0.8 – 2.5 GHz Upconverter/Amplifier Technical Data HPMX-2006 Features Package Pin Configuration • Mixer + Amplifier: 38 mA Mixer only: 15 mA Standby Mode: <40 µA • Differential LO and High Impedance IF Inputs • -8.5 dBm Mixer and +4.5␣ dBm Amplifier Output Power at 1900 MHz LO in 1 16 Mixer Vc LO in 2 15 Gnd Ref 3 14 Amp Vc IF in 4 13 Amp RF Out IF in 5 12 Amp Ve2 Amp Ve1 6 11 Amp 1 Ve2 Amp RF in 7 10 Gnd 1 enable 8 9 Mixer RF Out Plastic SSOP-16 HP 200 MX YY 6 WW • JEDEC Standard SSOP-16 Surface Mount Package Applications • Cellular/ PCS Handsets and Base Stations ENABLE AMP OUTPUT HPMX-2006 RF OUTPUT 5966-0455E The HPMX-2006 upconverter/ amplifier IC is designed to meet the needs of cellular and PCS telephone and wireless LAN applications. The mixer is double balanced. Both LO and IF inputs may be run either single-endedly, or in differential mode to reduce LO leakage. LO inputs are matched near 50 Ω; high impedance IF inputs allow the mixer to be used as a BPSK modulator. An integrated transformer on the mixer RF port creates a single-ended, matched to 50 Ω output at 1900␣ MHz, and also reduces common mode noise. Functional Block Diagram LO INPUT Description The IC consists of a Gilbert Cell mixer optimized for upconversion followed by a post-amplifier. The mixer and amplifier are independent allowing the insertion of a sideband filter between the two. • Cordless Handsets and Base Stations • Wireless Data Terminals IF INPUT HPMX 2006 YYWW • Wide Band Operation RF Output: 800 -2500 MHz IF Input: DC- 900 MHz • 2.7- 5.5 V Operation AMP INPUT 7-66 The amplifier features a singleended 50 Ω match on the input port. The open collector output is easily matched with a simple 2␣ element network, providing flexible use and good power added efficiency. The amplifier can be disabled to allow use of the mixer alone, reducing the current draw to around 15 mA. The entire IC can be put into a standby mode reducing current consumption to under 40 µA from a 3V source. The HPMX-2006 is manufactured using Hewlett-Packard’s 30 GHz ISOSAT-II process which combines stepper lithography, self alignment, ion implantation techniques and gold metalization to produce state-of-the-art RFICs. The SSOP-16 package insures that the IC occupies a minimal amount of printed circuit board space. HPMX-2006 Absolute Maximum Ratings[1] Mixer Symbol VCC Pdiss Tj TSTG Parameter Supply Voltage Power Dissipation [2,3] Single-Ended Input Mixer LO Voltage Single-Ended Input Mixer IF Voltage Amplifier Input RF Power Junction Temperature Storage Temperature Units V mW V V dBm °C °C Min. -0.2 -40 -40 Notes: 1. Operation of this device in excess of any of these parameters may cause permanent damage. 