IDT ICS853052AM

PRELIMINARY
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL
2.5V, 3.3V, 5V LVPECL MULTIPLEXER
GENERAL DESCRIPTION
FEATURES
The ICS853052 is a Dual LVCMOS / LVTTL-toICS
Differential 2.5V, 3.3V, 5V LVPECL Multiplexer and
HiPerClockS™
a member of the HiPerClocks™ family of High
Perfor mance Clocks Solutions from IDT. The
ICS853052 has two selectable single ended clock
inputs. The single ended clock input accepts LVCMOS or LVTTL
input levels and translates them to 2.5V, 3.3V or 5V LVPECL
levels. The small outline 8-pin TSSOP or 8-pin SOIC packages
make this device ideal for applications where space, high
performance and low power are important.
• One differential 2.5V, 3.3V or 5V LVPECL output
• Two selectable LVCMOS/LVTTL clock inputs
• Output frequency: TBD
• Additive phase jitter, RMS: 0.06ps (typical)
• Propagation Delay: 370ps (typical)
• 2.5V, 3.3V or 5V operating supply voltage
(operating range 2.375V to 5.5V)
• -40°C to 85°C ambient operating temperature
• Available in both standard (RoHS 5) and lead-free (RoHS 6)
packages
BLOCK DIAGRAM
Da Pulldown
PIN ASSIGNMENT
nc
Da
Db
SEL
1
1
2
3
4
8
7
6
5
VCC
Q
nQ
VEE
Q
ICS853052
nQ
Db Pulldown
8-Lead TSSOP, 118 mil
3mm x 3mm x 0.95mm package body
G Package
Top View
0
SEL Pulldown
8-Lead SOIC, 150 mil
3.90mm x 4.90mm x 1.37mm package body
M Package
Top View
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization
and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
1
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
TABLE 1. PIN DESCRIPTIONS
Number
Name
1
nc
Unused
Type
2, 3
Da, Db
Input
4
SEL
Input
Description
No connect.
Pulldown LVCMOS / LVTTL clock inputs.
Select input pin. When HIGH, selects Da input clock.
Pulldown When Low selects Db input clock.
Single-ended 100H LVPECL interface levels.
Negative supply pin.
5
VEE
Power
6, 7
nQ, Q
Output
Differential output pair. LVPECL interface levels.
8
VCC
Power
Positive supply pin.
NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.
TABLE 2. PIN CHARACTERISTICS
Symbol
Parameter
CIN
Input Capacitance
RPULLDOWN
Input Pulldown Resistor
TABLE 3.
Test Conditions
Minimum
Typical
Maximum
Units
1
pF
75
kΩ
CONTROL INPUT FUNCTION TABLE
Inputs
SEL
Selected Source
0
Db
1
Da
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
2
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VCC
Negative Supply Voltage, VEE
-6V (ECL mode, VCC = 0)
Inputs, VI (LVPECL mode)
-0.5V to VCC + 0.5 V
Inputs, VI (ECL mode)
0.5V to VEE - 0.5V
Outputs, IO
Continuous Current
Surge Current
NOTE: Stresses beyond those listed under Absolute Maximum
6V (LVPECL mode, VEE = 0)
Ratings may cause permanent damage to the device. These
ratings are stress specifications only. Functional operation of
product at these conditions or any conditions beyond those listed
in the DC Characteristics or AC Characteristics is not implied.
50mA
100mA
Exposure to absolute maximum rating conditions for extended
periods may affect product reliability.
Operating Temperature Range, TA -40°C to +85°C
Storage Temperature, TSTG
-65°C to 150°C
Package Thermal Impedance, θJA 101.7°C/W (0 m/s) TSSOP
(Junction-to-Ambient)
112.7°C/W (0 lfpm) SOIC
TABLE 4A. DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V
-40°C
Typ
25°C
Typ
85°C
Typ
Symbol
Parameter
IEE
Power Supply Current
VOH
Output High Voltage; NOTE 1
1.375
1.475
1.58
1.425
1.495
1.57
1.495
1.53
1.565
V
VOL
0.605
0.745
0.88
0.625
0.72
0.815
0.64
0.735
0.83
V
1.275
1.56
1.275
1.56
1.275
-0.83
V
VIL
Output Low Voltage; NOTE 1
Input High Voltage,
Single-Ended
Input Low Voltage, Single-Ended
0.63
0.965
0.63
0.965
0.63
0.965
V
IIH
Input High Current
200
µA
VIH
Min
Ma x
Min
21
Max
Min
21
200
Input Low Current
200
IIL
Input and output parameters var y 1:1 with VCC.
