IRF IR2011SPBF

Data Sheet No.PD60217 Rev A
IR2011(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Fully operational up to +200V
Tolerant to negative transient voltage, dV/dt immune
Gate drive supply range from 10V to 20V
Independent low and high side channels
Input logicHIN/LIN active high
Undervoltage lockout for both channels
3.3V and 5V input logic compatible
CMOS Schmitt-triggered inputs with pull-down
Matched propagation delay for both channels
8-Lead SOIC is also available LEAD-FREE (PbF)
Product Summary
VOFFSET
200V max.
IO+/-
1.0A /1.0A typ.
VOUT
10 - 20V
ton/off
80 & 60 ns typ.
Delay Matching
20 ns max.
Applications
• Audio Class D amplifiers
• High power DC-DC SMPS converters
• Other high frequency applications
Packages
Description
The IR2011 is a high power, high speed power MOSFET driver with independent high
and low side referenced output channels, ideal for Audio Class D and DC-DC converter
applications. Logic inputs are compatible with standard CMOS or LSTTL output, down
to 3.0V logic. The output drivers feature a high pulse current buffer stage designed for
minimum driver cross-conduction. Propagation delays are matched to simplify use in
high frequency applications. The floating channel can be used to drive an N-channel
power MOSFET in the high side configuration which operates up to 200 volts. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.
8-Lead SOIC
IR2011S
also available
LEAD-FREE (PbF)
8-Lead PDIP
IR2011
Typical Connection
200V
HIN
5
LIN
HIN
VS
LIN
HO
COM
COM
8
LO
4
VB
VCC
TO
LOAD
1
VCC
(Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please
refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2011(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating supply voltage
VS
Min.
Max.
-0.3
250
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC +0.3
VIN
Logic input voltage (HIN & LIN)
COM -0.3
VCC +0.3
dVs/dt
PD
RTHJA
Allowable offset supply voltage transient (figure 2)
—
50
Package power dissipation @ TA ≤ +25°C
(8-lead DIP)
—
1.0
(8-lead SOIC)
—
0.625
Thermal resistance, junction to ambient
(8-lead DIP)
—
125
(8-lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
For proper operation the device should be used within the recommended conditions. The VS and COM offset ratings
are tested with all supplies biased at 15V differential.
Symbol
Definition
Min.
Max.
VB
High side floating supply absolute voltage
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
200
VHO
High side floating output voltage
VS
VB
VCC
Low side fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (HIN & LIN)
TA
Ambient temperature
COM
5.5
-40
125
Units
V
°C
Note 1: Logic operational for VS of -4 to +200V. Logic state held for VS of -4V to -VBS.
2
www.irf.com
IR2011(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C unless otherwise specified. Figure 1 shows the timing definitions.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
80
—
VS = 0V
toff
Turn-off propagation delay
—
75
—
VS = 200V
tr
Turn-on rise time
—
35
50
tf
Turn-off fall time
—
20
35
DM1
Turn-on delay matching | ton (H) - ton (L) |
—
5
20
DM2
Turn-off delay matching | toff (H)
—
5
20
- toff (L) |
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM and are applicable to all logic input leads: HIN and LIN. The VO and IO parameters are referenced to COM and are
applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
2.2
—
—
VIL
Logic “0” input voltage
—
—
0.7
VOH
High level output voltage, VBIAS - VO
—
—
2.0
VOL
Low level output voltage, VO
—
—
0.2
20mA
ILK
Offset supply leakage current
—
—
50
VB=VS = 200V
IQBS
Quiescent VBS supply current
—
90
210
IQCC
Quiescent VCC supply current
—
140
230
IIN+
Logic “1” input bias current
—
7.0
20
VIN = 3.3V
—
8.2
—
9.0
1.0
9.8
VIN = 0V
