IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL FANOUT BUFFER FEATURES: IDT8535-01 DESCRIPTION: • Four differential 3.3V LVPECL outputs • Selectable CLK0 or CLK1 inputs for redundant and multiple frequency fanout applications • Maximum output frequency: 266MHz • CLK0 or CLK1 can accept LVCMOS or LVTTL input levels • Translates LVCMOS and LVTTL levels to 3.3V LVPECL levels • Output skew: 30ps (max.) • Part-to-part skew: as low as 150ps • Propagation delay: 1.9ns (max.) • 3.3V operating supply • Available in TSSOP package The IDT8535-01 is a low skew, high performance 1-to-4 LVCMOS-to-3.3V LVPECL fanout buffer. It has two single-ended clock inputs. The single-ended clock input accepts LVCMOS or LVTTL input levels and translates them to 3.3V LVPECL levels. The clock enable is internally synchronized to eliminate runt pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin. Guaranteed output and part-to-part skew characteristics make the IDT853501 ideal for those applications demanding well-defined performance and repeatability. FUNCTIONAL BLOCK DIAGRAM D CLK_EN Q LE CLK0 0 Q0 xQ0 CLK1 1 Q1 xQ1 Q2 CLK_SEL xQ2 Q3 xQ3 The IDT logo is a registered trademark of Integrated Device Technology, Inc. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES APRIL 2004 1 c 2004 Integrated Device Technology, Inc. DSC 6196/6 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES PIN CONFIGURATION ABSOLUTE MAXIMUM RATINGS(1) Symbol Description Power Supply Voltage 4.6 V Input Voltage –0.5 to VDD+0.5 V VO –0.5 to VDD+0.5 V 92.6 °C/W VEE 1 20 Q0 CLK_EN 2 19 xQ0 θJA Output Voltage Package Thermal Impedance (0 lfpm) CLK_SEL 3 18 VDD TSTG Storage Temperature 4 17 Q1 NC 5 16 xQ1 CLK1 6 15 Q2 NC 7 14 xQ2 NC 8 13 VDD NC 9 12 Q3 VDD 10 11 xQ3 Unit VDD VI CLK0 Max –65 to +150 °C NOTE: 1. Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. CAPACITANCE(TA = +25°C, f = 1MHz, VIN = 0V) Parameter CIN RPULLUP RPULLDOWN Description Typ. Max. Unit Input Capacitance — 4 pF Input Pullup Resistor 51 — KΩ Input Pulldown Resistor 51 — KΩ TSSOP TOP VIEW PIN DESCRIPTION(1) Symbol Number VEE 1 PWR Type CLK_EN 2 Input Description Negative Supply Pin Pullup Synchronizing Clock Enable. When HIGH, clock outputs follow clock input. When LOW, Q outputs are forced LOW, xQ outputs are forced HIGH. LVCMOS / LVTTL interface levels. CLK_SEL 3 Input Pulldown Clock Select Input. When HIGH, selects CLK1 input. When LOW, selects CLK0 input. LVCMOS / LVTTL interface levels. CLK0 4 Input Pulldown LVCMOS / LVTTL Clock Input CLK1 6 Input Pulldown LVCMOS / LVTTL Clock Input NC 5, 7, 8, 9 Unused No Connection VDD 10, 13, 18 Power Positive Supply Pins xQ3, Q3 11, 12 Output Differential Output Pair. LVPECL interface levels. xQ2 Q2 14, 15 Output Differential Output Pair. LVPECL interface levels. xQ1, Q1 16, 17 Output Differential Output Pair. LVPECL interface levels. xQ0, Q0 19, 20 Output Differential Output Pair. LVPECL interface levels. NOTE: 1. Pullup and Pulldown refer to internal input resistors. See Capacitance table for typical values. 2 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES CONTROL INPUT FUNCTION TABLE(1,2) Inputs Outputs CLK_EN CLK_SEL Selected Source Q0 to Q3 xQ0 to xQ3 0 0 CLK0 Disabled; LOW Disabled; HIGH 0 1 CLK1 Disabled; LOW Disabled; HIGH 1 0 CLK0 Enabled Enabled 1 1 CLK1 Enabled Enabled NOTES: 1. After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in the CLK_EN Timing Diagram below. 