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.
Max
21
200
200
Units
mA
200
µA
TABLE 4B. DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V
Symbol Parameter
IEE
Power Supply Current
V OH
Output High Voltage; NOTE 1
Min
-40°C
Typ
2175
2275
1545
Max
Min
25°C
Typ
2380
2225
2295
1520
21
Max
Min
85°C
Typ
2370
2295
2330
1535
21
Max
21
Units
mA
2365
mV
V OL
Output Low Voltage; NOTE 1
1405
1680
1425
1615
1440
1630
mV
VIH
Input High Voltage, Single-Ended
2075
2420
2075
2420
2075
2420
mV
VIL
Input Low Voltage, Single-Ended
1355
1675
1355
1675
1355
1675
mV
IIH
Input High Current
200
µA
200
IIL
Input Low Current
200
Input and output parameters vary 1:1 with VCC.
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
200
20 0
3
200
µA
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
TABLE 4C. DC CHARACTERISTICS, VCC = 5V; VEE = 0V
Symbol
Parameter
IEE
Power Supply Current
Min
-40°C
Typ
Max
Min
21
25°C
Typ
Max
Min
21
85°C
Typ
Max
21
Units
mA
VOH
Output High Voltage; NOTE 1
3875
3975
4105
4080
3925
3995
4070
3995
4065
mV
VOL
Output Low Voltage; NOTE 1
3105
3245
3380
3125
3220
3315
3140
3235
3330
mV
VIH
Input High Voltage, Single-Ended
3775
4120
3775
4120
3775
4120
mV
VIL
Input Low Voltage, Single-Ended
3055
3375
3055
3375
3055
3375
mV
IIH
Input High Current
200
200
200
µA
200
Input Low Current
IIL
Input and output parameters vary 1:1 with VCC.
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.
200
200
µA
TABLE 4D. ECL DC CHARACTERISTICS, VCC = 0V; VEE = -5.5V TO -2.375V
-40°C
Typ
25°C
Typ
85°C
Typ
Symbol
Parameter
IEE
Power Supply Current
VOH
Output High Voltage; NOTE 1
-1125
-1025
-920
-1075
-1005
-930
-1005
-970
-935
mV
VOL
Output Low Voltage; NOTE 1
-1895
-1755
-1620
-1875
-1780
-1685
-1860
-1765
-1670
mV
Min
Max
Min
21
Max
Min
21
Max
21
Units
mA
VIH
Input High Voltage, Single-Ended
-1225
-880
-1225
-880
-1225
-880
mV
VIL
Input Low Voltage, Single-Ended
-1945
-1625
-1945
-1625
-1945
-1625
mV
IIH
Input High Current
200
µA
200
Input Low Current
200
IIL
Input and output parameters vary 1:1 with VCC.
NOTE 1: Outputs terminated with 50Ω to VCC - 2V.
200
200
200
µA
TABLE 5. AC CHARACTERISTICS, VCC = 0V; VEE = -5.5V TO -2.375V OR VCC = 2.375V TO 5.5V; VEE = 0V
Symbol
Parameter
-40°C
Min
Typ
25°C
Max
fMAX
Min
Typ
85°C
Max
Output Frequency
TBD
TBD
Propagation Delay, Low to High;
t PLH
TBD
370
NOTE 1
Propagation Delay, High to Low;
TBD
370
t PHL
NOTE 1
Buffer Additive Phase Jitter,
TBD
0.06
t jit
RMS; refer to Additive Phase
Jitter section
V PP
Input Voltage Swing (Differential)
TBD
TBD
Output
tR/tF
20% to 80%
TBD
180
Rise/Fall Time
All parameters are measured ≤ 1GHz unless otherwise noted.
