AGILENT HPMX-2006

0.8 – 2.5 GHz
Upconverter/Amplifier
Technical Data
HPMX-2006
Features
Package Pin Configuration
• Mixer + Amplifier: 38 mA
Mixer only: 15 mA
Standby Mode: <40 µA
• Differential LO and High
Impedance IF Inputs
• -8.5 dBm Mixer and
+4.5␣ dBm Amplifier Output
Power at 1900 MHz
LO in
1
16
Mixer Vc
LO in
2
15
Gnd
Ref
3
14
Amp Vc
IF in
4
13
Amp RF Out
IF in
5
12
Amp Ve2
Amp Ve1
6
11
Amp 1 Ve2
Amp RF in
7
10
Gnd 1
enable
8
9
Mixer RF Out
Plastic SSOP-16
HP
200 MX
YY 6
WW
• JEDEC Standard SSOP-16
Surface Mount Package
Applications
• Cellular/ PCS Handsets and
Base Stations
ENABLE
AMP
OUTPUT
HPMX-2006
RF OUTPUT
5966-0455E
The HPMX-2006 upconverter/
amplifier IC is designed to meet
the needs of cellular and PCS
telephone and wireless LAN
applications.
The mixer is double balanced.
Both LO and IF inputs may be run
either single-endedly, or in
differential mode to reduce LO
leakage. LO inputs are matched
near 50 Ω; high impedance IF
inputs allow the mixer to be used
as a BPSK modulator. An integrated transformer on the mixer
RF port creates a single-ended,
matched to 50 Ω output at
1900␣ MHz, and also reduces
common mode noise.
Functional Block Diagram
LO
INPUT
Description
The IC consists of a Gilbert Cell
mixer optimized for upconversion
followed by a post-amplifier. The
mixer and amplifier are independent allowing the insertion of a
sideband filter between the two.
• Cordless Handsets and Base
Stations
• Wireless Data Terminals
IF INPUT
HPMX
2006
YYWW
• Wide Band Operation
RF Output: 800 -2500 MHz
IF Input: DC- 900 MHz
• 2.7- 5.5 V Operation
AMP INPUT
7-66
The amplifier features a singleended 50 Ω match on the input
port. The open collector output is
easily matched with a simple
2␣ element network, providing
flexible use and good power
added efficiency. The amplifier
can be disabled to allow use of the
mixer alone, reducing the current
draw to around 15 mA. The entire
IC can be put into a standby mode
reducing current consumption to
under 40 µA from a 3V source.
The HPMX-2006 is manufactured
using Hewlett-Packard’s 30 GHz
ISOSAT-II process which combines stepper lithography, self
alignment, ion implantation
techniques and gold metalization
to produce state-of-the-art RFICs.
The SSOP-16 package insures that
the IC occupies a minimal amount
of printed circuit board space.
HPMX-2006 Absolute Maximum Ratings[1]
Mixer
Symbol
VCC
Pdiss
Tj
TSTG
Parameter
Supply Voltage
Power Dissipation [2,3]
Single-Ended Input Mixer LO Voltage
Single-Ended Input Mixer IF Voltage
Amplifier Input RF Power
Junction Temperature
Storage Temperature
Units
V
mW
V
V
dBm
°C
°C
Min.
-0.2
-40
-40
Notes:
1. Operation of this device in excess of any of these parameters may cause
permanent damage.
2. TCASE = 25°C
3. Derate at 7 mW/°C for TCASE >82°C.
Amplifier
Max.
8
174
VC + 0.2
VC + 0.2
+150
+150
Min.
-0.2
-40
-40
Max.
8
274
+5
+150
+150
Thermal Resistance [2]:
θjc = 150°C/W
Recommended operating range of Vcc = 2.7 to 5.5 V, Ta = -40 to + 85°C
Standard Test Conditions
Unless otherwise stated, all test data was taken on packaged parts under the following conditions:
Vcc = +3.0 VDC, Zout = 50 Ω, ambient temperature Ta = 25°C
LO input: 1750 MHz, -3 dBm, single-ended
IF input: 150 MHz, 300 mVp-p, single-ended, terminated in a 50 Ω pull-up resistor (R1R2 in Figure 11)
Zout mixer = Zin amp = 50 Ω, Zout amp per Figure 11 ( (L=2.8 nH, C=2.2 pF)
See Figure 11 for test set-up schematic diagram.
HPMX-2006 Guaranteed Electrical Specifications
Standard test conditions apply unless otherwise noted.
