HT16514 Dot Character VFD Controller & Driver Features · Logic voltage: 2.7V~5.5V · Display contents: - 16 columns by 2 (1) rows + 32 (16) cursors - 20 columns by 2 (1) rows + 40 (20) cursors - 24 columns by 2 (1) rows + 48 (24) cursors · High voltage: 60V (max.) · Provides a driving segment for cursor display (48 units) · Supports display output (80-segment & 24-grid) · Alphanumeric and symbolic display through built-in · Parallel data input/output (switchable 4 bit or 8 bit) or ROM serial data input/output · 80´8-bit display RAM · Built-in oscillation circuit · On chip ROM (5´8 dot), in total 248 characters, · 144-pin LQFP package plus 8 user-defined characters · Customized ROM acceptable Applications · Consumer products panel function control · Other similar application panel function control · Industrial measuring instrument panel function control General Description The HT16514 has a character generator ROM which stores up to 248´5´8 dot characters. The HT16514 is a Vacuum Fluorescent Display, VFD controller/driver with dot matrix VFD display. It consists of 80 segment output lines and 24 grid output lines. It can display up to 16C´2L, 20C´2L, 24C´2L. The HT16514 has serial/parallel interface. This VFD controller/driver is ideal as an MCU peripheral device. Ordering Information Part Number Package Information HT16514-001 144-pin plastic LQFP (Fine pitch) (20´20), standard ROM (ROM code: 001) HT16514-002 144-pin plastic LQFP (Fine pitch) (20´20), standard ROM (ROM code: 002) Rev. 1.00 1 October 4, 2006 HT16514 Block Diagram T E S T O T E S T I R L 2 R L 1 D L S D S 1 D S 0 M P U C G R A M ( 8 x 5 x 8 B its ) C S 7 R S , S T (W R ) 8 I/O In te rfa c e E (R D ), S C K R E S E T 8 8 In s tr u c tio n R e g is te r ( IR ) 8 In s tr u c tio n D e c o rd e r 7 7 A d d re s s C o u n te r R E S E T C ir c u it S 1 S 8 0 8 D D R A M ( 8 0 x 8 B its ) G 1 G r id D r iv e r G 2 4 7 7 O S C I O S C O S e g m e n t D r iv e r C r u s o r B lin k C ir c u it 4 4 C G R O M ( 2 4 8 x 5 x 8 B its ) 8 D a ta R e g is te r (D R ) 7 D B 0 ~ D B 3 8 0 8 S I, S O D B 4 ~ D B 7 5 5 IM R , W 8 0 - B it O u tp u t L a tc h & R e g is te r P a r a lle l to S e r ia l D a ta C o n v e rte r 2 4 2 4 T im in g G e n e ra to r O S C X O U T 2 4 - B it S h ift R e g is te r 4 V D D L G N D V H S D O , S L K , C L , L E P G N D Pin Assignment S 3 5 S 3 6 S 3 7 S 3 8 S 3 9 S 4 0 S 4 1 S 4 2 S 4 3 S 4 4 S 4 5 S 4 6 S 4 7 S 4 8 S 4 9 S 5 0 S 5 1 S 5 2 S 5 3 S 5 4 S 5 5 S 5 6 S 5 7 S 5 8 S 5 9 S 6 0 S 6 1 S 6 2 S 6 3 S 6 4 S 6 5 S 6 6 S 6 7 S 6 8 S 6 9 S 7 0 N C S 7 1 S 7 2 S 7 3 S 7 4 S 7 5 S 7 6 S 7 7 S 7 8 S 7 9 S 8 0 G 2 4 G 2 3 G 2 2 G 2 1 G 2 0 G 1 9 G 1 8 G 1 7 G 1 6 G 1 5 G 1 4 G 1 3 G 1 2 G 1 1 G 1 0 G 9 G 8 G 7 G 6 G 5 G 4 G 3 G 2 G 1 N C 7 3 7 2 1 0 8 1 0 9 H T 1 6 5 1 4 1 4 4 L Q F P -A 1 4 4 1 3 6 3 7 N C S 3 S 3 S 3 S 3 S 3 S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 9 S 8 S 7 S 6 S 5 S 4 S 3 S 2 S 1 N C 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 V H P G N L G N T E S C L K S D O L E C L R L 2 R L 1 C S M P U IM D B 7 D B 6 D B 5 D B 4 D B 3 D B 2 D B 1 D B 0 S I, S E (R R S , R , W D S 0 D S 1 D L S T E S R E S O S C O S C X O U V D D P G N V H D D T O O D ), S C K S T (W R ) T I E T I O T D Rev. 1.00 2 October 4, 2006 HT16514 Pin Description Pin Name I/O Description Logic System (Microprocessor Interface) I When parallel mode is selected, this pin is utilized to select the register, either Instruction Register or Data Register. 0: IR (Instruction Register) 1: DR (Data Register) When serial mode is selected, this pin performs strobe input. Data can be set as input when this signal goes 0. During the next rising edge of this signal, command processing is performed. E (RD), SCK I When M68 parallel mode is selected (E), this pin is write enable. Writes data at the falling edge. When i80 parallel mode is selected (RD), this pin is read enable. When this pin is ²Low², data is output to the data Bus. When Serial mode is selected, this pin is shift clock input, data will be written at the rising edge. CS I When this pin is ²Low², the device is active. OSCI OSCO I O Connected to an external resistor to generate an oscillation frequency. XOUT O Oscillator signal output pin I When M68 parallel mode is selected (R, W), this pin is data mode select pin (0: write, 1: read). When i80 parallel mode is selected (WR), this pin is a write enable pin. Data will be written at rising edge signal. When serial mode is selected, connect this pin to ²Hi² or ²Low². Read or Write is chosen by instruction. RS, ST R, W (WR) When serial mode is selected, this pin is used as I/O pin. When parallel mode is selected, this pin needs to be connected to ²Hi² or ²Low². SI, SO I/O DB0~DB7 When parallel mode is selected, these pins are used as I/O pins. I/O Data are stored sequentially, the first bit which is sent to the HT16514 is MSB. If 4 bits mode is selected, only DB4~DB7 are used. RESET I Initialize all the internal register and commands. All segments and digits are fixed PGND. DS0, DS1 I Set the duty ratio. Duty ratio will determine the number of grid. The relationship between duty ratio and these pins is shown in Table 1-1. IM I Select interface mode (parallel mode or serial mode) 0: Serial mode 1: Parallel mode In parallel mode, instruction will determine the length of word. MPU I Select interface mode (i80 type CPU mode or M68 type CPU mode) 0: i80 type CPU mode 1: M68 type CPU mode DLS I Select number of display line when power ON reset or resetting. 0: Select 1 line (N=0), ²N² is display line select flag in Function set command. 