7.4
8.2
9.0
8.2
9.0
9.8
7.4
8.2
9.0
IO+
Logic “0” input bias current
VBS supply undervoltage positive going
threshold
VBS supply undervoltage negative going
threshold
VCC supply undervoltage positive going
threshold
VCC supply undervoltage negative going
threshold
Output high short circuit pulsed current
—
1.0
—
IO-
Output low short circuit pulsed current
—
1.0
—
IINVBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
VCC = 10V - 20V
V
IO = 0A
µA
VIN = 0V or 3.3V
VIN = 0V or 3.3V
V
A
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2011(S) & (PbF)
Functional Block Diagram
VB
3V S-TRIGGER
LOW
VOLTAGE
LEVEL
SHIFT
HIN
BUFFER
HIGH
VOLTAGE
LEVEL
SHIFT
CIRCUIT
UV
DETECT
UV Q
S
HO
R
VS
VCC
3V S-TRIGGER
UV
DETECT
LOW
VOLTAGE
LEVEL
SHIFT
LIN
LO
DELAY
COM
Lead Definitions
Symbol Description
HIN
LIN
VB
HO
VS
VCC
LO
COM
Logic input for high side gate driver output (HO), in phase
Logic input for low side gate driver output (LO), in phase
High side floating supply
High side gate drive output
High side floating supply return
Low side supply
Low side gate drive output
Low side return
Lead Assignments
5 HIN
VS 4
5 HIN
VS 4
6 LIN
HO 3
6 LIN
HO 3
7 COM
VB 2
7 COM
VB 2
8 LO
VCC 1
8-Lead PDIP
8 LO
V CC 1
8-Lead SOIC also available LEAD-FREE (PbF)
IR2011
IR2011S
Part Number
4
www.irf.com
IR2011(S) & (PbF)
50%
50%
HIN / LIN
trise
tfall
90%
90%
ton(H)
toff(H)
10%
10%
HO
DM2
DM1
90%
toff(L)
ton(L)
LO
10%
Figure 1. Timing Diagram
www.irf.com
5
IR2011(S) & (PbF)
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
500
400
300
200
100
Typ.
0
-50
-25
0
25
50
75
100
500
400
300
200
Typ.
100
0
125
10
12
o
Temperature ( C)
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
400
300
200
Typ.
-25
0
25
50
75
100
o
Temperature ( C)
Figure 3A. Turn-off Propagation Delay
vs. Temperature
6
18
20
Figure 2B. Turn-on Propagation Delay
vs. Supply Voltage
500
0
-50
16
Supply Voltage (V)
Figure 2A. Turn-on Propagation Delay
vs. Temperature
100
14
125
500
400
300
200
100
Typ.
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 3B. Turn-off Propagation Delay
vs. Supply Voltage
www.irf.com
IR2011(S) & (PbF)
100
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
100
80
60
M ax.
40
Typ.
20
0
-50
80
M ax.
60
Typ.
40
20
0
-25
0
25
50
75
100
125
10
12
16
18
Figure 4A. Turn-on Rise Time vs. Temperature
Figure 4B. Turn-on Rise Time vs. Supply Voltage
50
50
40
M ax.
30
20
Typ.
10
0
-50
40
M ax.
30
Typ.
20
10
0
-25
0
25
50
Temperature
75
100
(oC)
Figure 5A. Turn-off Fall Time vs. Temperature
www.irf.com
20
Supply Voltage (V)
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
Temperature (oC)
14
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 5B. Turn-off Fall Time vs. Supply Voltage
7
IR2011(S) & (PbF)
50
Dealy Matching Time (ns)
Delay Matching Time (ns)
50
40
30
M ax.
20
10
Typ.
0
-50
40
30
M ax.
20
10
Typ.
0
-25
0
25
50
75
100
125
10
12
o
Temperature ( C)
Dealy Matching Time (ns)
Delay Matching Time (ns)
20
50
40
30
M ax.
Typ.
0
-50
40
30
M ax.
20
10
Typ.
0
-25
0
25
50
Temperature
75
100
(oC)
Figure 7A. Turn-off Delay Matching Time
vs. Temperature
8
18
Figure 6B. Turn-on Delay Matching Time
vs. Supply Voltage
50
10
16
Supply Voltage (V)
Figure 6A. Turn-on Delay Matching Time
vs. Temperature
20
14
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 7B. Turn-off Delay Matching Time
vs. Supply Voltage
www.irf.com
IR2011(S) & (PbF)
5
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
5
4
3
M in.
2
1
4
3
M in.
2
1
0
0
-50
-25
0
25
50
75
100
10
125
12
Figure 8A. Logic "1" Input Voltage
vs. Temperature
18
20
Figure 8B. Logic "1" Input Voltage
vs. Supply Voltage
5
Logic "0" Input Voltage (V)
5
Logic "0" Input Voltage (V)
16
Supply Voltage (V)
Temperature (oC)
4
3
2
1
14
M ax.
0
-50
4
3
2
M ax.