2. TCASE = 25°C 3. Derate at 7 mW/°C for TCASE >82°C. Amplifier Max. 8 174 VC + 0.2 VC + 0.2 +150 +150 Min. -0.2 -40 -40 Max. 8 274 +5 +150 +150 Thermal Resistance [2]: θjc = 150°C/W Recommended operating range of Vcc = 2.7 to 5.5 V, Ta = -40 to + 85°C Standard Test Conditions Unless otherwise stated, all test data was taken on packaged parts under the following conditions: Vcc = +3.0 VDC, Zout = 50 Ω, ambient temperature Ta = 25°C LO input: 1750 MHz, -3 dBm, single-ended IF input: 150 MHz, 300 mVp-p, single-ended, terminated in a 50 Ω pull-up resistor (R1R2 in Figure 11) Zout mixer = Zin amp = 50 Ω, Zout amp per Figure 11 ( (L=2.8 nH, C=2.2 pF) See Figure 11 for test set-up schematic diagram. HPMX-2006 Guaranteed Electrical Specifications Standard test conditions apply unless otherwise noted. Symbol Parameters and Test Conditions Units IC mix IC amp IC mix IC amp Pout Pout Sleep Mode Current, Mixer Sleep Mode Current, Amplifier Mixer Transmit Current Amplifier Transmit Current SSB Output Power, Mixer Only Output Power, Amplifier Only (-9.5 dBm in) µA µA mA mA dBm dBm 7-67 Min. -11 +2.5 Typ. 15 23 -9 +3.8 Max. 20 20 18 28 HPMX-2006 Summary Characterization Information Standard test conditions apply unless otherwise noted. Table 2 applies for 900 and 2500 MHz. IF remains 150 MHz for all frequencies. Performance vs. Frequency 900 MHz 1900 MHz 2500 MHz Mixer RF Output Power, Vif = 300 mVpp -8 -9 -12.5 Mixer RF Output Power, Vif = 30 mVpp -28 -28 -32 Mixer RF Output Power at 1 dB Gain Compression -7 -8.5 -12 Mixer Output Third Order Intercept Point +3 +2 -4 Mixer LO Suppression 25 21 18.5 Mixer Phase Noise (4 MHz offset) -143 -144 -146 Amplifier RF Output Power at Pin = -9.5 dBm +9 +3.8 -2 Amplifier RF Output Power at 1 dB Gain Compression +9 +4.5 +2.5 Amplifier Output Third Order Intercept Point +19 +14 +12 Small Signal Amplifier Gain 21 14.5 9.5 Amplifier Noise Figure 8.5 9 9.5 Amplifier Input Return Loss 10.5 9.5 10.5 Amplifier Output Return Loss 9.5 6.5 12 Isolation, Mixer Output to Amplifier Input 32 30 30 Units dBm dBm dBm dBm dBc dBm/Hz dBm dBm dBm dB dB dB dB dB HPMX-2006 Pin Description Table No. Mnemonic Description 1 LO differential mi≤ xer LO 2 LObar input 3 Ref internal voltage reference 4 5 6 7 8 9 10 11 12 13 14 15 16 IF IFbar AmpVe1 AmpRFin Enable differential mixer IF input ground amplifier input chip (amp and mixer) enable input MxRFout mixer RF output gnd1 ground Amp1Ve2 ground AmpVe2 ground AmpRFout amplifier output AmpVc gnd MxVc amplifier Vcc input ground mixer Vcc input Typical Signal -3 dBm from single-ended, 50 Ω source -6 dBm from single-ended, 50 W source 0 V or unconnected -9.5 dBm from 50 Ω source <0.4V disables >2.5V enables IC -9.0 dBm into 50 Ω load 0V 0 V or unconnected 0 V or unconnected +3 dBm into 50 Ω load 3 V, 23 mA 0V 3 V, 15 mA 7-68 Notes LO identical to LObar. DC present (needs Cbl). Supplies base bias for AC-coupled IF. IF identical to IFbar. Must bias per Table 3. Disconnect for mixer only DC present (needs Cbl) At DC ground Disconnect for mixer only Disconnect for mixer only DC present (needs Cbl). RF match required. HPMX-2006 Typical Performance Standard test conditions apply unless otherwise noted. 