1: Select 2 line (N=1) RL1, RL2 I Set segment outputs pin assignment. The selection table is listed as Table 1-2 & Table 1-7 TESTI I 0 or open: Normal operation mode 1: Test mode TESTO O For IC testing only, leave this pin open. Logic System ( To External Extension Driver) SDO O Serial data output for extension digit driver. SLK O Shift clock pulse for extension digit driver. Active during rising edge Rev. 1.00 3 October 4, 2006 HT16514 Pin Name I/O Description CL O Clear signal for extension digit driver, active low. The digit data stored in the latch register of the extension driver are output when this signal is ²Hi², if this signal is ²Low², extension driver outputs are ²Low². LE O Latch enable signal for extension digit driver. G1~G24 O High-voltage output, grid output pins. S1~S80 O High-voltage output, segment output pins. VDD ¾ Pins for logic circuit LGND ¾ LGND is ground pin for logic circuit VH ¾ Power supply pins for VFD driver circuit PGND ¾ PGND is ground pin for VFD driver circuit Output Pins Power System Table 1-1. Duty Ratio Setting Note: DS0 DS1 Duty Ratio 0 0 1/16 (# of grid = 16) 0 1 1/24 (# of grid = 24) 1 0 1/20 (# of grid = 20) 1 1 1/40 (# of grid = 40)* * When setting to 1/40 duty mode, use the external extension grid driver. Table 1-2. Segment Setting: 2 Line Display (N=1) Rev. 1.00 RL1 RL2 Table No. 0 0 Table 1-3 0 1 Table 1-4 1 0 Table 1-5 1 1 Table 1-6 4 October 4, 2006 HT16514 Table 1-3. The Number Of Segment Pins 1 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S35 109 NC 2 PGND 38 S1 74 S36 110 S71 3 VDD 39 S2 75 S37 111 S72 4 XOUT 40 S3 76 S38 112 S73 5 OSCO 41 S4 77 S39 113 S74 6 OSCI 42 S5 78 S40 114 S75 7 RESET 43 S6 79 S41 115 S76 8 TESTI 44 S7 80 S42 116 S77 9 DLS 45 S8 81 S43 117 S78 10 DS1 46 S9 82 S44 118 S79 11 DS0 47 S10 83 S45 119 S80 12 R, W (WR) 48 S11 84 S46 120 G24 13 RS, ST 49 S12 85 S47 121 G23 14 E (RD), SCK 50 S13 86 S48 122 G22 15 SI, SO 51 S14 87 S49 123 G21 16 DB0 52 S15 88 S50 124 G20 17 DB1 53 S16 89 S51 125 G19 18 DB2 54 S17 90 S52 126 G18 19 DB3 55 S18 91 S53 127 G17 20 DB4 56 S19 92 S54 128 G16 21 DB5 57 S20 93 S55 129 G15 22 DB6 58 S21 94 S56 130 G14 23 DB7 59 S22 95 S57 131 G13 24 IM 60 S23 96 S58 132 G12 25 MPU 61 S24 97 S59 133 G11 26 CS 62 S25 98 S60 134 G10 27 RL1 63 S26 99 S61 135 G9 28 RL2 64 S27 100 S62 136 G8 29 CL 65 S28 101 S63 137 G7 30 LE 66 S29 102 S64 138 G6 31 SDO 67 S30 103 S65 139 G5 32 SLK 68 S31 104 S66 140 G4 33 TESTO 69 S32 105 S67 141 G3 34 LGND 70 S33 106 S68 142 G2 35 PGND 71 S34 107 S69 143 G1 36 VH 72 NC 108 S70 144 NC Rev. 1.00 5 October 4, 2006 HT16514 Table 1-4. The Number Of Segment Pins 2 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S6 109 NC 2 PGND 38 S40 74 S5 110 S71 3 VDD 39 S39 75 S4 111 S72 4 XOUT 40 S38 76 S3 112 S73 5 OSC 41 S37 77 S2 113 S74 6 OSCI 42 S36 78 S1 114 S75 7 RESET 43 S35 79 S41 115 S76 8 TESTI 44 S34 80 S42 116 S77 9 DLS 45 S33 81 S43 117 S78 10 DS1 46 S32 82 S44 118 S79 11 DS0 47 S31 83 S45 119 S80 12 R, W (WR) 48 S30 84 S46 120 G24 13 RS, ST 49 S29 85 S47 121 G23 14 E (RD), SCK 50 S28 86 S48 122 G22 15 SI, SO 51 S27 87 S49 123 G21 16 DB0 52 S26 88 S50 124 G20 17 DB1 53 S25 89 S51 125 G19 18 DB2 54 S24 90 S52 126 G18 19 DB3 55 S23 91 S53 127 G17 20 DB4 56 S22 92 S54 128 G16 21 DB5 57 S21 93 S55 129 G15 22 DB6 58 S20 94 S56 130 G14 23 DB7 59 S19 95 S57 131 G13 24 IM 60 S18 96 S58 132 G12 25 MPU 61 S17 97 S59 133 G11 26 CS 62 S16 98 S60 134 G10 27 RL1 63 S15 99 S61 135 G9 28 RL2 64 S14 100 S62 136 G8 29 CL 65 S13 101 S63 137 G7 30 LE 66 S12 102 S64 138 G6 31 SDO 67 S11 103 S65 139 G5 32 SLK 68 S10 104 S66 140 G4 33 TESTO 69 S9 105 S67 141 G3 34 LGND 70 S8 106 S68 142 G2 35 PGND 71 S7 107 S69 143 G1 36 VH 72 NC 108 S70 144 NC Rev. 1.00 6 October 4, 2006 HT16514 Table 1-5. The Number Of Segment Pins 3 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S75 109 NC 2 PGND 38 S41 74 S76 110 S10 3 VDD 39 S42 75 S77 111 S9 4 XOUT 40 S43 76 S78 112 S8 5 OSCO 41 S44 77 S79 113 S7 6 OSCI 42 S45 78 S80 114 S6 7 RESET 43 S46 79 S40 115 S5 8 TESTI 44 S47 80 S39 116 S4 9 DLS 45 S48 81 S38 117 S3 10 DS1 46 S49 82 S37 118 S2 11 DS0 47 S50 83 S36 119 S1 12 R, W (WR) 48 S51 84 S35 120 G24 13 RS, ST 49 S52 85 S34 121 G23 14 E (RD), SCK 50 S53 86 S33 122 G22 15 SI, SO 51 S54 87 S32 123 G21 16 DB0 52 S55 88 S31 124 G20 17 DB1 53 S56 89 S30 125 G19 18 DB2 54 S57 90 S29 126 G18 19 DB3 55 S58 91 S28 127 G17 20 DB4 56 S59 92 S27 128 G16 21 DB5 57 S60 93 S26 129 G15 22 DB6 58 S61 94 S25 130 G14 23 DB7 59 S62 95 S24 131 G13 24 IM 60 S63 96 S23 132 G12 25 MPU 61 S64 97 S22 133 G11 26 CS 62 S65 98 S21 134 G10 27 RL1 63 S66 99 S20 135 G9 28 RL2 64 S67 100 S19 136 G8 29 CL 65 S68 101 S18 137 G7 30 LE 66 S69 102 S17 138 G6 31 SDO 67 S70 103 S16 139 G5 32 SLK 68 S71 104 S15 140 G4 33 TESTO 69 S72 105 S14 141 G3 34 LGND 70 S73 106 S13 142 G2 35 PGND 71 S74 107 S12 143 G1 36 VH 72 NC 108 S11 144 NC Rev. 1.00 7 October 4, 2006 HT16514 Table 1-6. The Number Of Segment Pins 4 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S46 109 NC 2 PGND 38 S80 74 S45 110 S10 3 VDD 39 S79 75 S44 111 S9 4 XOUT 40 S78 76 S43 112 S8 5 OSCO 41 S77 77 S42 113 S7 6 OSCI 42 S76 78 S41 114 S6 7 RESET 43 S75 79 S40 115 S5 8 TESTI 44 S74 80 S39 116 S4 9 DLS 45 S73 81 S38 117 S3 10 DS1 46 S72 82 S37 118 S2 11 DS0 47 S71 83 S36 119 S1 12 R, W (WR) 48 S70 84 S35 120 G24 13 RS, ST 49 S69 85 S34 121 G23 14 E (RD), SCK 50 S68 86 S33 122 G22 15 SI, SO 51 S67 87 S32 123 G21 16 DB0 52 S66 88 S31 124 G20 17 DB1 53 S65 89 S30 125 G19 18 DB2 54 S64 90 S29 126 G18 19 DB3 55 S63 91 S28 127 G17 20 DB4 56 S62 92 S27 128 G16 21 DB5 57 S61 93 S26 129 G15 22 DB6 58 S60 94 S25 130 G14 23 DB7 59 S59 95 S24 131 G13 24 IM 60 S58 96 S23 132 G12 25 MPU 61 S57 97 S22 133 G11 26 CS 62 S56 98 S21 134 G10 27 RL1 63 S55 99 S20 135 G9 28 RL2 64 S54 100 S19 136 G8 29 CL 65 S53 101 S18 137 G7 30 LE 66 S52 102 S17 138 G6 31 SDO 67 S51 103 S16 139 G5 32 SLK 68 S50 104 S15 140 G4 33 TESTO 69 S49 105 S14 141 G3 34 LGND 70 S48 106 S13 142 G2 35 PGND 71 S47 107 S12 143 G1 36 VH 72 NC 108 S11 144 NC Rev. 1.00 8 October 4, 2006 HT16514 Table 1-7. Segment Setting: 1 Line Display (N=0) RL1 RL2 Table No. Don¢t care 0 Table 1-8 Don¢t care 1 Table 1-9 Table 1-8. The Number Of Segment Pins 5 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S35 109 NC 2 PGND 38 S1 74 S36 110 Don¢t use 3 VDD 39 S2 75 S37 111 4 XOUT 40 S3 76 S38 112 5 OSCO 41 S4 77 S39 113 6 OSCI 42 S5 78 S40 114 7 RESET 43 S6 79 Don¢t use 115 8 TESTI 44 S7 80 116 9 DLS 45 S8 81 117 10 DS1 46 S9 82 118 11 DS0 47 S10 83 119 12 R, W (WR) 48 S11 84 120 G24 13 RS, ST 49 S12 85 121 G23 14 E (RD), SCK 50 S13 86 122 G22 15 SI, SO 51 S14 87 123 G21 16 DB0 52 S15 88 124 G20 17 DB1 53 S16 89 125 G19 18 DB2 54 S17 90 126 G18 19 DB3 55 S18 91 127 G17 20 DB4 56 S19 92 128 G16 21 DB5 57 S20 93 129 G15 22 DB6 58 S21 94 130 G14 23 DB7 59 S22 95 131 G13 24 IM 60 S23 96 132 G12 25 MPU 61 S24 97 133 G11 26 CS 62 S25 98 134 