1
0
-25
0
25
50
Temperature
75
(oC)
Figure 9A. Logic "0" Input Voltage
vs. Temperature
www.irf.com
100
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 9B. Logic "0" Input Voltage
vs. Supply Voltage
9
5
5
4
4
High Level Output (V)
High Level Output (V)
IR2011(S) & (PbF)
3
M ax.
2
1
0
-50
3
M ax.
2
1
0
-25
0
25
50
75
100
10
125
12
o
0.5
0.5
0.4
0.4
0.3
0.2
M ax.
20
0.3
0.2
M ax.
0.1
0.0
-25
0
25
50
Temperature
75
100
125
(oC)
Figure 11A. Low Level Output vs. Temperature
10
18
Figure 10B. High Level Output vs. Supply Voltage
Low Level Output (V)
Low Level Output (V)
Figure 10A. High Level Output vs.Temperature
0.0
-50
16
Supply Voltage (V)
Temperature ( C)
0.1
14
10
12
14
16
18
20
Supply Voltage (V)
Figure 11B. Low Level Output vs. Supply Voltage
www.irf.com
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IR2011(S) & (PbF)
500
400
300
200
100
0
M ax.
50
80
o
Temperature ( C)
110
140
170
200
18
20
V B Boost Voltage (V)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
600
V BS Supply Current (µA)
V BS Supply Current (µA)
600
500
400
300
200
100
M ax.
0
-50
400
300
200
100
M ax.
0
Typ.
-25
0
25
50
75
(o
Temperature C)
www.irf.com
500
100
125
Typ.
10
12
14
16
V BS Floating Supply Voltage (V)
11
IR2011(S) & (PbF)
600
V CC Supply Current (µA)
V CC Supply Current (µA)
600
500
400
300
M ax.
200
Typ.
100
0
-50
-25
0
25
50
75
100
500
400
300
200
M ax.
100
Typ.
0
125
10
12
(o
Temperature C)
60
40
M ax.
Typ.
0
25
50
75
100
Temperature (oC)
125
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
80
-25
18
20
Figure 14B. V CC Supply Current
vs. V CC Supply Voltage
100
0
-50
16
V CC Supply Voltage (V)
Figure 14A. V CC Supply Current
vs. Tem perature
20
14
100
80
60
40
20
M ax.
0
10
Typ.
12
14
16
18
20
Supply Voltage (V)
Figure 15A. Logic "1" Input Bias Current
vs. Tem perature
12
www.irf.com
5
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
IR2011(S) & (PbF)
4
3
2
M ax.
1
0
-50
-25
0
25
50
75
100
5
4
3
2
M ax.
1
0
125
10
12
14
Temperature (oC)
Typ.
M in.
8
7
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 17. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
www.irf.com
V CC and V BS UV Threshold (-) (V)
V CC and V BS UV Threshold (+) (V)
11
9
20
Figure 16B. Logic "0" Input Bias Current
vs. Supply Voltage
12
M ax.
18
Supply Voltage (V)
Figure 16A. Logic "0" Input Bias Current
vs. Tem perature
10
16
12
11
10
9
M ax.
Typ.
8
M in.
7
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 18. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
13
IR2011(S) & (PbF)
5
Output Source Current (A)
Output Source Current (A)
5
4
3
2
Typ.
1
0
-50
4
3
2
Typ.
1
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Output Sink Current (A)
Output Sink Current (A)
20
5
4
3
2
Typ.
4
3
2
1
Typ.
0
-25
0
25
50
75
Temperature (oC)
Figure 20A. Output Sink Current
vs. Temperature
14
18
Figure 19B. Output Source Current
vs. Supply Voltage
5
0
-50
16
Supply Voltage (V)
Figure19A. Output Source Current
vs. Temperature
1
14
100
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 20B. Output Sink Current
vs. Supply Voltage
www.irf.com
Maximum VS Negative Offset (V)
IR2011(S) & (PbF)
0
-3
Typ.
-6
-9
-12
-15
10
12
14
16
18
20
V BS Floating Supply Voltage (V)
Figure 21. Maximum VS Negative Offset
vs. V BS Floating Supply Voltage
www.irf.com
15
IR2011(S) & (PbF)
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8-Lead SOIC
16
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
www.irf.com
IR2011(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2011 order IR2011
8-Lead SOIC IR2011S order IR2011S
Leadfree Part
8-Lead PDIP IR2011 Not available
8-Lead SOIC IR2011S order IR2011SPbF
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com/.
Data and specifications subject to change without notice
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105
5/25/2004
www.irf.com
17