Data Sheet No. PD60163-U IR2109(4) (S) & (PbF) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Matched propagation delay for both channels High side output in phase with IN input Logic and power ground +/- 5V offset. Internal 540ns dead-time, and programmable up to 5us with one external RDT resistor (IR21094) Lower di/dt gate driver for better noise immunity Shut down input turns off both channels. Available in Lead-Free Product Summary VOFFSET IO+/VOUT ton/off (typ.) Dead Time 600V max. 120 mA / 250 mA 10 - 20V 750 & 200 ns 540 ns (programmable up to 5uS for IR21094) Packages 14 Lead SOIC Description The IR2109(4)(S) are high voltage, high speed power 8 Lead SOIC MOSFET and IGBT drivers with dependent high and 14 Lead PDIP low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is 8 Lead PDIP compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC V CC VB IN IN HO SD SD VS COM LO TO LOAD up to 600V IR21094 IR2109 (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com HO V CC V CC VB IN IN VS SD SD TO LOAD DT V SS RDT V SS COM LO 1 IR2109(4) (S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VCC + 0.3 DT Programmable dead-time pin voltage (IR21094 only) VSS - 0.3 VIN Logic input voltage (IN & SD) VSS - 0.3 VCC + 0.3 VSS Logic ground (IR21094/IR21894 only) VCC - 25 VCC + 0.3 dV S/dt PD Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C — 50 — 1.0 (8 Lead SOIC) — 0.625 (14 lead PDIP) — 1.6 — 1.0 (8 Lead PDIP) (14 lead SOIC) RthJA Thermal resistance, junction to ambient (8 Lead PDIP) — 125 (8 Lead SOIC) — 200 (14 lead PDIP) — 75 (14 lead SOIC) 2 Max. — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C www.irf.com IR2109(4) (S) & (PbF) Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and V SS offset rating are tested with all supplies biased at 15V differential. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (IN & SD) VSS VCC DT Programmable dead-time pin voltage (IR21094 only) VSS VCC VSS Logic ground (IR21094 only) -5 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified. Symbol Min. Typ. ton Turn-on propagation delay — 750 950 VS = 0V toff tsd Turn-off propagation delay — 200 280 VS = 0V or 600V Shut-down propagation delay Delay matching, HS & LS turn-on/off — 200 280 — 0 70 tr Turn-on rise time — 150 220 VS = 0V tf Turn-off fall time — 50 80 VS = 0V Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) 400 4 540 5 680 6 Deadtime matching = DTLO - HO - DTHO-LO — 0 60 — 0 600 MT DT MDT www.irf.com Definition Max. Units Test Conditions nsec usec nsec RDT= 0 RDT = 200k (IR21094) RDT=0 RDT = 200k (IR21094) 3 IR2109(4) (S) & (PbF) Static Electrical Characteristics VBIAS (VCC , VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition VIH Logic “1” input voltage for HO & logic “0” for LO VIL Min. Typ. Max. Units Test Conditions 2.9 — — VCC = 10V to 20V Logic “0” input voltage for HO & logic “1” for LO — — 0.8 VCC = 10V to 20V SD input positive going threshold 2.9 — — SD input negative going threshold — — 0.8 VOH High level output voltage, VBIAS - VO — 0.8 1.4 IO = 20 mA VOL Low level output voltage, VO — 0.3 0.6 IO = 20 mA VSD,TH+ VSD,TH- ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 75 130 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic “1” input bias current — 5 20 IIN- Logic “0” input bias current — — 2 VCC and VBS supply undervoltage positive going 8.0 8.9 9.8 7.4 8.2 9.0 0.3 0.7 — V µA mA VCC = 10V to 20V VCC = 10V to 20V VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V RDT = 0 VCCUV+ VBSUV+ VCCUV- µA IN = 5V, SD = 0V IN = 0V, SD = 5V threshold VCC and VBS supply undervoltage negative going VBSUV- threshold VCCUVH Hysteresis V VBSUVH 4 IO+ Output high short circuit pulsed vurrent 120 200 — IO- Output low short circuit pulsed current 250 350 — mA VO = 0V, PW ≤ 10 µs VO = 15V,PW ≤ 10 µs www.irf.com IR2109(4) (S) & (PbF) Functional Block Diagrams VB IR2109 UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER Q R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME UV DETECT +5V VSS/COM LEVEL SHIFT SD LO DELAY COM VB IR21094 UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME DT UV DETECT +5V SD Q VSS/COM LEVEL SHIFT DELAY LO COM VSS www.irf.com 5 IR2109(4) (S) & (PbF) Lead Definitions Symbol Description IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM for IR2109 and VSS for IR21094) Logic input for shutdown (referenced to COM for IR2109 and VSS for IR21094) SD DT Programmable dead-time lead, referenced to VSS. (IR21094 only) VSS Logic Ground (21094 only) VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments VCC 1 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 SD VS 6 3 SD VS 6 COM LO COM LO 5 4 1 5 4 8 Lead PDIP 8 Lead SOIC IR2109 IR2109S 14 VCC 1 14 VCC IN VB 13 12 11 IN VB 13 3 SD HO 12 3 SD HO 4 DT VS 11 4 DT VS 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 LO 8 7 LO 8 2 7 6 VB 2 14 Lead PDIP 14 Lead SOIC IR21094 IR21094S www.irf.com IR2109(4) (S) & (PbF) IN(LO) IN 50% 50% SD IN(HO) ton toff tr 90% HO LO HO LO Figure 1. Input/Output Timing Diagram 90% 10% 10% Figure 2. Switching Time Waveform Definitions SD 50% 50% tf 50% IN tsd 90% HO LO 90% HO LO DT LO-HO 10% DT HO-LO 90% Figure 3. Shutdown Waveform Definitions 10% MDT= DT LO-HO - DTHO-LO Figure 4. Deadtime Waveform Definitions IN (LO) 50% 50% IN (HO) LO HO 10% MT MT 90% LO HO Figure 5. Delay Matching Waveform Definitions www.irf.com 7 IR2109(4) (S) & (PbF) 1300 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 1300 1100 900 M ax T yp. 700 500 -50 -25 0 25 50 75 100 1100 Max. 900 T yp. 700 500 125 10 12 Figure 6A. Turn-on Propagation Delay vs. Temperature 18 20 500 Turn-of f Propagation Delay (ns) Turn-of f Propagation Delay (ns) 16 Figure 6B. Turn-on Propagation Delay vs. Supply Voltage 500 400 300 Max. 200 T yp. 100 400 Max. 300 T yp. 200 100 0 0 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 7A. Turn-off Propagation Delay vs. Temperature 8 14 V BIAS Supply Voltage (V) Temperature ( oC) 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 7B. Turn-off Propagation Delay vs. Supply Voltage www.irf.com IR2109(4) (S) & (PbF) 500 SD Propagation Delay (ns) SD Propagation Delay (ns) 500 400 300 Max. 200 T yp. 100 400 Max. 300 T yp. 200 100 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature ( C) 16 18 20 Figure 8B. SD Propagation Delay vs. Supply Voltage 500 500 400 400 Turn-on Rise Time (ns) Turn-on Rise Time (ns) Figure 8A. SD Propagation Delay vs. Temperature 300 200 14 V BIAS Supply Voltage (V) o Max. T yp. 100 300 Max. T yp. 200 100 0 0 -5 0 -25 0 25 50 75 1 00 Temperature ( oC) Figure 