G10 27 RL1 63 S26 99 135 G9 28 RL2 64 S27 100 136 G8 29 CL 65 S28 101 137 G7 30 LE 66 S29 102 138 G6 31 SDO 67 S30 103 139 G5 32 SLK 68 S31 104 140 G4 33 TESTO 69 S32 105 141 G3 34 LGND 70 S33 106 142 G2 35 PGND 71 S34 107 143 G1 36 VH 72 NC 108 144 NC Rev. 1.00 9 October 4, 2006 HT16514 Table 1-9. The Number Of Segment Pins 6 No. Name No. Name No. Name No. Name 1 VH 37 NC 73 S6 109 NC 2 PGND 38 S40 74 S5 110 Don¢t use 3 VDD 39 S39 75 S4 111 4 XOUT 40 S38 76 S3 112 5 OSCO 41 S37 77 S2 113 6 OSCI 42 S36 78 S1 114 Don¢t use 115 7 RESET 43 S35 79 8 TESTI 44 S34 80 116 9 DLS 45 S33 81 117 10 DS1 46 S32 82 118 11 DS0 47 S31 83 119 12 R, W (WR) 48 S30 84 120 G24 13 RS, ST 49 S29 85 121 G23 14 E (RD), SCK 50 S28 86 122 G22 15 SI, SO 51 S27 87 123 G21 16 DB0 52 S26 88 124 G20 17 DB1 53 S25 89 125 G19 18 DB2 54 S24 90 126 G18 19 DB3 55 S23 91 127 G17 20 DB4 56 S22 92 128 G16 21 DB5 57 S21 93 129 G15 22 DB6 58 S20 94 130 G14 23 DB7 59 S19 95 131 G13 24 IM 60 S18 96 132 G12 25 MPU 61 S17 97 133 G11 26 CS 62 S16 98 134 G10 27 RL1 63 S15 99 135 G9 28 RL2 64 S14 100 136 G8 29 CL 65 S13 101 137 G7 30 LE 66 S12 102 138 G6 31 SDO 67 S11 103 139 G5 32 SLK 68 S10 104 140 G4 33 TESTO 69 S9 105 141 G3 34 LGND 70 S8 106 142 G2 35 PGND 71 S7 107 143 G1 36 VH 72 NC 108 144 NC Rev. 1.00 10 October 4, 2006 HT16514 HT16514 Connect to VFD as Below Figure Rev. 1.00 11 October 4, 2006 HT16514 Approximate Internal Connections (M P U ) (R S , S T ) (C S ) (D L S ) (D S 0 ) (D S 1 ) (IM ) (R L 1 ) (R L 2 ) (T E S T I) V S L K , E (R D ), R E S E T , (R , W /W R ) V S D O , S L K C L , L E , T E S T O D D V D D L G N D D D L G N D L G N D S 1 ~ S 8 0 , G 1 ~ G 2 4 O S C O , O S C I, X O U T D 0 ~ D 7 , S I, S O V V H D D X O U T O S C O P G N D O S C I Absolute Maximum Ratings Logic Supply Voltage .................VSS-0.3V to VSS+6.0V Driver Supply Voltage .................VSS-0.3V to VSS+80V Input Voltage..............................VSS-0.3V to VDD+0.3V Output Voltage...........................VSS-0.3V to VDD+0.3V Driver Output Voltage............................VSS-0.3V to VH Driver Output Current .........................................±50mA Driver Output Current (Total) ...................500 (Est.) mA Storage Temperature ............................-55°C to 125°C Operating Temperature ...........................-40°C to 85°C Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability. Rev. 1.00 12 October 4, 2006 HT16514 D.C. Characteristics Symbol VH=50V, VSS=VLGND=VPGND=0V, Ta=-40°C~85°C Test Conditions Parameter VDD Conditions Min. Typ. Max. Unit VDD Logic Supply Voltage ¾ ¾ 2.7 5 5.5 V VH VFD Supply Voltage ¾ ¾ 20 ¾ 50 V IDD Operating Current 2.7V~5.5V No load, CPU Non-access ¾ ¾ 1000 mA IH Operating Current 2.7V~5.5V No load ¾ ¾ 500 mA ILOH Hi-level Leakage Current 2.7V~5.5V ¾ ¾ 1 mA ILOL Hi-level Leakage Current 2.7V~5.5V Logic VIN/OUT=VSS ¾ ¾ -1 mA IIH Hi-level Input Current 2.7V~5.5V TEST, VIN=VDD 5 ¾ 500 mA IP Pull-up MOS Current 2.7V~5.5V DB0~DB7, SI, SO 5 125 280 mA VIH1 ²H² Input Voltage 1 ¾ Except E, SCK, RESET, R, W (WR) 0.7VDD ¾ VDD V VIL1 ²L² Input Voltage 1 ¾ Except E,SCK, RESET, R, W (WR) 0 ¾ 0.3VDD V VIH2 ²H² Input Voltage 2 ¾ E, SCK, RESET, R, W (WR) 0.8VDD ¾ VDD V VIL2 ²L² Input Voltage 2 ¾ E, SCK, RESET, R ,W (WR) 0 ¾ 0.2VDD V VOH1 Hi-level Output Voltage DB0~DB7, SI,SO, SDO, SLK, VDD-0.5 LE, CL, IOL1= -0.1mA ¾ VDD V VOL1 Low-level Output Voltage 2.7V~5.5V DB0~DB7, SI,SO, SDO, SLK, LE, CL, IOL1= 0.1mA 0 ¾ VSS+0.5 V S1~S80, IOH2= -0.5mA 48 ¾ ¾ V 2.7V~5.5V VOH21 VOH22 2.7V~5.5V S1~S80, IOH2= -1mA Hi-level Output Voltage G1~G24, IOH2= -15mA VOH2G VOL2 Logic except DB0~DB7, SI, SO, VIN/OUT=VDD Low-level Output Voltage 2.7V~5.5V S1~S80, G1~G24, IOL2= 1mA A.C. Characteristics Symbol 46 ¾ ¾ V 45 ¾ ¾ V ¾ ¾ 5 V VH=50V, VSS=VLGND=VPGND=0V, Ta=-40°C~85°C Test Conditions Parameter VDD Conditions Min. Typ. Max. Unit fOSC Oscillation Frequency 2.7V~5.5V ROSC=56kW 392 560 728 kHz fC Oscillation Frequency 2.7V~5.5V OSCI external clock 350 560 750 kHz 2.7V~5.5V CL= 50pF, S1~S80 ¾ ¾ 2.5 ms 2.7V~5.5V CL=50pF, G1~G24 ¾ ¾ 0.25 ms ¾ ¾ 2 ms tR1 tR2 tF Rise Time Fall Time 2.7V~5.5V CL= 50pF, S1~S80, G1~G24 Switching Timing tF tR 1 , tR 9 0 % 2 9 0 % S n , G n 1 0 % Rev. 1.00 1 0 % 13 October 4, 2006 HT16514 Timing Conditions 1 for M68-Type for Parallel Mode, Write Symbol Parameter Ta=25°C Test Conditions VDD Conditions 4.5V~5.5V tCYCLE Enable Cycle Time PWEH Enable Pulse Width High PWEL Enable Pulse Width Low tAS ((RS), (R, W), (CS)) ¾ (E) Setup Time 4.5V~5.5V tAH ((RS), (R, W)) ¾ (E) Hold Time 4.5V~5.5V tCH (CS) ¾ (E) Hold Time tDS Write Data Setup Time tDH Write Data Hold Time tWRE Reset Pulse Width 2.7V~4.5V E ® E 4.5V~5.5V Min. Typ. Max. Unit 500 ¾ ¾ ns 1000 ¾ ¾ ns 230 ¾ ¾ ns 450 ¾ ¾ ns E 2.7V~4.5V 4.5V~5.5V 230 ¾ ¾ ns 450 ¾ ¾ ns 20 ¾ ¾ ns 60 ¾ ¾ ns 10 ¾ ¾ ns 20 ¾ ¾ ns E 2.7V~4.5V 2.7V~4.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V RS, R, W, CS ® E E¯ ® RS, R, W E¯ ® CS Data ® E E¯ ® Data 4.5V~5.5V ¾ 2.7V~4.5V 20 ¾ ¾ ns 40 ¾ ¾ ns 80 ¾ ¾ ns 195 ¾ ¾ ns 10 ¾ ¾ ns 10 ¾ ¾ ns 500 ¾ ¾ ns 500 ¾ ¾ ns M68-Type for Parallel Mode, Read Symbol Parameter Ta=25°C Test Conditions Min. Typ. Max. Unit 500 ¾ ¾ ns 1000 ¾ ¾ ns 230 ¾ ¾ ns 450 ¾ ¾ ns 230 ¾ ¾ ns 2.7V~4.5V 450 ¾ ¾ ns 20 ¾ ¾ ns 60 ¾ ¾ ns 10 ¾ ¾ ns 30 ¾ ¾ ns 20 ¾ ¾ ns 40 ¾ ¾ ns ¾ ¾ 160 ns ¾ ¾ 360 ns 5 ¾ ¾ ns 5 ¾ ¾ ns VDD 4.5V~5.5V tCYCLE Enable Cycle Time PWEH Enable Pulse Width High PWEL Enable Pulse Width Low 2.7V~4.5V E ® E 4.5V~5.5V E 2.7V~4.5V 4.5V~5.5V E tAS ((RS), (R, W), (CS)) ¾ (E) Setup Time 4.5V~5.5V tAH ((RS), (R, W)) ¾ (E) Hold Time 4.5V~5.5V tCH (CS) ¾ (E) Hold Time 2.7V~4.