NOTE 1: Measured from VCC/2 of the input crossing point to the differential output crossing point.
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
4
Min
Typ
Max
Units
TBD
GHz
TBD
ps
TBD
ps
TBD
ps
TBD
ps
TBD
ps
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
ADDITIVE PHASE JITTER
band to the power in the fundamental. When the required offset
is specified, the phase noise is called a dBc value, which simply
means dBm at a specified offset from the fundamental. By
investigating jitter in the frequency domain, we get a better
understanding of its effects on the desired application over the
entire time record of the signal. It is mathematically possible to
calculate an expected bit error rate given a phase noise plot.
The spectral purity in a band at a specific offset from the
fundamental compared to the power of the fundamental is called
the dBc Phase Noise. This value is normally expressed using a
Phase noise plot and is most often the specified plot in many
applications. Phase noise is defined as the ratio of the noise power
present in a 1Hz band at a specified offset from the fundamental
frequency to the power value of the fundamental. This ratio is
expressed in decibels (dBm) or a ratio of the power in the 1Hz
0
-10
Additive Phase Jitter @ 155.52MHz
-20
(12kHz to 20MHz) = 0.06ps typical
-30
-40
SSB PHASE NOISE dBc/HZ
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
100
1k
10k
100k
1M
10M
100M
-190
OFFSET FROM CARRIER FREQUENCY (HZ)
As with most timing specifications, phase noise measurements
have issues. The primary issue relates to the limitations of the
equipment. Often the noise floor of the equipment is higher than
the noise floor of the device. This is illustrated above. The device
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
meets the noise floor of what is shown, but can actually be lower.
The phase noise is dependant on the input source and
measurement equipment.
5
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
PARAMETER MEASUREMENT INFORMATION
2V
VCC
Qx
SCOPE
Da Db
nQ
LVPECL
Q
nQx
tPD
VEE
-3.5V to -0.375V
PROPAGATION DELAY
OUTPUT LOAD AC TEST CIRCUIT
80%
80%
VSW I N G
Clock
Outputs
20%
20%
tR
tF
OUTPUT RISE/FALL TIME
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
6
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
APPLICATION INFORMATION
RECOMMENDATIONS FOR UNUSED INPUT PINS
INPUTS:
DX INPUTS
For applications not requiring the use of a clock input, it can
be left floating. Though not required, but for additional
protection, a 1kΩ resistor can be tied from the Dx input to
ground.
TERMINATION FOR 2.5V LVPECL OUTPUT
level. The R3 in Figure 1B can be eliminated and the termination
is shown in Figure 1C.
Figure 1A and Figure 1B show examples of termination for 2.5V
LVPECL driver. These terminations are equivalent to terminating
50Ω to VCC - 2V. For VCC = 2.5V, the VCC - 2V is very close to ground
2.5V
VCC=2.5V
2.5V
2.5V
VCC=2.5V
R1
250
Zo = 50 Ohm
R3
250
+
Zo = 50 Ohm
+
Zo = 50 Ohm
-
Zo = 50 Ohm
2,5V LVPECL
Driv er
-
R1
50
2,5V LVPECL
Driv er
R2
62.5
R2
50
R4
62.5
R3
18
FIGURE 1A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE
FIGURE 1B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE
2.5V
VCC=2.5V
Zo = 50 Ohm
+
Zo = 50 Ohm
2,5V LVPECL
Driv er
R1
50
R2
50
FIGURE 1C. 2.5V LVPECL TERMINATION EXAMPLE
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
7
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
TERMINATION FOR 3.3V LVPECL OUTPUTS
transmission lines. Matched impedance techniques should be
used to maximize operating frequency and minimize signal distortion. Figures 2A and 2B show two different layouts which are
recommended only as guidelines. Other suitable clock layouts
may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit
and clock component process variations.