9A. Turn-on Rise Time vs. Temperature www.irf.com 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 9B. Turn-on Rise Time vs. Supply Voltage 9 IR2109(4) (S) & (PbF) 200 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 200 150 100 Max. 50 150 100 Max. T yp. 50 T yp. 0 0 -50 -25 0 25 50 75 100 10 125 12 18 20 Figure 10B. Turn-off Fall Time vs. Supply Voltage 1000 1000 800 800 Deadtime (ns) Deadtime (ns) Figure 10A. Turn-off Fall Time vs. Temperature Max. 600 T yp. Min. 600 Max. T yp. Min. 400 200 200 -50 -25 0 25 50 75 100 Temperature ( oC) Figure 11A. Deadtime vs. Temperature 10 16 V BIAS Supply Voltage (V) Temperature ( oC) 400 14 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 11B. Deadtime vs. Supply Volta ge www.irf.com IR2109(4) (S) & (PbF) 5 7 Logic "1" Input Voltage (V) Deadtime ( s) 6 M ax. 5 T yp. 4 M in. 3 2 1 4 Max. 3 2 1 0 0 0 50 100 150 200 -50 -25 0 RDT (KΩ) 50 75 100 125 o Temperature ( C) Figure 11C. Deadtime vs. RDT (IR21094 only) Figure 12A. Logic “1” Input Voltage vs. Temperature 5 Logic "0" Input Voltage (V) 5 Logic "1" Input Voltage (V) 25 4 Max. 3 2 1 0 4 3 2 Min. 1 0 10 12 14 16 18 V CC Supply Voltage (V) Figure 12B. Logic “1” Input Voltage vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 13A. Logic “0” Input Voltage vs. Temperature 11 IR2109(4) (S) & (PbF) 5 SD Positive Going Threshold (V) Logic "0" Input Voltage (V) 5 4 3 2 Min. 1 4 2 1 0 10 12 14 16 18 Max. 3 0 20 -50 -25 0 V CC Supply Voltage (V) Figure 13B. Logic “0” Input Current vs. Supply Voltage 75 100 125 5 SD Negative Going Threshold (V) SD Positive Going Threshold (V) 50 Figure 14A. SD Positive Going Threshold vs. Temperature 5 4 Max. 3 2 1 0 4 3 2 Min. 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 14B. SD Positive Going Threshold vs. Supply Voltage 12 25 Temperature (oC) -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 15A. SD Negative Going Threshold vs. Temperature www.irf.com IR2109(4) (S) & (PbF) 4 High Level Output Voltage (V) SD Negative Going Threshold (V) 5 4 3 2 Min. 1 0 10 12 14 16 18 20 3 2 1 M ax. T yp. 0 -50 -25 0 V CC Supply Voltage (V) Figure 15B. SD Negative Going Threshold vs. Supply Voltage 50 75 100 125 Figure 16A. High Level Output Voltage vs. Temperature 4 1.5 Low Level Output Voltage (V) High Level Output Voltage (V) 25 Temperature ( oC) 3 Max. 2 T yp. 1 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Voltage www.irf.com 1.2 0.9 0.6 Max. 0.3 T yp. 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 17A. Low Level Output Voltage vs. Temperature 13 IR2109(4) (S) & (PbF) Offset Supply Leakage Current ( A) Low Level Output Voltage (V) 1.5 1.2 0.9 Max. 0.6 T yp. 0.3 0 10 12 14 16 18 500 400 300 200 100 Max. 0 -50 20 -25 50 75 100 125 Temperature ( C) Figure 17B. Low Level Output Voltage vs. Supply Voltage Figure 18A. Offset Supply Leakage Current vs. Temperature 500 400 V BS Supply Current ( A) Of f set Supply Leakage Current ( A) 25 o V BIAS Supply Voltage (V) 400 300 200 100 Max. 300 200 Max. 100 T yp. Min. 0 0 0 100 200 300 400 500 V B Boost Voltage (V) igure 18B. Offset Supply Leakage Current vs. Boost Voltage 14 0 600 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 19A. VBS Supply Current vs. Temperature www.irf.com IR2109(4) (S) & (PbF) 3.0 Vcc Supply Current (mA) V B S Supply Current ( A) 400 300 200 Max . 