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V tDD Read Data Setup Time tDHr Read Data Hold Time Rev. 1.00 Conditions 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V RS, R, W, CS ® E E¯ ® RS, R, W E¯ ® CS Data ® E E¯ ® Data 14 October 4, 2006 HT16514 Parallel Mode (M68 Input) R S R , W tA tA S H C S P W P W E H E L E tD tD S D B 0 H R V a lid D a ta D B 7 tC Y C E Parallel Mode (M68 Output) R S R , W tA tA S H C S P W P W E H E L E tD tD D D B 0 V a lid D a ta D B 7 tC Note: H Y C E The input signal rising time and falling time (tf, tr) is specified at 15ns or less. All timing is specified using 20% and 80% of VDD as the reference. PWEH is specified as the overlap between CS being L and E. Rev. 1.00 15 October 4, 2006 HT16514 Timing Conditions 2 for i80-Type, Parallel Mode Symbol tRH8 Parameter Ta=25°C Test Conditions Conditions VDD 4.5V~5.5V RS Hold Time 4.5V~5.5V CS Hold Time 4.5V~5.5V RS, CS Setup Time 4.5V~5.5V ¾ System Cycle Time 2.7V~4.5V tCCLW tCCLR tCCHW tCCHR tDS8 Control ²L² Pulse Width (WR) Control ²L² Pulse Width (RD) Control ²H² Pulse Width (WR) Control ²H² Pulse Width (RD) 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V Data Setup Time 20 ¾ ¾ ns 20 ¾ ¾ ns 40 ¾ ¾ ns 10 ¾ ¾ ns 30 ¾ ¾ ns 200 ¾ ¾ ns 600 ¾ ¾ ns 30 ¾ ¾ ns 50 ¾ ¾ ns 70 ¾ ¾ ns 200 ¾ ¾ ns 100 ¾ ¾ ns 200 ¾ ¾ ns 100 ¾ ¾ ns 200 ¾ ¾ ns 30 ¾ ¾ ns 60 ¾ ¾ ns 10 ¾ ¾ ns 20 ¾ ¾ ns ¾ ¾ 70 ns ¾ ¾ 140 ns 5 ¾ ¾ ns 5 ¾ ¾ ns 500 ¾ ¾ ns 500 ¾ ¾ ns DB0~DB7 4.5V~5.5V Data Hold Time DB0~DB7 4.5V~5.5V RD Access Time DB0~DB7, CL=100pF 4.5V~5.5V Output Disable Time DB0~DB7, CL=100pF 4.5V~5.5V ¾ Reset Pulse Width 2.7V~4.5V Rev. 1.00 ns RD 2.7V~4.5V tWRE ¾ WR 2.7V~4.5V tOH8 ¾ RD 2.7V~4.5V tACC8 10 WR 2.7V~4.5V tDH8 Unit RS, CS 2.7V~4.5V tCYC8 Max. CS 2.7V~4.5V tRS8 Typ. RS 2.7V~4.5V tCH8 Min. 16 October 4, 2006 HT16514 Parallel Mode (i80) R S tr tf tR H 8 C S tR tC S 8 tC C L R , tC Y C 8 C L W W R , R D tC tf tD tD S 8 C H R , tC C H W H 8 D B 0 ~ D B 7 ( W r ite ) tA tO C C 8 H 8 D B 0 ~ D B 7 (R e a d ) Note: The input signal rising time and falling time (tf, tr) is specified at 15ns or less. All timing is specified using 20% and 80% of VDD as the reference. tCCLW and tCCLR are specified as the overlap between CS as L and WR and RD at the L level. Timing Conditions 3 for Serial Mode Symbol Parameter Ta=25°C Test Conditions Conditions VDD 4.5V~5.5V Min. Typ. Max. Unit 500 ¾ ¾ ns tCYK Shift Clock Cycle 1000 ¾ ¾ ns tWHK High-level Shift Clock Pulse 4.5V~5.5V SCK Width 2.7V~4.5V 200 ¾ ¾ ns 300 ¾ ¾ ns tWLK Low-level Shift Clock Pulse 4.5V~5.5V SCK Width 2.7V~4.5V 200 ¾ ¾ ns tHSTBK tDS tDK tDKSTB tWSTB tWAIT tODO Rev. 1.00 Shift Clock Hold Time Data Setup Time Data Hold Time ST Hold Time ST Pulse Width Wait Time Output Data Delay Time 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V SCK STD¯ ® SCK¯ Data ® SCK SCK ® Data SCK ® ST 4.5V~5.5V ¾ 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 4.5V~5.5V 2.7V~4.5V 8th CLK ® 1st CLK¯ ST¯ ® Data 17 300 ¾ ¾ ns 100 ¾ ¾ ns 150 ¾ ¾ ns 100 ¾ ¾ ns 150 ¾ ¾ ns 100 ¾ ¾ ns 150 ¾ ¾ ns 500 ¾ ¾ ns 750 ¾ ¾ ns 500 ¾ ¾ ns 750 ¾ ¾ ns 1 ¾ ¾ ms 1 ¾ ¾ ms ¾ ¾ 150 ns ¾ ¾ 300 ns October 4, 2006 HT16514 Symbol Test Conditions Parameter Conditions VDD tODH Output Data Hold Time tWRE Reset Pulse Width 4.5V~5.5V 2.7V~4.5V SCK ® Data 4.5V~5.5V ¾ 2.7V~4.5V Min. Typ. Max. Unit 5 ¾ ¾ ns 5 ¾ ¾ ns 500 ¾ ¾ ns 500 ¾ ¾ ns Serial Mode (Input) tW S T B tW S T B S T tH tC S T B K tW tD Y K H K tW S tD K S T B L K S C K tD H S I Serial Mode (Output) S T tH tC S T B K tW tD Y K tW H K K S T B L K S C K tO tO D O D H S O AC Measurement Point V IH V In p u t V O H V O u tp u t IL O L R e s e t R E S E T tW Rev. 1.00 R E 18 October 4, 2006 HT16514 Timing Condition for interface: M68, i80 and Serial Power On Reset Symbol Test Conditions Parameter Conditions Min. Typ. Max. Unit tRES Resetting Time 2.7V~4.5V ¾ 100 ¾ ¾ ms ttrDD VDD Rising Time 2.7V~4.5V ¾ 1 ¾ ¾ ms tOFF VDD OFF Width 2.7V~4.5V ¾ 1 ¾ ¾ ms Min. Typ. Max. Unit t trD V VDD Ta=25°C D D D tR E S 4 .5 V 0 .2 V tO F F In te rn a l R e s e t T im e RESET Timing Symbol Test Conditions Parameter VDD Conditions tRSTD Delay Time After Reset 5V ¾ 100 ¾ ¾ ms tOFF VDD Off Time 5V ¾ 1 ¾ ¾ ns tRST RST/Pulse Width Low 5V ¾ 500 ¾ ¾ ns V C C 4 .5 V 0 .2 V tO tR F F S T D R S , S T B Power Supply Connection Sequence · Connect the PGND and LGND externally to have an V o lta g e equal potential voltage · To avoid faulty connection, turn on the driver power supply (VH) after turning on the logic power supply (VDD). Then turn off the logic power supply (VDD) after turning off the driver power supply (VH). V V · If the power connection sequence recommended by Holtek is not followed, there¢s a possibility that the internal logic transistors may be damaged. Rev. 1.00 H D D T im e 19 October 4, 2006 HT16514 Functional Description CPU Interface HT16514 have 4 or 8-bit parallel interface or serial interface. These modes are selected by IM pin. · IM=²0²: Serial mode · IM=²1²: Parallel mode CPU Interface Table IM CS RS, ST E (RD), SCK R, W (WR) MPU SI, SO DB0~DB7 0 CS ST SCK Note Note SI, SO Note 1 CS RS E (RD) R, W (WR) MPU Note DB0~DB7 Note: Keep this pin Hi or Lo. Registers (IR, DR) The HT16514 has two 8-bit registers, namely, an instruction register (IR) and a data register (DR). The IR register stores instruction code such as display clear and cursor shift. It also contains address information for display data RAM (DDRAM) and character generator RAM (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written into or read from the DDRAM or CGRAM. Data written into the DR from the MPU is automatically written into the DDRAM or CGRAM by internal operation. The DR is also used for data storage when reading data from the DDRAM or CGRAM. When the address information is written into the IR, data is read and then stored into the DR from the DDRAM or CGRAM by internal operation. Data transfer between the MPU is completed when the MPU reads the DR. After the read, data in DDRAM or CGRAM at the next address is sent to the DR for the next read from the MPU. These two registers can be selected by the register selector (RS) signal, (Refer to CPU Interface table). Registers (IR, DR) Table Common M68 i80 RS R, W RD WR 0 0 1 0 Write IR data during internal operation (display clear, etc.) 0 1 0 1 Read data to be busy flag (DB7) and address counter (DB6~DB0) 1 0 1 0 Write DR data (DR®DDRAM, CGRAM) 1 1 0 1 Read DR data (DDRAM, CGRAM®DR) Register Selection Busy Flag (Read BF Flag) Busy flag data (DB7) is always output as ²0². Address Counter (AC) The Address counter (AC) assigns address to both DDRAM and CGRAM. When an instruction address is written into the IR, the address information is sent from the IR to the AC. Selection of either DDRAM or CGRAM is also determined concurrently by the instruction. After writing into (or read from) the DDRAM or CGRAM, the AC is automatically incremented by 1 (or