
tCK
tPDEN
1
tPDEX
1
Power down entry
Power down exit to command input
1
1
1
1
tCK
tCK
t
uc
od
Preliminary Data Sheet E0376E10 (Ver. 1.0)
14
EBD51RD8ABFA
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DMs and DQs are referred to the cross point of the DQS and
the VREF level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
EO
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See "Command operation".
A0 to A12 (input pins)
Row address (AX0 to AX12) is determined by the A0 to the A12 level at the cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via the A0 to the A9
and the A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This
column address becomes the starting address of a burst operation.
L
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
[Bank Select Signal Table]
Bank 0
BA0
BA1
L
L
H
Bank 2
L
Bank 3
H
Remark: H: VIH. L: VIL.
L
od
Bank 1
Pr
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). The memory array is divided into bank 0, bank 1, bank 2 and bank 3. (See
Bank Select Signal Table)
H
H
t
uc
CKE (input pin)
CKE controls power down and self-refresh. The power down and the self-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be kept for 1 CK cycle at least, that is, if CKE changes at the cross point of the CK rising edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS provide the read data strobes (as output) and the write data strobes (as input).
Preliminary Data Sheet E0376E10 (Ver. 1.0)
15
EBD51RD8ABFA
DM (input pins): DM is the reference signal of the data input mask function. DMs are sampled at the cross point of
DQS and VREF
VDD (power supply pins)
2.5V is applied. (VDD is for the internal circuit.)
VDDSPD (power supply pin)
2.5V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
EO
/RESET (input pin)
LVCMOS reset input. When /RESET is low, all registers are reset and all outputs are low.
Detailed Operation Part and Timing Waveforms
Refer to the EDD5104AB, EDD5108AB datasheet (E0237E). DIMM /CAS latency = component CL + 1 for registered
type.
L
t
uc
od
Pr
Preliminary Data Sheet E0376E10 (Ver. 1.0)
16
EBD51RD8ABFA
Physical Outline
Unit: mm
133.35 ± 0.15
128.95
4.80
4.00 min
(DATUM -A-)
(64.48)
2.30
Component area
(Front)
1
92
B
EO
64.77
A
1.27 ± 0.10
49.53
R 2.00
3.00 min
Detail A
Detail B
(DATUM -A-)
1.27 typ
0.20 ± 0.15
6.62
2.175
R 0.90
1.00 ± 0.05
3.80
Pr
2.50 ± 0.20
30.48 ± 0.15
Component area
(Back)
17.80
184
L
4.00 ± 0.10
93
10.00
2 – φ 2.50 ± 0.10
6.35
1.80 ± 0.10
od
Note: Tolerance on all dimensions ± 0.13 unless otherwise specified.
ECA-TS2-0058-01
t
uc
Preliminary Data Sheet E0376E10 (Ver. 1.0)
17
EBD51RD8ABFA
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
EO
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR MOS DEVICES
L
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
3
od
Pr
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to VDD or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
STATUS BEFORE INITIALIZATION OF MOS DEVICES
t
uc
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
Preliminary Data Sheet E0376E10 (Ver. 1.0)
18
EBD51RD8ABFA
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
EO
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
L
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
M01E0107
t
uc
od
Pr
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
Preliminary Data Sheet E0376E10 (Ver. 1.0)
19