Symbol
Parameters and Test Conditions
Units
IC mix
IC amp
IC mix
IC amp
Pout
Pout
Sleep Mode Current, Mixer
Sleep Mode Current, Amplifier
Mixer Transmit Current
Amplifier Transmit Current
SSB Output Power, Mixer Only
Output Power, Amplifier Only (-9.5 dBm in)
µA
µA
mA
mA
dBm
dBm
7-67
Min.
-11
+2.5
Typ.
15
23
-9
+3.8
Max.
20
20
18
28
HPMX-2006 Summary Characterization Information
Standard test conditions apply unless otherwise noted. Table 2 applies for 900 and 2500 MHz.
IF remains 150 MHz for all frequencies.
Performance vs. Frequency
900 MHz 1900 MHz 2500 MHz
Mixer RF Output Power, Vif = 300 mVpp
-8
-9
-12.5
Mixer RF Output Power, Vif = 30 mVpp
-28
-28
-32
Mixer RF Output Power at 1 dB Gain Compression
-7
-8.5
-12
Mixer Output Third Order Intercept Point
+3
+2
-4
Mixer LO Suppression
25
21
18.5
Mixer Phase Noise (4 MHz offset)
-143
-144
-146
Amplifier RF Output Power at Pin = -9.5 dBm
+9
+3.8
-2
Amplifier RF Output Power at 1 dB Gain Compression
+9
+4.5
+2.5
Amplifier Output Third Order Intercept Point
+19
+14
+12
Small Signal Amplifier Gain
21
14.5
9.5
Amplifier Noise Figure
8.5
9
9.5
Amplifier Input Return Loss
10.5
9.5
10.5
Amplifier Output Return Loss
9.5
6.5
12
Isolation, Mixer Output to Amplifier Input
32
30
30
Units
dBm
dBm
dBm
dBm
dBc
dBm/Hz
dBm
dBm
dBm
dB
dB
dB
dB
dB
HPMX-2006 Pin Description Table
No. Mnemonic
Description
1
LO
differential mi≤ xer LO
2
LObar
input
3
Ref
internal voltage reference
4
5
6
7
8
9
10
11
12
13
14
15
16
IF
IFbar
AmpVe1
AmpRFin
Enable
differential mixer IF
input
ground
amplifier input
chip (amp and mixer)
enable input
MxRFout mixer RF output
gnd1
ground
Amp1Ve2 ground
AmpVe2 ground
AmpRFout amplifier output
AmpVc
gnd
MxVc
amplifier Vcc input
ground
mixer Vcc input
Typical Signal
-3 dBm from single-ended,
50 Ω source
-6 dBm from single-ended,
50 W source
0 V or unconnected
-9.5 dBm from 50 Ω source
<0.4V disables
>2.5V enables IC
-9.0 dBm into 50 Ω load
0V
0 V or unconnected
0 V or unconnected
+3 dBm into 50 Ω load
3 V, 23 mA
0V
3 V, 15 mA
7-68
Notes
LO identical to LObar.
DC present (needs Cbl).
Supplies base bias for
AC-coupled IF.
IF identical to IFbar.
Must bias per Table 3.
Disconnect for mixer only
DC present (needs Cbl)
At DC ground
Disconnect for mixer only
Disconnect for mixer only
DC present (needs Cbl).
RF match required.
HPMX-2006 Typical Performance
Standard test conditions apply unless otherwise noted.
20
8
7
25
20
15
TA = +85°C
TA = +50°C
TA = +25°C
TA = +0°C
TA = –40°C
10
5
6
10
TA = +85°C
TA = +50°C
TA = +25°C
TA = +0°C
TA = – 40°C
5
0
POWER (dBm)
CURRENT (mA)
5
4
3
1
2
3
4
5
6
0
1
VOLTAGE (V)
2
3
4
P in = -9.5 dBm
5
0
-40
6
-20
VOLTAGE (V)
Figure 1. Mixer Device Current vs.
Device Voltage over Temperature.
-10
POWER (dBm)
30 mV
-30
LO lkg
60
80
0
100
P 1dB
-15
P 1dB
-15
-20
-25
-20
-25
30 mV
-30
30 mV
-30
300 mV
-10
300 mV
-10
-20
40
-5
5
300 mV
20
Figure 3. Amp. Output at Pin = 9.5 dBm
and at 1 dB Compression and Small
Signal Gain vs. Temperature.