decremented by 1). The cursor position are then output to DB0~DB6 when RS=0 and R, W=1 (Refer to Registers (IR, DR) Table). Rev. 1.00 20 October 4, 2006 HT16514 Display Data RAM (DDRAM) The Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80´8 bits or 80 characters. The area in the DDRAM that is not used for display can be used as general data RAM. Refer to DDRAM address table for the relationships between DDRAM address and positions on the VFD. The DDRAM address (ADD) is set in the address counter (AC) as hexadecimal. DDRAM Address Table High Order Bits AC6 AC5 Low Order Bits AC4 AC3 AC2 Hexadecimal AC1 AC0 Hexadecimal Example: DDRAM address ²3FH² 0 1 1 1 1 3 1 1 F · 1-line display (N=0) Display Position (Digit) 1 2 3 4 5 6 79 80 DDRAM Address 00 01 02 03 04 05 4E 4F (Hexadecimal) When there are fewer than 80 display characters, the display begins at the head position. For example, if using only one HT16514, 24 characters are displayed. When display shift operation is performed, the DDRAMaddress shifts as shown in the following table. Example: 1-line by 24-character Display Table Display Position (Digit) 1 2 3 4 5 6 23 24 DDRAM Address 00 01 02 03 04 05 16 17 For Shift Left 01 02 03 04 05 06 17 18 For Shift Right 4F 00 01 02 03 04 15 16 (Hexadecimal) Rev. 1.00 21 October 4, 2006 HT16514 · 2-line display (N=1) Display Position (Digit) 1 2 3 4 5 6 39 40 DDRAM Address 00 01 02 03 04 05 26 27 (Hexadecimal) 40 41 42 43 44 45 66 67 When the number of display character is less than 40´2 lines, the 2 lines are displayed from the head. The first line end address and the second line start address are not consecutive. For example, if using only one HT16514, 24 characters ´ 2 lines are displayed. When display shift operation is performed, the DDRAM address shifts as shown in the following table. Example: 2-line by 24-character Display Table Display Position (Digit) 1 2 3 4 5 6 23 24 DDRAM Address 00 01 02 03 04 05 16 17 (Hexadecimal) 40 41 42 43 44 45 56 57 01 02 03 04 05 06 17 18 41 42 43 44 45 46 57 58 27 00 01 02 03 04 15 16 67 40 41 42 43 44 55 56 For Shift Left For Shift Right · 40 Characters´2 line display The DDRAM stores the character code of each character being displayed on the VFD. Valid DDRAMaddresses are 00H to 27H and 40H to 67H. The DDRAMnot used for display characters can be used as general purpose RAM. The tables below show the relationship between the DDRAMaddress and the character position on the VFD display shift as shown in the following table. Example: 2-line by 40-character Display Table Display Position (Digit) 1 2 3 4 23 24 25 39 40 DDRAM Address 00 01 02 03 16 17 18 26 27 (Hexadecimal) 40 41 42 43 56 57 58 66 67 00 01 02 03 17 18 19 27 00 41 42 43 44 57 58 59 57 40 27 00 01 02 15 16 17 25 26 67 40 41 42 55 56 57 65 66 For Shift Left For Shift Right HT16514 Display Rev. 1.00 22 Extension Driver Display October 4, 2006 HT16514 · Character Generator ROM (CGROM) ¨ CGROM for generating character patterns of 5´8 dots from 8-bit character codes, generates 248 type of character patterns. ¨ The character codes are shown on the following page. ¨ Character codes 00H to 0FH are allocated to the CGRAM Character Code Table 1 (ROM Code: 001) Rev. 1.00 23 October 4, 2006 HT16514 Character Code Table 2 (ROM Code: 002) Rev. 1.00 24 October 4, 2006 HT16514 Character Generator RAM (CGRAM) The CGRAM stores the pixel information (1=pixel on, 0=pixel off) for the eight user-define 5´8 characters. Valid CGRAM addresses are 00H to 3FH. CGRAM not used to defined characters can be used as general purpose RAM. Character codes 00H~07H (or 08H~0FH) are assigned to the user-defined characters (see section 5.0 character font tables). The table below shows the relationship between the character codes, CGRAM addresses, and CGRAM data for each user-defined character. Relationship between CGRAM address and character code (DDRAM) and 5´7 (with cursor) dot character patterns (CGRAM) C h a ra c te r C o d e (R A M H ig h O r d e r B it O r d e r B it A 5 A 4 A 3 H ig h O r d e r B it A d d re s s C G R A M A 2 A 1 A 0 L o w O r d e r B it D a ta D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 H ig h O r d e r B it L o w O r d e r B it 0 0 0 0 X 0 0 0 0 0 0 0 0 0 X X X 1 0 0 0 1 0 0 0 0 X 0 0 0 0 0 0 0 1 0 X X X 1 0 0 0 1 X X 0 0 0 0 X 0 0 0 X X X X 1 1 1 0 0 0 0 0 0 X X X 1 1 0 0 1 0 1 C h a ra c te r P a tte rn (1 ) 1 1 0 0 0 1 0 0 0 1 0 0 1 X X 0 1 1 0 1 X X 1 0 1 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 X X 0 0 1 0 0 0 0 0 0 0 0 1 X X 1 1 0 0 0 0 0 0 0 0 0 0 0 0 X X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 1 0 0 1 0 C u r s o r P o s itio n 0 0 0 0 0 X 0 0 1 0 0 1 0 0 0 X X X 1 1 1 1 1 0 0 0 0 X 0 0 1 0 0 1 0 1 0 X X X 0 0 1 0 0 1 X X X 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 X C h a ra c te r P a tte rn (2 ) 0 0 X X 0 1 0 X X 0 X X 0 1 1 0 1 0 X 1 0 1 1 0 0 1 0 0 X 0 0 0 0 1 0 0 1 0 0 X X 0 0 1 0 0 1 0 0 X 0 0 0 0 X 0 0 0 0 1 0 0 X X 1 1 0 0 0 1 0 0 X 0 0 0 0 1 X X X 1 0 0 0 0 1 0 0 X 0 0 0 0 1 0 0 1 0 0 X 0 0 0 0 0 0 0 C u r s o r P o s itio n 0 0 0 0 0 X 1 1 1 1 1 1 0 0 0 X X X 1 0 0 0 1 0 0 0 0 X 1 1 1 1 1 1 0 1 0 X X X 1 0 1 0 0 0 0 0 0 0 0 1 X 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 X X X X 1 0 0 0 1 0 0 1 1 X 0 0 X X 1 0 C h a ra c te r P a tte rn (8 ) 0 0 1 X X 0 0 1 1 1 X 1 0 1 1 X X 0 0 1 1 1 1 X 1 1 0 0 1 X X 1 1 0 1 1 1 0 0 0 0 1 X 0 0 0 0 1 1 X X X 1 0 0 1 1 1 1 1 1 X 1 1 1 0 0 0 0 1 X 0 0 0 0 Note: L o w C G R A M D a ta ) D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0 1 1 0 0 1 1 1 C u r s o r P o s itio n ²X² means don¢t care Character code bits 0~2 correspond to CGRAM address bits 3~5 (3 bits: 8 types) CGRAM address bits 0~2 designate character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position at 0 as the cursor display. If the 8th line data is 1, 1 bit will light up the 8th line regardless of the cursor presence. Character pattern row position corresponds to CGRAM data bits 0~4 (bit 4 being at the left). CGRAM character patterns are selected when character code bits 4~7 are all 0. However, since character code bit 3 has no effect, the N display example above can be selected by either character code 00H or 08H. 1 for CGRAM data corresponds to display selection and 0 to no