2. In active mode, the state of the outputs is a function of the CLK / xCLK and PCLK / xPCLK inputs as described in the Clock Input Function table. Enabled Disabled CLK0, CLK1 ≈ CLK EN ≈ ≈ xQ0, xQ1, xQ2, xQ3 Q0, Q1, Q2, Q3 CLK_EN Timing Diagram CLOCK INPUT FUNCTION TABLE(1) Inputs Outputs CLK0 or CLK1 Q0 to Q3 xQ0 to xQ3 0 L H 1 H L NOTE: 1. H = HIGH L = LOW 3 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES POWER SUPPLY CHARACTERISTICS - COMMERCIAL Symbol Parameter Test Conditions Min. Typ. Max. Unit VDD Positive Supply Voltage 3.135 3.3 3.465 V IEE Power Supply Current — — 50 mA DC ELECTRICAL CHARACTERISTICS, LVCMOS / LVTTL - COMMERCIAL Symbol Parameter Test Conditions VIH Input Voltage HIGH VIL Input Voltage LOW IIH IIL Min. Typ. 2 Input Current HIGH Input Current LOW Max. Unit VDD + 0.3 V V CLK0, CLK1 -0.3 1.3 CLK_EN, CLK_SEL -0.3 0.8 CLK0, CLK1, CLK_SEL VIN = VDD = 3.465V 150 CLK_EN VIN = VDD = 3.465V 5 µA µA CLK0, CLK1, CLK_SEL VIN = 0V, VDD = 3.465V -5 CLK_EN VIN = 0V, VDD = 3.465V -150 DC ELECTRICAL CHARACTERISTICS, LVPECL - COMMERCIAL Symbol Parameter Test Conditions VOH Output Voltage HIGH VOL Output Voltage LOW(1) VSWING (1) Peak-to-Peak Output Voltage Swing Min. Typ. Max. Unit VDD - 1.4 VDD - 1 V VDD - 2 VDD - 1.7 V 0.6 0.85 V NOTE: 1. Outputs terminated with 50Ω to VDD - 2V. AC ELECTRICAL CHARACTERISTICS - COMMERCIAL All parameters measured at 266MHz unless noted otherwise; Cycle-to-cycle jitter on input = jitter on output; the part does not add jitter Symbol FMAX tPD Parameter Test Conditions Min. Typ. Output Frequency Propagation Delay(1) f ≤ 266MHz 1 Unit 266 MHz 1.9 ns 30 ps 150 ps tSK(O) Output Skew(2,4) tSK(PP) Part-to-Part Skew tR Output Rise Time 20 - 80% @ 50MHz 300 700 ps tF Output Fall Time 20 - 80% @ 50MHz 300 700 ps 52 % odc 11 Max. (3,4) Output Duty Cycle 48 50 NOTES: 1. Measured from the VDD/2 of the input to the differential output crossingpoint. 2. Defined as skew between outputs as the same supply voltage and with equal load conditions. Measured at the output differential crosspoints 3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints. 4. This parameter is defined in accordance with JEDEC Standard 65. 4 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES POWER SUPPLY CHARACTERISTICS - INDUSTRIAL Symbol Parameter Test Conditions Min. Typ. Max. Unit VDD Positive Supply Voltage 3.135 3.3 3.465 V IEE Power Supply Current — — 55 mA DC ELECTRICAL CHARACTERISTICS, LVCMOS / LVTTL - INDUSTRIAL Symbol Parameter Test Conditions VIH Input Voltage HIGH VIL Input Voltage LOW IIH IIL Min. Typ. 2 Input Current HIGH Input Current LOW Max. Unit VDD + 0.3 V V CLK0, CLK1 -0.3 1.3 CLK_EN, CLK_SEL -0.3 0.8 CLK0, CLK1, CLK_SEL VIN = VDD = 3.465V 150 CLK_EN VIN = VDD = 3.465V 5 µA µA CLK0, CLK1, CLK_SEL VIN = 0V, VDD = 3.465V -5 CLK_EN VIN = 0V, VDD = 3.465V -150 DC ELECTRICAL CHARACTERISTICS, LVPECL - INDUSTRIAL Symbol Parameter Test Conditions VOH Output Voltage HIGH VOL Output Voltage LOW(1) VSWING (1) Min. Typ. Max. Unit VDD - 1.4 VDD - 1 V VDD - 2 VDD - 1.7 V 0.6 0.85 V Peak-to-Peak Output Voltage Swing NOTE: 1. Outputs terminated with 50Ω to VDD - 2V. AC ELECTRICAL CHARACTERISTICS - INDUSTRIAL All parameters measured at 266MHz unless noted otherwise; Cycle-to-cycle jitter on input = jitter on output; the part does not add jitter Symbol FMAX tPD Parameter Test Conditions Min. Typ. Output Frequency Propagation Delay(1) f ≤ 266MHz 1 Max. Unit 266 MHz 1.9 ns 30 ps 200 ps tSK(O) Output Skew(2,4) tSK(PP) Part-to-Part Skew tR Output Rise Time 20 - 80% @ 50MHz 300 700 ps tF Output Fall Time 20 - 80% @ 50MHz 300 700 ps 52 % odc (3,4) Output Duty Cycle 48 50 NOTES: 1. Measured from the VDD/2 of the input to the differential output crossingpoint. 2. Defined as skew between outputs as the same supply voltage and with equal load conditions. Measured at the output differential crosspoints 3. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints. 4. This parameter is defined in accordance with JEDEC Standard 65. 