0
P 1dB
0
TEMPERATURE (°C)
Figure 2. Mixer Device Current vs.
Device Voltage over Temperature.
0
8
1
0
0
P 1dB
2
POWER (dBm)
CURRENT (mA)
15
POWER (dBm)
16
Gss
GAIN (dB)
30
-40
LO lkg
-35
-35
LO lkg
-50
0
200
400
600
800
-40
-10
1000
-8
FREQUENCY (MHz)
-6
-4
-2
0
-40
-40
2
Figure 4. Mixer Output at Vif = 30 mVpp
and 300 mVpp, at P1dB, and LO
Suppression at Vif = 300 mVpp vs. IF
Frequency.
-20
0
20
40
60
80
100
TEMPERATURE (°C)
LO POWER (dBm)
Figure 5. Mixer Output at Vif = 30 mVpp
and 300 mVpp, at P1dB, and LO
Suppression at Vif = 300 mVpp vs. LO
Power.
Figure 6. Mixer Output at Vif = 30 mVpp
and 300 mVpp, at P1dB, and LO
Suppression at Vif = 300 mVpp vs.
Temperature.
0
POWER (dBm)
-20
-40
-60
-80
-100
1200
1400
1600
1800
2000
2200
2400
FREQUENCY (MHz)
Figure 7. Mixer Output Spectrum for 1 GHz Bandwidth, Centered at 1900 MHz.
Table 1. Typical Output Spurs for 0 – 6 GHz, Standard Test Conditions.
-10
-9
-8
-7
0
1 <-80 <-80 <-80
-6
-5
-4
-3
-2
-1
0
-
1
2
3
4
5
6
7
8
9
10
-38.9 -32.2 -44.1 -49.3 -67.2 -64.4 <-80 -73.6 <-80 <-80
-70 -78.5 -52.1 -58.8 -33.2 -38.9 -10.1 -31.7 -8.7 -38.3 -38.3 -59.0 -50.1 -39.2 -50.1 -50.2 <-60 <-60
2 <-80 <-60 <-60 <-60 <-60 <-60 -49.5 -50.0 -33.2 -39.1 -42.1 -50.4 -36.1 -48.8 -58.8 <-60 <-60 <-60 <-60 <-60 <-60
3 <-60 <-60 -38.4 -58.6 <-60 <-60 <-60 -52.7 <-60 <-60 -45.6 -37.1 -52
4 <-60 -45.5 -52.0 <-60
7-69
<-60 <-60
HPMX-2006 Mixer Port Impedances
GHz
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
Mag.
0.86
0.81
0.84
0.88
0.93
0.91
0.80
0.81
0.80
0.80
0.85
0.84
Deg.
-4
-3
-1
-3
-9
-15
-19
-23
-28
-30
-34
-39
GHz
0.50[1]
0.75
1.00
1.25
1.50
1.75
1.75[2]
2.00
2.25
2.50
2.75
3.00
Mag.
0.49
0.48
0.46
0.42
0.40
0.31
0.24
0.20
0.20
0.16
0.37
0.53
Deg.
-49
-63
-73
-82
-102
-114
-131
147
87
15
-131
168
Figure 8. Impedance of Mixer IF Port.
Figure 9. Impedance of Mixer LO Port.
Circuit of Figure 11 with 1 k Pull up
Resistors for the IFs and LO and RF Ports
Terminated in 50␣ Ω.
[1] Circuit of Figure 11 with IF and RF
Ports Terminated in 50␣ Ω.
[2] As above but LO RC combination in
Figure 11 changed from 12␣ Ω and
12␣ pF to 0␣ Ω and 2.7␣ pF (recommended
use for >1.75 GHz).
GHz
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
Mag.
0.60
0.55
0.52
0.36
0.18
0.17
0.20
0.24
0.28
0.34
0.37
Deg.
82
38
-5
-35
-44
-17
5
13
17
12
3
Figure 10. Impedance of Mixer RF
Port.
Circuit of Figure 11 with IF and LO Ports
Terminated in 50 Ω.
Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCC = 3 V, IC␣ =␣ 23 mA
Freq.
GHz
0.1
0.5
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
3.0
Mag.
0.51
0.37
0.37
0.37
0.39
0.39
0.40
0.41
0.40
0.40
0.38
0.37
0.36
0.33
0.33
0.31
0.31
0.30
0.32
0.32
0.32
S11
Ang.