100 T yp. 2.5 2.0 Max. 1.5 T yp. 1.0 Min. 0.5 Min. 0 0.0 10 12 14 16 18 20 -50 -25 0 Figure 19B. VBS Supply Current vs. Supply Voltage 50 75 100 125 Figure 20A. VCC Supply Current vs. Temperature 60 Logic "1" Input Current ( A) 3.0 V CC Supply Current (mA) 25 Temperature ( oC) V BS Supply Voltage (V) 2.5 2.0 1.5 Max. 1.0 T yp. 0.5 Min. 50 40 30 20 10 Max. T yp. 0 0.0 10 12 14 16 18 V CC Supply Voltage (V) Figure 20B. VCC Supply Current vs. VCC Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 Temperature (oC) Fi 21A L i "1" I C Figure 21A. Logic “1” Input Current vs. Temperature 15 IR2109(4) (S) & (PbF) 5 50 Logic "0" Input Current ( A) Logic "1" Input Current ( A) 60 40 30 Max. 20 10 T yp. 0 4 3 Max. 2 1 0 10 12 14 16 18 20 -50 -25 0 V CC Supply Voltage (V) 75 100 125 Temperature ( C) Figure 22A. Logic “0” Input Current vs. Temperature 12 V CC UVLO Threshold (+) (V) 5 Logic "0" Input Current ( A) 50 o Figure 21B. Logic “1” Input Current vs. Supply Voltage 4 3 Max. 2 1 11 10 Max. 9 T yp. Min. 8 7 0 10 12 14 16 18 V CC Supply Voltage (V) Figure 22B. Logic “0” Input Currentt vs. Supply Voltage 16 25 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 23. VCC Undervoltage Threshold (+) vs. Temperature www.irf.com IR2109(4) (S) & (PbF) 12 V BS UVLO Threshold (+) (V) V CC UVLO Threshold (-) (V) 11 10 Max. 9 T yp. 8 Min. 7 6 -50 -25 0 25 50 75 100 11 Max. 10 T yp. 9 Min. 8 7 125 -50 -25 0 Temperature ( oC) 75 100 125 Temperature ( C) Figure 25. VBS Undervoltage Threshold (+) vs. Temperature 500 Output Source Current ( A) 11 V BS UVLO Threshold (-) (V) 50 o Figure 24. VCC Undervoltage Threshold (-) vs. Temperature 10 9 25 Max. T yp. 8 Min. 7 400 300 T yp. 200 Min. 100 0 6 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 26. VBS Undervoltage Threshold (-) vs. Temperature www.irf.com -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 27A. Output Source Current vs. Temperature 17 IR2109(4) (S) & (PbF) 600 Output Sink Current ( A) Output Source Current ( A) 500 400 300 200 T yp. 100 500 T yp. 400 Min. 300 200 100 Min. 0 0 10 12 14 16 18 -50 20 -25 50 75 100 125 Temperature ( C) Figure 27B. Output Source Current vs. Supply Voltage Figure 28A. Output Sink Current vs. Temperature 0 V S Offset Supply Voltage (V) 600 Output Sink Current ( A) 25 o V BIAS Supply Voltage (V) 500 400 300 T yp. 200 Min. 100 -2 T yp. -4 -6 -8 -10 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 28B. Output Sink Currentt vs. Supply Voltage 18 0 10 12 14 16 18 20 V BS Flouting Supply Voltage (V) Figure 29. Maximum VS Negative Offset vs. Supply Voltage www.irf.com 140 140 120 120 100 80 140V 70V 60 0V Temperature (oC) Temprature (oC) IR2109(4) (S) & (PbF) 40 100 140V 80 70V 60 0V 40 20 20 1 10 100 1 1000 140 140 120 120 140V 70V 0V 60 1000 Figure 31. IR2109 vs Frequency (IRFBC30) Rgate = 22W, VCC = 15V 40 Temperature (oC) Temperature (oC) Figure 30. IR2109 vs Frequency (IRFBC20) Rgate = 33W, VCC = 15V 80 100 Frequency (KHz) Frequency (KHz) 100 10 140V 70V 0V 100 80 60 40 20 20 1 10 100 1000 Frequency (KHz) Figure 32. IR2109 vs Frequency (IRFBC40) Rgate = 15W, VCC = 15V www.irf.com 1 10 100 1000 Frequency (KHz) Figure 33. IR2109 vs Frequency (IRFPE50) Rgate = 10W, VCC = 15V 19 140 140 120 120 100 80 60 140V 