5 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES PARAMETER MEASUREMENT INFORMATION VDD Scope Z = 50Ω Qx LVPECL 50Ω VDD = 2V Z = 50Ω xQx 50Ω VEE = -1.3V ± 0.135V Output Load Test Circuit xQx Qx xQy Qy tSK(0) Output Skew xQx Part 1 Qx xQy Part 2 Qy tSK(PP) Part-to-Part Skew 6 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES PARAMETER MEASUREMENT INFORMATION - CONTINUED 80% 80% VSWING Clock Outputs 20% 20% tF tR Output Rise and Fall Time CLK0, CLK1 xQ0, xQ1, xQ2, xQ3 Q0, Q1, Q2, Q3 tPD Propagation Delay xQ0, xQ1, xQ2, xQ3 Q0, Q1, Q2, Q3 Pulse Width tPERIOD tW odc = tPERIOD odc and tPERIOD 7 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES APPLICATION INFORMATION TERMINATION FOR LVPECL OUTPUTS The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines. FOUT and xFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. The diagrams below show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist. It is recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations. 3.3V Zo = 50Ω 5 2 FOUT Zo 5 2 Zo FIN Zo = 50Ω Zo = 50Ω FOUT 50Ω FIN 50Ω Zo = 50Ω VDD - 2V RTT 1 RTT = 3 2 Zo Zo 3 2 Zo (VOH + VOL / VDD - 2) - 2 LVPECL Output Termination, layout A LVPECL Output Termination, layout B 8 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the IDT8535-01. Equations and example calculations are also provided. POWER DISSIPATION: The total power dissipation for the IDT8535-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for the VDD = 3.3V + 5% = 3.465V, which gives worst case results. Please refer to the following section, Calculations and Equations, for details on calculating power dissipated in the load. Power (core)MAX = VDD_MAX * ICC_MAX = 3.465 * 50mA = 173.25mW Power (outputs)MAX = 30.2mW/Loaded Output Pair If all outputs are loaded, the total power is 4 * 30.2mW = 120.8Mw Total Power_MAX (3.465V, with all outputs switching) = 173.25mW + 120.8mW = 294.05mW JUNCTION TEMPERATURE: Junction temperature (tJ) is the temperature at the junction of the bond wire and bond pad. It directly affects the reliability of the device. The maximum recommended junction temperature for this device is 125°C. The equation for is as follows: tJ = θJA * Pd_total + TA tJ = Junction Temperature θJA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in Power Dissipation, above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance (θJA) must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 77.6°C/W per the following Thermal Resistance table. Therefore, tJ for an ambient temperature of 70°C with all its outputs switching is: 70°C + 0.294W * 77.6°C/W = 92.81°C. This is well below the limit of 125°C. This calculation is only an example. tJ will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (singlelayer or multi-layer). THERMAL RESISTANCE θJA for 20-pin TSSOP, forced convenction θJA by Velocity (Linear Feet per mInute) Multi-Layer PCB, JEDEC Standard Test boards 9 0 200 400 Unit 92.6 77.6 70.9 °C/W IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES CALCULATIONS AND EQUATIONS VDD Q1 VOUT RL 50 VDD - 2V LVPECL Output Driver Circuit and Termination To calculate worst case power dissipation into the load, use the following equations, which assume a 50Ω load and a termination voltage of VDD – 2V. For Logic HIGH: VOUT = VOH_MAX = VDD_MAX – 1V. (VDD_MAX – VOH_MAX) = 1V For Logic LOW: VOUT = VOL_MAX = VDD_MAX – 1.7V. (VDD_MAX – VOL_MAX) = 1.7V Pd_H is power dissipation when the output drives HIGH. Pd_L is power dissipation when the output drives LOW. Pd_H = {[ VOH_MAX – (VDD_MAX – 2V)] / RL} * (VDD_MAX – VOH_MAX) = {[ 2V – (VDD_MAX – VOH_MAX)] / RL} * (VDD_MAX – VOH_MAX) = [( 2V – 1V) / 50Ω] * 1V = 20mW. Pd_L = {[ VOL_MAX – (VDD_MAX – 2V)] / RL} * (VDD_MAX – VOL_MAX) = {[ 2V – (VDD_MAX – VOL_MAX)] / RL} * (VDD_MAX – VOL_MAX) = [( 2V – 1.7V) / 50Ω] * 1.7V = 10.2mW. Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW 10 IDT8535-01 LOW SKEW, 1-TO-4 LVCMOS-TO-3.3V LVPECL COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES ORDERING INFORMATION IDT XXXXX Device Type XX Package X Process CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 Blank I Commercial (0°C to +70°C) Industrial (-40°C to +85°C) PG Thin Shrink Small Outline Package 8535-01 Low Skew, 1-to-4 LVCMOS-to-3.3V LVPECL Fanout Buffer for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com 11 for Tech Support: [email protected] (408) 654-6459