20 8 7 25 20 15 TA = +85°C TA = +50°C TA = +25°C TA = +0°C TA = –40°C 10 5 6 10 TA = +85°C TA = +50°C TA = +25°C TA = +0°C TA = – 40°C 5 0 POWER (dBm) CURRENT (mA) 5 4 3 1 2 3 4 5 6 0 1 VOLTAGE (V) 2 3 4 P in = -9.5 dBm 5 0 -40 6 -20 VOLTAGE (V) Figure 1. Mixer Device Current vs. Device Voltage over Temperature. -10 POWER (dBm) 30 mV -30 LO lkg 60 80 0 100 P 1dB -15 P 1dB -15 -20 -25 -20 -25 30 mV -30 30 mV -30 300 mV -10 300 mV -10 -20 40 -5 5 300 mV 20 Figure 3. Amp. Output at Pin = 9.5 dBm and at 1 dB Compression and Small Signal Gain vs. Temperature. 0 P 1dB 0 TEMPERATURE (°C) Figure 2. Mixer Device Current vs. Device Voltage over Temperature. 0 8 1 0 0 P 1dB 2 POWER (dBm) CURRENT (mA) 15 POWER (dBm) 16 Gss GAIN (dB) 30 -40 LO lkg -35 -35 LO lkg -50 0 200 400 600 800 -40 -10 1000 -8 FREQUENCY (MHz) -6 -4 -2 0 -40 -40 2 Figure 4. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. IF Frequency. -20 0 20 40 60 80 100 TEMPERATURE (°C) LO POWER (dBm) Figure 5. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. LO Power. Figure 6. Mixer Output at Vif = 30 mVpp and 300 mVpp, at P1dB, and LO Suppression at Vif = 300 mVpp vs. Temperature. 0 POWER (dBm) -20 -40 -60 -80 -100 1200 1400 1600 1800 2000 2200 2400 FREQUENCY (MHz) Figure 7. Mixer Output Spectrum for 1 GHz Bandwidth, Centered at 1900 MHz. Table 1. Typical Output Spurs for 0 – 6 GHz, Standard Test Conditions. -10 -9 -8 -7 0 1 <-80 <-80 <-80 -6 -5 -4 -3 -2 -1 0 - 1 2 3 4 5 6 7 8 9 10 -38.9 -32.2 -44.1 -49.3 -67.2 -64.4 <-80 -73.6 <-80 <-80 -70 -78.5 -52.1 -58.8 -33.2 -38.9 -10.1 -31.7 -8.7 -38.3 -38.3 -59.0 -50.1 -39.2 -50.1 -50.2 <-60 <-60 2 <-80 <-60 <-60 <-60 <-60 <-60 -49.5 -50.0 -33.2 -39.1 -42.1 -50.4 -36.1 -48.8 -58.8 <-60 <-60 <-60 <-60 <-60 <-60 3 <-60 <-60 -38.4 -58.6 <-60 <-60 <-60 -52.7 <-60 <-60 -45.6 -37.1 -52 4 <-60 -45.5 -52.0 <-60 7-69 <-60 <-60 HPMX-2006 Mixer Port Impedances GHz 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 Mag. 0.86 0.81 0.84 0.88 0.93 0.91 0.80 0.81 0.80 0.80 0.85 0.84 Deg. -4 -3 -1 -3 -9 -15 -19 -23 -28 -30 -34 -39 GHz 0.50[1] 0.75 1.00 1.25 1.50 1.75 1.75[2] 2.00 2.25 2.50 2.75 3.00 Mag. 0.49 0.48 0.46 0.42 0.40 0.31 0.24 0.20 0.20 0.16 0.37 0.53 Deg. -49 -63 -73 -82 -102 -114 -131 147 87 15 -131 168 Figure 8. Impedance of Mixer IF Port. Figure 9. Impedance of Mixer LO Port. Circuit of Figure 11 with 1 k Pull up Resistors for the IFs and LO and RF Ports Terminated in 50␣ Ω. [1] Circuit of Figure 11 with IF and RF Ports Terminated in 50␣ Ω. [2] As above but LO RC combination in Figure 11 changed from 12␣ Ω and 12␣ pF to 0␣ Ω and 2.7␣ pF (recommended use for >1.75 GHz). GHz 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Mag. 0.60 0.55 0.52 0.36 0.18 0.17 0.20 0.24 0.28 0.34 0.37 Deg. 82 38 -5 -35 -44 -17 5 13 17 12 3 Figure 10. Impedance of Mixer RF Port. Circuit of Figure 11 with IF and LO Ports Terminated in 50 Ω. Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCC = 3 V, IC␣ =␣ 23 mA Freq. GHz 0.1 0.5 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 3.0 Mag. 0.51 0.37 0.37 0.37 0.39 0.39 0.40 0.41 0.40 0.40 0.38 0.37 0.36 0.33 0.33 0.31 0.31 0.30 0.32 0.32 0.32 S11 Ang. 149 144 120 113 104 96 88 81 75 67 62 61 58 62 62 64 70 75 79 84 94 dB 19.72 17.42 16.56 16.24 15.99 15.55 15.16 15.07 14.50 13.37 12.69 12.46 11.64 11.17 10.81 9.99 9.37 8.66 8.10 7.16 4.45 S21 Mag. 9.68 7.43 6.73 6.49 6.30 5.99 5.73 5.67 5.31 4.66 4.31 4.20 3.82 3.62 3.47 3.16 2.94 2.71 2.54 2.28 1.67 Ang. -26 -49 -76 -85 -94 -101 -112 -120 -125 -134 -145 -148 -153 -161 -168 -175 178 173 170 166 134 7-70 dB -37.08 -39.17 -43.10 -36.48 -40.00 -41.94 -47.96 -38.42 -40.92 -46.02 -33.98 -33.15 -32.77 -34.42 -34.89 -29.37 -30.75 -30.75 -33.15 -32.77 -28.40 S12 Mag. 0.014 0.011 0.007 0.015 0.010 0.008 0.004 0.012 0.009 0.005 0.020 0.022 0.023 0.019 0.018 0.034 0.029 0.029 0.022 0.023 0.038 S22 Ang. -43 11 1 25 22 28 118 68 85 147 99 102 102 88 91 96 102 89 90 89 99 Mag. 0.91 0.78 0.80 0.83 0.84 0.84 0.84 0.85 0.87 0.84 0.85 0.84 0.84 0.79 0.77 0.75 0.72 0.69 0.67 0.65 0.49 Ang. -3 -16 -22 -23 -26 -29 -32 -33 -36 -40 -40 -44 -49 -51 -54 -58 -62 -65 -70 -76 -103 HPMX-2006 Test Circuit off board Cbl (>100 pF) mixer LO input LO in Mixer Vc LO in gnd C1 R3 12 pF 12 10 pF 1000 pF Amp Vc 22 pF 50 off board Cbl (>100 pF) 50 Ref 2.2 pF IF in Amp RF out IF in Amp Ve2 Amp RF output 50 50 Ω IF source 3V 0.01 µF printed 3V off board Cbl (>100 pF) Amp1 Ve1 Amp1 Ve2 Amp RF in amp RF input off board Cbl (>100 pF) standby input enable gnd 100 pF Mixer RF output (at DC ground) Mixer RF out Figure 11. Test Board Configuration. HPMX-2006 Circuit Use Cbl (>100 pF) mixer LO input LO in Mixer Vc LO in gnd C1 R3 10 pF 1000 pF Ref Amp Vc C8 IF in Rterm 22 pF R1 C6 Amp RF output Amp RF out R2 IF in L2 Amp Ve2 Vcc C12(100 pF) C6 IF source (Rs = Rterm) Amp1 Ve1 Amp1 Ve2 Amp RF in gnd C15 standby input Vcc 0.01 µF C14 enable Mixer RF out L3 Sideband Filter Figure 12. Schematic Diagram of Typical IC Use. Table 2 lists values for components that change depending on frequency of operation and AC or DC coupling of the IF input. For Table 2. Values for Variable Components (see next page for details). 2.5 GHz operation, a pre-amplifier may be inserted between the Mixer output and the Amp RF in. Component Function Value Condition Value Condition C1, R3 LO AC coupling 12 pF + 12 Ω F LO < 1.75 GHz 2.7 pF + 0 Ω F LO > 1.75 GHz C6 IF AC coupling 100 pF typ AC coupled short ckt DC coupled see also R1,R2 R1,R2 biases IF bases 50 Ω typ AC coupled open ckt DC coupled also sets load for optimum IF[1] C8, L2 amp out match L3, C14 mixer output match not used 1900 MHz operation 27 nH 1.3 pF[2] 900 MHz operation 900 MHz operation only C15 amp input match not used 1900 MHz operation 3.3 pF[2] 900 MHz operation 900 MHz operation only Notes: 1. Noise Optimum at R1, R2 = 150 Ω 2. Optional see Table 3 for values vs. frequency Notes de-Q with R = 12 Ω for broadband operation < 1.75 GHz 7-71 L2 set by position of C12 mixer LO input Cbl 1000 pF C8 LO in Mixer Vc LO in gnd 0.01 µF C1 R3 Amp RF out Ref Amp Vc R1 IF in IF in Amp Ve2 Amp1 Ve1 gnd gnd L3 mixer RF output Mixer RF out Figure 13. Mixer Only Use (AC Coupled Single-ended Use Shown). Refer to Table 2 for Component Values. Cbl (>100 pF) LO in C1 Mixer RF out standby input Sideband Filter L3 single-ended mixer LO input C12 (100 pF) C14 enable Amp1 Ve2 Amp RF in enable Amp1 Ve2 Amp RF in C15 C6 standby input Amp1 Ve1 Amp RF out R2 mixer IF input Amp L2 RF output Vcc Amp Ve2 22 pF 10 pF C6 Rterm Vcc R3 Figure 14. 