70V 40 Temperature (oC) Temperature (oC) IR2109(4) (S) & (PbF) 100 80 140V 60 70V 40 0V 0V 20 20 1 10 100 1000 1 Figure 34. IR21094 vs. Frequency (IRFBC20), Rgate=33 , V CC=15V 1000 Figure 35. IR21094 vs. Frequency (IRFBC30), Rgate=22 , V CC=15V : : 140 140 120 120 100 140V 80 70V 60 0V 40 Temperature (oC) Temperature (oC) 100 Frequency (KHz) Frequency (KHz) 140V 70V 100 0V 80 60 40 20 20 1 10 100 1000 Frequency (KHz) Figure 36. IR21094 vs. Frequency (IRFBC40), Rgate=15 , V CC=15V : 20 10 1 10 100 1000 Frequency (KHz) Figure 37. IR21094 vs. Frequency (IRFPE50), Rgate=10 , V CC=15V : www.irf.com 140 140 120 120 100 80 140V 70V 60 0V 40 Temperature (oC) Temperature (oC) IR2109(4) (S) & (PbF) 140V 100 70V 80 0V 60 40 20 20 1 10 100 1 1000 1000 Figure 39. IR2109S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V Figure 38. IR2109S vs. Frequency (IRFBC20), Rgate=33 , V CC=15V : : 140V70V 140V 70V 0V 140 120 0V 100 80 60 Tempreture (oC) 120 Temperature (oC) 100 Frequency (KHz) Frequency (KHz) 140 10 100 80 60 40 40 20 20 1 10 100 1000 Frequency (KHz) Figure 40. IR2109S vs. Frequency (IRFBC40), Rgate=15 , V CC=15V : www.irf.com 1 10 100 1000 Frequency (KHz) Figure 41. IR2109S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V : 21 140 140 120 120 100 80 60 140V 70V 0V 40 Temperature (oC) Temperature (oC) IR2109(4) (S) & (PbF) 100 80 140V 70V 60 0V 40 20 20 1 10 100 1 1000 Figure 42. IR21094S vs. Frequency (IRFBC20), Rgate=33 , V CC=15V 120 120 140V 70V 0V Temperature (oC) Temperature (oC) 140 60 20 20 100 1000 0V 80 40 10 140V 70V 100 40 1 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 44. IR21094S vs. Frequency (IRFBC40), Rgate=15 , V CC=15V Figure 45. IR21094S vs. Frequency (IRFPE50), Rgate=10 , V CC=15V : 22 : 140 60 1000 Figure 43. IR21094S vs. Frequency (IRFBC30), Rgate=22 , V CC=15V : 80 100 Frequency (KHz) Frequency (KHz) 100 10 : www.irf.com IR2109(4) (S) & (PbF) Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A F OOT PRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 e 3X 1.27 [.050] e1 8X b 0.25 [.010] A1 A 8X 1.78 [.070] 0.25 .0098 0.10 .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC 1.27 BAS IC .025 BAS IC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° C y 0.10 [.004] 8X L 8X c 7 C A B NOT ES : 1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIME TER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S]. 4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA. 8 Lead SOIC www.irf.com MAX b e1 6X MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O A SUBS TRAT E. 01-6027 01-0021 11 (MS-012AA) 23 IR2109(4) (S) & (PbF) 14 Lead PDIP 14 Lead SOIC (narrow body) 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) Data and specifications subject to change without notice. 7/11/2003 24 www.irf.com IR2109(4) (S) & (PbF) Basic Part (Non-Lead Free) 8-Lead PDIP IR2109 8-Lead SOIC IR2109S 14-Lead PDIP IR21094 14-Lead SOICIR21094S order order order order Lead-Free Part IR2109 IR2109S IR21094 IR21094S 8-Lead PDIP IR2109 8-Lead SOIC IR2109S 14-Lead PDIP IR21094 14-Lead SOIC IR21094S order order order order IR2109PbF IR2109SPbF IR21094PbF IR21094SPbF This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Website. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/08/04 www.irf.com 25