The clock layout topology shown below is a typical termination
for LVPECL outputs. The two different layouts mentioned are
recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating
resistors (DC current path to ground) or current sources must be
used for functionality. These outputs are designed to drive 50Ω
3.3V
Zo = 50Ω
125Ω
FOUT
125Ω
FIN
Zo = 50Ω
Zo = 50Ω
FOUT
50Ω
FIN
50Ω
Zo = 50Ω
VCC - 2V
1
RTT =
Z
((VOH + VOL) / (VCC – 2)) – 2 o
RTT
84Ω
FIGURE 2A. LVPECL OUTPUT TERMINATION
84Ω
FIGURE 2B. LVPECL OUTPUT TERMINATION
TERMINATION FOR 5V LVPECL OUTPUT
This section shows examples of 5V LVPECL output termination.
Figure 3A shows standard termination for 5V LVPECL. The
termination requires matched load of 50Ω resistors pull down to
V CC - 2V = 3V at the receiver. Figure 3B shows Thevenin
equivalence of Figure 3A. In actual application where the 3V DC
power supply is not available, this approached is normally used.
5V
5V
5V
5V
R3
84
PECL
PECL
Zo = 50 Ohm
R4
84
Zo = 50 Ohm
+
+
Zo = 50 Ohm
Zo = 50 Ohm
-
R1
50
-
PECL
R1
125
R2
50
PECL
R2
125
3V
FIGURE 3A. STANDARD 5V LVPECL OUTPUT TERMINATION
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
FIGURE 3B. 5V LVPECL OUTPUT TERMINATION EXAMPLE
8
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS853052.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS853052 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 5.5V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
•
•
Power (core)MAX = VCC_MAX * IEE_MAX = 5.5V * 21mA = 115.5mW
Power (outputs)MAX = 30.94mW/Loaded Output pair
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air
flow and a multi-layer board, the appropriate value is 112.7°C/W per Table 6B below.
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:
85°C + 0.146W * 112.7°C/W = 101.52°C. This is below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
TABLE 6A. THERMAL RESISTANCE θJA
FOR
8-PIN TSSOP, FORCED CONVECTION
θJA by Velocity (Meters per Second)
Multi-Layer PCB, JEDEC Standard Test Boards
TABLE 6B. THERMAL RESISTANCE θJA
FOR
0
1
2
101.7°C/W
90.5°C/W
89.8°C/W
8-PIN SOIC, FORCED CONVECTION
θJA by Velocity (Linear Feet per Minute)
Single-Layer PCB, JEDEC Standard Test Boards
Multi-Layer PCB, JEDEC Standard Test Boards
0
200
500
153.3°C/W
112.7°C/W
128.5°C/W
103.3°C/W
115.5°C/W
97.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
9
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
3. Calculations and Equations.
LVPECL output driver circuit and termination are shown in Figure 4.
VCC
Q1
VOUT
RL
50
VCC - 2V
Figure 4. LVPECL Driver Circuit and Termination
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a
termination voltage of V - 2V.
CC
•
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.935V
(VCC_MAX - VOH_MAX) = 0.935V
•
For logic low, VOUT = VOL_MAX = VCC_MAX – 1.67V
(VCC_MAX - VOL_MAX) = 1.67V
Pd_H = [(VOH_MAX – (VCC_MAX - 2V))/R ] * (VCC_MAX - VOH_MAX) = [(2V - (V
L
CC_MAX
- VOH_MAX))/R ] * (VCC _MAX- VOH_MAX) =
L
[(2V - 0.935V)/50Ω] * 0.935V = 19.92mW
Pd_L = [(VOL_MAX – (VCC_MAX - 2V))/R ] * (VCC_MAX - VOL_MAX) = [(2V - (V
L
CC_MAX
- VOL_MAX))/R ] * (VCC_MAX - VOL_MAX) =
L
[(2V - 1.67V)/50Ω] * 1.67V = 11.02mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.94mW
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