selection. Timing Generation Circuit Timing generation circuit generates timing signals for the operation of internal circuit such as DDRAM, CGRAM and CGROM. The RAM reads the timing for display and the internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area. Rev. 1.00 25 October 4, 2006 HT16514 VFD Driver Circuit VFD driver circuit consists of 24 grid signal drivers and 80 segment signal drivers. When the character font and number of digits are selected by hardware (DS0, DS1) at power on, the required grid signal drivers automatically output drive waveforms, while the other grid signal driver continue to output non-selection waveforms. Sending serial data is latched when the display data character pattern corresponds to the last address of the display data RAM (DDRAM). Since serial data is latched when the display data character pattern corresponds to the starting address enters the internal shift register, the HT16514 drives from the head display. Cursor/Blink Control Circuit Cursor/blink control circuit generates the cursor or character blinking. The cursor or the blinking will appear with the digit located at the display data RAM (DDRAM) address set in the address counter (AC). For example, when the address counter is 08H, the cursor position is displayed at DDRAM address 08H. Cursor/Blink Control Table 1-line Display 2-line Display Note: The cursor or blinking appears when the address counter (AC) selects the character generator RAM (CGRAM). However, the cursor and blinking become meaningless when the cursor or blinking is displayed in the meaningless position when AC is a CGRAM address. Interface With CPU Mode · Parallel Data Transfer M68 (IM=1, MPU=1) This IC can interface (data transfer) with the CPU in 4 or 8 bits in M68 interface. However, the internal registers consist of 8 bits. Using the DB4 to DB7 twice must perform data transfer in 4 bits. When using 4-bit parallel data transfer, DB0 to DB3 pins remain Hi or Low. The transfer order is initially from the higher 4 bits (D4 to D7) then followed by the lower 4 bits (D0 to D3). BF checks are performed before transferring the higher 4 bits. BF checks are not required before transferring the lower 4 bits. Rev. 1.00 26 October 4, 2006 HT16514 ¨ 4-bit data transfer (M68) R S R , W E D B 7 IR 7 IR 3 IR 7 IR 3 B F = "0 " IR 3 D 7 D 3 D B 6 IR 6 IR 2 IR 6 IR 2 IR 6 IR 2 D 6 D 2 D B 5 IR 5 IR 1 IR 5 IR 1 IR 5 IR 1 D 5 D 1 D B 4 IR 4 IR 0 IR 4 IR 0 IR 4 IR 0 D 4 D 0 W r ite In s tr u c tio n ¨ W r ite In s tr u c tio n R e a d In s tr u c tio n W r ite D a ta 8-bit data transfer (M68) R S R , W E D B 7 IR 7 IR 7 B F = "0 " D 7 D B 6 IR 6 IR 6 IR 6 D 6 D B 0 IR 0 IR 0 IR 0 D 0 W r ite In s tr u c tio n W r ite In s tr u c tio n R e a d In s tr u c tio n W r ite D a ta Rev. 1.00 27 October 4, 2006 HT16514 Parallel mode for i80 (IM=1, MPU=0) When setting ²IM=1, MPU=0², i80 is selected. In the HT16514, each time data is sent from the MPU, a type of pipeline process between LSIs is performed through the bus holder attached to internal data bus. There is a certain restriction in the read sequence of this display data RAM. Please be advised that data of the specified address is not generated by the read instruction issued immediately after the address setup. This data is generated in data read for the second time. Thus, a dummy read is required whenever the address setup or write cycle operation is selected. This relationship is shown in the following figure. W r itin g M P U W R D A T A In te r n a l T im in g N N + 1 N + 2 N + 3 B U S H o ld e r L a tc h N N + 1 N + 2 N + 3 W r ite S ig n a l R e a d in g M P U W R R D D A T A N n N n + 1 In te r n a l T im in g A d d re s s P re s e t R e a d S ig n a l C o lu m n A d d re s s P re s e t N B U S H o ld e r N A d d re s s S e t # n Rev. 1.00 In c re m e n t N + 1 n D u m m y R e a d 28 N + 2 n + 1 D a ta R e a d # n n + 2 D a ta R e a d # n + 1 October 4, 2006 HT16514 Serial Mode In the synchronous serial interface mode, instructions and data are sent between the host and the module using 8-bit bytes. Two bytes are required per read/write cycle and are transmitted MSB first. The start byte contains 5 high bits, the Read/Write (R/W) control bit, the Register Select (RS) control bit, and a low bit. The subsequent byte contains the instruction/data bits. The R/W bit determines whether the cycle is a read (high) or a write (low) cycle. The RS bit is used to identify the second byte as an instruction (low) or data (high). This mode uses the strobe (ST) control signal, Serial Clock (SCK) input, and Serial I/O (SI/SO) line to transfer information. In a write cycle, bits are clocked into the module on the rising edge of SCK. In a read cycle, bits in the start byte are clocked into the module on the rising edge of SCK. After a minimum wait time, each bit in the instruction/data byte can be read from the module after each falling edge of SCK. Each read/write cycle begins on the falling edge of ST and ends on the rising edge. To be a valid read/write cycle, the ST must go high at the end of the cycle. D a ta W r ite S T 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 R , W R S "0 " D 7 D 6 D 5 D 4 D 3 D 2 D 1 6 7 1 6 1 7 S C K S I "1 " "1 " "1 " "1 " "1 " D 0 S y n c h r o n o u s B its S ta rt B y te In s tr u c tio n /D a ta D a ta R e a d S T W a it T im e : tW 1 m s 1 2 "1 " "1 " 3 4 5 6 7 8 R S "0 " A IT 1 2 3 4 5 8 9 S C K S I, S O "1 " "1 " "1 " R , W B F "0 " IR 6 IR 5 IR 4 IR 3 IR 2 IR 1 IR 0 S y n c h r o n o u s B its S ta rt B y te Rev. 1.00 R e a d D a ta 29 October 4, 2006 HT16514 Commands Instruction Clear display Cursor home Entry mode set RS 0 0 0 R, W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 I/D Description 0 Clear all display, and sets the DDRAM address at 00H. x Sets the DDRAM address at 00H. Also returns the display shifted to the original position. The DDRAM contents remain unchanged. S Sets the cursor direction and specifies the display shift. These operations are performed during writing/reading data. Display On/Off 0 0 0 0 0 0 1 D C B Sets all display ON/OFF(D), cursor ON/OFF(C), cursor blink of character position (B). Cursor or display shift 0 0 0 0 0 1 S/C R/L x x Shifts display or cursor, w h i l e ke e p i n g t h e