149
144
120
113
104
96
88
81
75
67
62
61
58
62
62
64
70
75
79
84
94
dB
19.72
17.42
16.56
16.24
15.99
15.55
15.16
15.07
14.50
13.37
12.69
12.46
11.64
11.17
10.81
9.99
9.37
8.66
8.10
7.16
4.45
S21
Mag.
9.68
7.43
6.73
6.49
6.30
5.99
5.73
5.67
5.31
4.66
4.31
4.20
3.82
3.62
3.47
3.16
2.94
2.71
2.54
2.28
1.67
Ang.
-26
-49
-76
-85
-94
-101
-112
-120
-125
-134
-145
-148
-153
-161
-168
-175
178
173
170
166
134
7-70
dB
-37.08
-39.17
-43.10
-36.48
-40.00
-41.94
-47.96
-38.42
-40.92
-46.02
-33.98
-33.15
-32.77
-34.42
-34.89
-29.37
-30.75
-30.75
-33.15
-32.77
-28.40
S12
Mag.
0.014
0.011
0.007
0.015
0.010
0.008
0.004
0.012
0.009
0.005
0.020
0.022
0.023
0.019
0.018
0.034
0.029
0.029
0.022
0.023
0.038
S22
Ang.
-43
11
1
25
22
28
118
68
85
147
99
102
102
88
91
96
102
89
90
89
99
Mag.
0.91
0.78
0.80
0.83
0.84
0.84
0.84
0.85
0.87
0.84
0.85
0.84
0.84
0.79
0.77
0.75
0.72
0.69
0.67
0.65
0.49
Ang.
-3
-16
-22
-23
-26
-29
-32
-33
-36
-40
-40
-44
-49
-51
-54
-58
-62
-65
-70
-76
-103
HPMX-2006 Test Circuit
off board Cbl (>100 pF)
mixer LO input
LO in
Mixer Vc
LO in
gnd
C1 R3
12 pF 12
10 pF
1000 pF
Amp Vc
22 pF
50
off board Cbl (>100 pF)
50
Ref
2.2 pF
IF in
Amp RF out
IF in
Amp Ve2
Amp RF output
50
50 Ω IF source
3V
0.01 µF
printed
3V
off board Cbl
(>100 pF)
Amp1 Ve1
Amp1 Ve2
Amp RF in
amp RF input
off board Cbl (>100 pF)
standby input
enable
gnd
100 pF
Mixer RF output
(at DC ground)
Mixer RF out
Figure 11. Test Board Configuration.
HPMX-2006 Circuit Use
Cbl (>100 pF)
mixer LO input
LO in
Mixer Vc
LO in
gnd
C1 R3
10 pF
1000 pF
Ref
Amp Vc
C8
IF in
Rterm
22 pF
R1
C6
Amp RF output
Amp RF out
R2
IF in
L2
Amp Ve2
Vcc
C12(100 pF)
C6
IF source
(Rs = Rterm)
Amp1 Ve1
Amp1 Ve2
Amp RF in
gnd
C15
standby input
Vcc
0.01 µF
C14
enable
Mixer RF out
L3
Sideband
Filter
Figure 12. Schematic Diagram of Typical IC Use.
Table 2 lists values for components that change depending on
frequency of operation and AC or
DC coupling of the IF input. For
Table 2. Values for Variable Components (see next page for details).
2.5 GHz operation, a pre-amplifier
may be inserted between the
Mixer output and the Amp RF in.
Component
Function
Value
Condition
Value
Condition
C1, R3
LO AC coupling
12 pF + 12 Ω
F LO < 1.75 GHz
2.7 pF + 0 Ω
F LO > 1.75 GHz
C6
IF AC coupling
100 pF typ
AC coupled
short ckt
DC coupled
see also R1,R2
R1,R2
biases IF bases
50 Ω typ
AC coupled
open ckt
DC coupled
also sets load for
optimum IF[1]
C8, L2
amp out match
L3, C14
mixer output match
not used
1900 MHz operation
27 nH
1.3 pF[2]
900 MHz operation 900 MHz operation only
C15
amp input match
not used
1900 MHz operation
3.3 pF[2]
900 MHz operation 900 MHz operation only
Notes:
1. Noise Optimum at R1, R2 = 150 Ω
2. Optional
see Table 3 for values vs. frequency
Notes
de-Q with R = 12 Ω for
broadband operation
< 1.75 GHz
7-71
L2 set by position of C12
mixer LO input
Cbl
1000 pF
C8
LO in
Mixer Vc
LO in
gnd
0.01 µF
C1 R3
Amp RF out
Ref
Amp Vc
R1
IF in
IF in
Amp Ve2
Amp1 Ve1
gnd
gnd
L3
mixer RF output
Mixer RF out
Figure 13. Mixer Only Use (AC
Coupled Single-ended Use Shown).