10
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
RELIABILITY INFORMATION
TABLE 7A. θJAVS. AIR FLOW TABLE
FOR
8 LEAD TSSOP
θJA by Velocity (Meters per Second)
Multi-Layer PCB, JEDEC Standard Test Boards
TABLE 7B. θJAVS. AIR FLOW TABLE
FOR
0
1
2
101.7°C/W
90.5°C/W
89.8°C/W
8 LEAD SOIC
θJA by Velocity (Linear Feet per Minute)
Single-Layer PCB, JEDEC Standard Test Boards
Multi-Layer PCB, JEDEC Standard Test Boards
0
200
500
153.3°C/W
112.7°C/W
128.5°C/W
103.3°C/W
115.5°C/W
97.1°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TRANSISTOR COUNT
The transistor count for ICS853052 is: 110
Pin compatible with MC100EP58
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
11
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PACKAGE OUTLINE - G SUFFIX
FOR
8 LEAD TSSOP
PACKAGE OUTLINE - M SUFFIX
TABLE 8A. PACKAGE DIMENSIONS
SYMBOL
FOR
8 LEAD SOIC
TABLE 8B. PACKAGE DIMENSIONS
Millimeters
Minimum
N
A
PRELIMINARY
SYMBOL
Maximum
MINIMUN
N
8
--
Millimeters
1.10
A
MAXIMUM
8
1.35
1.75
A1
0
0.15
A1
0.10
0.25
A2
0.79
0.97
B
0.33
0.51
b
0.22
0.38
C
0.19
0.25
c
0.08
0.23
D
4.80
5.00
E
3.80
4.00
D
3.00 BASIC
E
4.90 BASIC
e
E1
3.00 BASIC
H
5.80
6.20
e
0.65 BASIC
h
0.25
0.50
L
0.40
1.27
α
0°
8°
e1
1.95 BASIC
L
0.40
0.80
α
0°
8°
aaa
--
0.10
1.27 BASIC
Reference Document: JEDEC Publication 95, MS-012
Reference Document: JEDEC Publication 95, MO-187
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
12
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
TABLE 9. ORDERING INFORMATION
Part/Order Number
Marking
Package
Shipping Packaging
Temperature
ICS853052AG
052A
8 lead TSSOP
tube
-40°C to 85°C
ICS853052AGT
052A
8 lead TSSOP
2500 tape & reel
-40°C to 85°C
ICS853052AGLF
52AL
8 lead "Lead-Free" TSSOP
tube
-40°C to 85°C
ICS853052AGLFT
52AL
8 lead "Lead-Free" TSSOP
2500 tape & reel
-40°C to 85°C
ICS853052AM
853052A
8 lead SOIC
tube
-40°C to 85°C
ICS853052AMT
853052A
8 lead SOIC
2500 tape & reel
-40°C to 85°C
ICS853052AMLF
TBD
8 lead "Lead-Free" SOIC
tube
-40°C to 85°C
ICS853052AMLFT
TBD
8 lead "Lead-Free" SOIC
2500 tape & reel
-40°C to 85°C
Par ts that are ordered with an "LF" suffix to the par t number are the Pb-Free configuration and are RoHS compliant.
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.
IDT ™ / ICS™ 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
13
ICS853052AG REV. B OCTOBER 24, 2007
ICS853052
DUAL LVCMOS/LVTTL-TO-DIFFERENTIAL 2.5V, 3.3V, 5V LVPECL MULTIPLEXER
PRELIMINARY
Innovate with IDT and accelerate your future networks. Contact:
www.IDT.com
For Sales
For Tech Support
800-345-7015
408-284-8200
Fax: 408-284-2775
[email protected]
480-763-2056
Corporate Headquarters
Asia Pacific and Japan
Europe
Integrated Device Technology, Inc.
6024 Silver Creek Valley Road
San Jose, CA 95138
United States
800 345 7015
+408 284 8200 (outside U.S.)
Integrated Device Technology
Singapore (1997) Pte. Ltd.
Reg. No. 199707558G
435 Orchard Road
#20-03 Wisma Atria
Singapore 238877
+65 6 887 5505
IDT Europe, Limited
321 Kingston Road
Leatherhead, Surrey
KT22 7TU
England
+44 (0) 1372 363 339
Fax: +44 (0) 1372 378851
© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be
trademarks or registered trademarks used to identify products or services of their respective owners.
Printed in USA