DDRAM contents. Function 0 0 0 0 1 DL N x BR1 CGRAM address set 0 0 0 DDRAM address set 0 0 1 1 ACG Sets data length BR0 (in parallel data transfer) and Number of line Sets the address of the CGRAM. After that, data of the DDRAM is transferred. ADD Sets the address of the DDRAM. After that, data of the DDRAM is transferred. ACC Reads the busy flag (BF) and the address counter. BF is output as ²0² always. Read busy flag & address 0 1 Write data to CGRAM or DDRAM 1 0 Write data Writes data into the CGRAM of the DDRAM. Read data from CGRAM or DDRAM 1 1 Read DR data Reads data from the CGRAM or DDRAM. Note: BF=0 I/D=1: Increment, I/D=0: Decrement S=1: Display shift enable, S=0: Cursor shift enable S/C=1: Display shift, S/C=0: Cursor shift R/L=1: Right shift, R/L=0: Left shift DL=1: 8bit, DL=0: 4bit BR1, BR0= (00: 100%) , (01: 75%) , (10: 50% ) , (11: 25%) ²X²: Don¢t care ACG: CGRAM address ADD: DDRAM address ACC: Address counter DDRAM: Display Data RAM CGRAM: Character Generator RAM Rev. 1.00 30 October 4, 2006 HT16514 Clear Display The instruction: · Fills all locations in the display data RAM (DDRAM) with 20H (Blank character). · Clears the contents of the address counter (ACC) to 00H. · Sets display for zero character shifts (returns to original position). · Sets the address counter to point to the display data RAM (DDRAM). · If cursor is displayed, move cursor to the left most character in the top line (upper line). · Sets address counter (ACC) to increment on each access to DDRAM or CGRAM. When resetting Cursor Home The instruction: · Clears the contents of the address counter (ACC) to 00H. · Sets the address counter to point to the display data RAM (DDRAM). · Sets display for zero character shifts (returns to original position). · If cursor is displayed, move cursor to the left most character in the top line (upper line). Entry Mode This instruction selects whether the cursor position increments or decrements after each DDRAM or CGRAM access and determines the direction the information on the display shifts after each DDRAM write. The instruction also enables or disables display shifts after each DDRAM write (information on the display does not shift after a DDRAM read or CGRAM access). The DDRAM, CGRAM, and cursor position are not affected by this instruction. I/D=0: The AC decrements after each DDRAM or CGRAM access. If S=1, the information on the display shifts to the right by one character position after each DDRAM write. I/D=1: The AC increments after each DDRAM or CGRAM access. If S=1, the information on the display shifts to the left by one character position after each DDRAM write. S=0: The display shift function is disabled. S=1: The display shift function is enabled. Cursor Move and Display Shift by the Entry Mode Set I/D S After Writing DDRAM Data After Reading DDRAM Data 0 0 Cursor moves one character to the left. Cursor moves one character to the right. 1 0 Cursor moves one character to the right. Cursor moves one character to the right. 0 1 Display shifts one character to the right without cursor Cursor moves one character to the left. movements. 1 1 Display shifts one character to the left without cursor moveCursor moves one character to the right. ments. When resetting Rev. 1.00 31 October 4, 2006 HT16514 Display ON/OFF This instruction selects whether the display and cursor are on or off and selects whether or not the character at the current cursor position blinks. The DDRAM, CGRAM, and cursor position are not affected by this instruction. · D=0: The display is off (display blank). · D=1: The display is on (contents of the DDRAM is displayed). · C=0: The cursor is off. · C=1: The cursor is on (8th rows of pixels). · B=0: The blinking character function is disabled. · B=1: The blinking character function is enabled Note: A character with all pixels on will alternate with the character displayed at the current cursor position at a 1Hz rate with a 50% duty cycle. When resetting Cursor or Display Shift This instruction shifts the display and/or moves the cursor to the left or right, without reading or writing to the DDRAM. ²S/C² bit selects movement of the cursor or movement of both cursor and display. · S/C=1: Shift both cursor and display. · S/C=0: Shift only the cursor. ²R/L² bit selects whether moving the direction to the left or right of the display and/or cursor. · R/L=1: Shift one character right. · R/L=0: Shift one character left. Cursor or Display Shift S/C R/L Cursor Position Information on the Display 0 0 Decrements by one (left) No change 0 1 Increments by one (right) No change 1 0 Decrements by one (left) Shifts on character position to the left 1 1 Increments by one (right) Shifts on character position to the right Function Set This instruction sets the width of the data bus for the parallel interface modes, the number of display lines, and the luminance level (brightness) of the VFD. DDRAM, CGRAM, and cursor position are not affected by this instruction. · DL=0: Sets the data bus width for the parallel interface modes to 4-bit (DB7~DB4). · DL=1: Sets the data bus width for the parallel interface modes to 8-bit (DB7~DB0). · N=0: Sets the number of display lines to 1 (this setting is not recommended). · N=1: Sets the number of display lines to 2 Rev. 1.00 32 October 4, 2006 HT16514 BR1, BR0 flag is brightness control for the VFD to modulate the pulse width of the segment output as follows. tDSP@200ms, tBLK@10ms BR1 BR0 Brightness tP 0 0 100% tDSP´1.00 0 1 75% tDSP´0.75 1 0 50% tDSP´0.50 1 1 25% tDSP´0.25 Note: ²n² means number of grid, T=nx (tDSP+tBLK) When resetting CGRAM Address Set This instruction places the 6-bit CGRAM address specified by DB5~DB0 into the cursor position. Subsequent data writes (reads) will be to (from) the CGRAM. The DDRAM and CGRAM contents are not affected by this instruction. When resetting: Don¢t care. Rev. 1.00 33 October 4, 2006 HT16514 DDRAM Address Set This instruction places the 7-bit DDRAM address specified by DB6~DB0 into the cursor position. Subsequent data writes (reads) will be to (from) the DDRAM. The DDRAM and CGRAM contents are not affected by this instruction. Valid DDRAM Address Ranges Number of Character Address Range 1st line 40 00H~27H 2nd line 40 40H~67H When resetting: Don¢t