Refer to Table 2 for Component
Values.
Cbl (>100 pF)
LO in
C1
Mixer RF out
standby
input
Sideband
Filter
L3
single-ended
mixer LO input
C12 (100 pF)
C14
enable
Amp1 Ve2
Amp RF in
enable
Amp1 Ve2
Amp RF in
C15
C6
standby input
Amp1 Ve1
Amp RF out
R2
mixer IF input
Amp
L2 RF output
Vcc
Amp Ve2
22 pF
10 pF
C6
Rterm
Vcc
R3
Figure 14. 900 MHz Use. Refer to
Table 2 for Component Values.
differential
mixer LO input
Cbl (>100 pF)
LO in
LO in
LO in
Cbl (>100 pF)
Figure 15. LO Connections for Singleended Operation.
10 pF
1000 pF
1000 pF
Ref
Ref
R1
Rterm
single-ended
mixer IF input,
C6
AC coupled
R2
IF in
balanced
mixer IF input,
AC coupled
IF in
R2
IF in
C6
Figure 17. IF Connections for AC
Coupled Single-ended Use.
balanced mixer IF input,
DC coupled. DC level of
IF source must be at
V base (Table 4).
R1
C6
IF in
Ref
IF in
IF @ V base
IF in
Figure 19. IF Connections for DC
Coupled Use.
Table 3. Amp Output Match
Component Values vs. Frequency.
1. LO in and LO bar in are identical; either
can be used as the single-ended LO
input with the other AC grounded.
2. R3 lowers the Q of the blocking
capacitor to remove possible resonances for broadband operation below
1.75 GHz.
Figure 16. LO Connections for
Balanced Operation.
10 pF
C6
Frequency, MHz L2, nH C8, pF
900
12.5
2.2
1500
5.4
2.2
1800
3.1
2.2
1900
2.8
2.2
2400
1.6
2.2
Figure 18. IF Connections for AC
Coupled Balanced Use.
Vcc, V
2.7
3.0
3.5
4.0
4.5
5.0
Vbase, V
1.5
1.5
1.5-1.75
1.5-2.0
1.5-2.25
1.5-2.5
Table 4. Vbase vs. Vcc. Vbase is the
required bias at the IF ports.
7-72
1. The IF pins require a bias voltage to
operate properly (see Table 4). When
the IF is AC coupled, this voltage is
supplied from the Ref pin via R1 and R2.
When the IF is DC coupled, the voltage
is externally generated and the Ref pin
is not used.
2. The base current is small, so to 1st
order the value of R1, R2 can be
selected to set the IF load impedance
(50 -200 ohm typ.)
3. IF in and IF bar in are identical; either
can be used as as the single-ended IF
input with the other AC grounded.
4. Rterm (optional) should be the same
value as the IF source impedance. It
improves LO rejection by balancing the
IF port and also de-Q’s C6.
1. For DC coupled operation, the IF input
must also supply Vbase to both IF in and
IF in bar, per the values in Table 4. Ref
pin is not used.
Part Number Ordering Information
Part Number
No. of Devices
HPMX-2006-TR1
HPMX-2006-BLK
1000
25
Container
Tape and Reel
Tape
Package Dimensions
JEDEC Standard SSOP-16 Package
4.445 (0.175) REF.
HPMX
2006
YYWW
SYMBOL
A
A1
b
C
D
E
e
E1
h
L
θ
E1
E
DIMENSIONS
MIN.
MAX.
1.372 (0.054)
1.575 (0.062)
0.127 (0.005)
0.254 (0.010)
0.203 (0.008)
0.305 (0.012)
0.178 (0.007)
0.254 (0.010)
4.801 (0.189)
5.004 (0.197)
5.867 (0.231)
6.121 (0.241)
0.635 BSC (0.025)
3.835 (0.151)
3.988 (0.157)
0.305 (0.012)
0.457 (0.018)
0.533 (0.021)
0.787 (0.031)
0
8
e TYP.
D
h x 45°
–°
A
b TYP.
L
C
A1
DIMENSIONS IN MILLIMETERS AND (INCHES).
7-73