900 MHz Use. Refer to Table 2 for Component Values. differential mixer LO input Cbl (>100 pF) LO in LO in LO in Cbl (>100 pF) Figure 15. LO Connections for Singleended Operation. 10 pF 1000 pF 1000 pF Ref Ref R1 Rterm single-ended mixer IF input, C6 AC coupled R2 IF in balanced mixer IF input, AC coupled IF in R2 IF in C6 Figure 17. IF Connections for AC Coupled Single-ended Use. balanced mixer IF input, DC coupled. DC level of IF source must be at V base (Table 4). R1 C6 IF in Ref IF in IF @ V base IF in Figure 19. IF Connections for DC Coupled Use. Table 3. Amp Output Match Component Values vs. Frequency. 1. LO in and LO bar in are identical; either can be used as the single-ended LO input with the other AC grounded. 2. R3 lowers the Q of the blocking capacitor to remove possible resonances for broadband operation below 1.75 GHz. Figure 16. LO Connections for Balanced Operation. 10 pF C6 Frequency, MHz L2, nH C8, pF 900 12.5 2.2 1500 5.4 2.2 1800 3.1 2.2 1900 2.8 2.2 2400 1.6 2.2 Figure 18. IF Connections for AC Coupled Balanced Use. Vcc, V 2.7 3.0 3.5 4.0 4.5 5.0 Vbase, V 1.5 1.5 1.5-1.75 1.5-2.0 1.5-2.25 1.5-2.5 Table 4. Vbase vs. Vcc. Vbase is the required bias at the IF ports. 7-72 1. The IF pins require a bias voltage to operate properly (see Table 4). When the IF is AC coupled, this voltage is supplied from the Ref pin via R1 and R2. When the IF is DC coupled, the voltage is externally generated and the Ref pin is not used. 2. The base current is small, so to 1st order the value of R1, R2 can be selected to set the IF load impedance (50 -200 ohm typ.) 3. IF in and IF bar in are identical; either can be used as as the single-ended IF input with the other AC grounded. 4. Rterm (optional) should be the same value as the IF source impedance. It improves LO rejection by balancing the IF port and also de-Q’s C6. 1. For DC coupled operation, the IF input must also supply Vbase to both IF in and IF in bar, per the values in Table 4. Ref pin is not used. Part Number Ordering Information Part Number No. of Devices HPMX-2006-TR1 HPMX-2006-BLK 1000 25 Container Tape and Reel Tape Package Dimensions JEDEC Standard SSOP-16 Package 4.445 (0.175) REF. HPMX 2006 YYWW SYMBOL A A1 b C D E e E1 h L θ E1 E DIMENSIONS MIN. MAX. 1.372 (0.054) 1.575 (0.062) 0.127 (0.005) 0.254 (0.010) 0.203 (0.008) 0.305 (0.012) 0.178 (0.007) 0.254 (0.010) 4.801 (0.189) 5.004 (0.197) 5.867 (0.231) 6.121 (0.241) 0.635 BSC (0.025) 3.835 (0.151) 3.988 (0.157) 0.305 (0.012) 0.457 (0.018) 0.533 (0.021) 0.787 (0.031) 0 8 e TYP. D h x 45° –° A b TYP. L C A1 DIMENSIONS IN MILLIMETERS AND (INCHES). 7-73