care. Read Busy Flag and Address This instruction reads the Busy Flag (BF)* and the value of address counter in binary ²AAAAAAA². This address counter is used by the CGRAM and DDRAM addresses, its value is determined by the previous instruction. The address counter contents are the same as for instructions ²CGRAM address set² and ²DDRAM address set². Note: ²*² means the Busy Flag (BF) always outputs a ²0². Write Data to the CGRAM or DDRAM This instruction writes the 8-bit data byte on DB7~DB0 into the DDRAM or CGRAM location addressed by the cursor position. The most recent DDRAM or CGRAM Address Set instruction determines whether the write is to the DDRAM or CGRAM. This instruction also increments or decrements the cursor position and shifts the display according to the I/D and S bits set by the Entry Mode Set instruction. Read Data from CGRAM or DDRAM This instruction reads the 8-bit data byte from the DDRAM or CGRAM location addressed by the cursor position on DB7~DB0. The most recent DDRAM or CGRAM Address Set instruction determines whether the read is from the DDRAM or CGRAM. This instruction also increments or decrements the cursor position and shifts the display according to the I/D and S bits set by the Entry Mode Set instruction. Before sending this instruction, a DDRAM or CGRAM Address Set instruction should be executed to set the cursor position to the desired DDRAM or CGRAM address to be read. After reading one data, the value of the address is automatically increased or decreased by 1 according to the selection by ²Entry mode². Note: The Address counter is automatically increased or decreased by 1 after a data write instruction to the CGRAM or DDRAM are executed. But at this moment the data to be pointed to by the address counter cannot be read if a data read instruction is executed. Therefore, to read data correctly, executing an address set instruction or cursor shift instruction (the only case of a DDRAM data read) just before reading, or reading the second data in case of reading data continuously by executing a read data instruction. Rev. 1.00 34 October 4, 2006 HT16514 Power ON Reset After a power-on reset, the module is initialize to the following conditions: · All DDRAM locations are set to 20H (character code for a space). · The cursor position is set to DDRAM address 00H · The relationship between DDRAM addresses and character positions on the VFD is set to the non-shifted position. · Entry Mode Set instruction bits: I/D=1: The cursor position increments after each DDRAM or CGRAM access. If S=1, the information on the display shifts to the left by one character position after each DDRAM write. S=0: The display shift function is disabled. · Display On/Off Control instruction bits: D=0: The display is off (display blank). C=0: The cursor is off. B=0: The blinking character function is disabled. · Function Set instruction bits: DL=1: Sets the data bus width for the parallel interface modes to 8 bits (DB7~DB0). N=1: Number of display lines is set to 2. BR1, BR0=0,0: Sets the luminance level to 100%. · MPU interface, duty ratio selection are based on the following table. Relationship between Status of HT16514 and Pin Selection at Power on Reset Pin Name TEST IM DS1 DS0 Function Remark 1 x x x Self test mode This is effective on aging. 0 or open 0 x x Serial interface SI, SO, SCK, ST 0 or open 1 x x Parallel interface RS, E, R, W, DB7~DB4 or DB7~DB0 0 or open x 0 0 Duty= 1/16 (16C´1 or 2L display) 0 or open x 0 1 Duty= 1/20 (20C´1 or 2L display) 0 or open x 1 0 Duty= 1/24 (24C´1 or 2L display) 0 or open x 1 1 Duty= 1/40 (40C´1 or 2L display) Rev. 1.00 35 It¢s not necessary to use the extension driver. The number of line is selected by instruction. Extension driver should be used. The number of line is selected by instruction. October 4, 2006 HT16514 Example (8-bit Data Parallel, Data Increment Mode) Initialization Sequence & Data Set Initialization Programming Example & Data Set (M68 series MPU) RS R, W D7 D6 D5 D4 D3 D2 D1 D0 Description Power On 0 0 0 0 1 1 1 x 0 1 Function Set Data length: 8 bits Display line number: 2 lines VFD Brightness: 75% 0 0 0 1 0 0 0 0 0 0 CGRAM address set to 00H x x x D D D D D x x x D D D D D | | | | | | | | 1 0 1 0 Rev. 1.00 0 0 x x x D D D D D 1 0 0 0 0 0 0 0 D D D D D D D D D D D D D D D D | | | | | | | | D D D D D D D D 0 0 0 0 1 1 0 0 0 36 Write data to CGRAM 64 bytes (8 characters) DDRAM address set to 00H Write data to DDRAM 80 bytes (80 characters) Display ON/OFF Display ON, cursor OFF, cursor blink OFF October 4, 2006 HT16514 Application Circuits G r id E x te r n a l E x te n s io n D r iv e G 2 5 ~ G 4 0 E S D O R S , S T S L K L E C L V F D E (R D ), S C K C S R ,W S 1 ~ S 8 0 (W R ) F S I, S O D S 0 , D S 1 M C U G 1 ~ G 2 4 H T 1 6 5 1 4 IM M P U D L S R L 1 , R L 2 R E S E T D B 0 ~ D D B 7 O S C O O S C I R O S C V D D L G N D V H V L G N D V D D H P G N D P G N D Note: ROSC=56kW for oscillator resistor Rev. 1.00 37 October 4, 2006 HT16514 Package Information 144-pin LQFP (20´20) Outline Dimensions C D 1 0 8 G 7 3 H I 7 2 1 0 9 A F B E 1 4 4 3 7 K a J 1 Symbol A Rev. 1.00 3 6 Dimensions in mm Min. Nom. Max. 21.9 ¾ 22.1 B 19.9 ¾ 20.1 C 21.9 ¾ 22.1 D 19.9 ¾ 20.1 E ¾ 0.5 ¾ F ¾ 0.2 ¾ G 1.35 ¾ 1.45 H ¾ ¾ 1.6 I ¾ 0.1 ¾ J 0.45 ¾ 0.75 K 0.1 ¾ 0.2 a 0° ¾ 7° 38 October 4, 2006 HT16514 Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw Holtek Semiconductor Inc. (Taipei Sales Office) 4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline) Holtek Semiconductor Inc. (Shanghai Sales Office) 7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn Holtek Semiconductor Inc. (Shenzhen Sales Office) 5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District, Shenzhen, China 518057 Tel: 0755-8616-9908, 8616-9308 Fax: 0755-8616-9533 Holtek Semiconductor Inc. (Beijing Sales Office) Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752 Fax: 010-6641-0125 Holtek Semiconductor Inc. (Chengdu Sales Office) 709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016 Tel: 028-6653-6590 Fax: 028-6653-6591 Holmate Semiconductor, Inc. (North America Sales Office) 46729 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com Copyright Ó 2006 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 39 October 4, 2006