Data Sheet No. PD60026-K IR2112 HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600V • Tolerant to negative transient voltage • • • • • • • • dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels Separate logic supply range from 5 to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 125 & 105 ns Delay Matching 30 ns Packages Description The IR2112 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection 14 lead PDIP 16 lead SOIC (wide body) 14 lead PDIP w/o lead 4 16 lead PDIP w/o leads 4 & 5 up to 600V HO VDD VDD VB HIN HIN VS SD SD LIN LIN VCC VSS VSS COM VCC www.irf.com TO LOAD LO 287 IR2112 Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol Definition VB High Side Floating Supply Voltage VS Min. Max. -0.3 625 Units High Side Floating Supply Offset Voltage VB - 25 VB + 0.3 VHO High Side Floating Output Voltage VS - 0.3 VB + 0.3 VCC Low Side Fixed Supply Voltage -0.3 25 VLO Low Side Output Voltage -0.3 VCC + 0.3 VDD Logic Supply Voltage -0.3 VSS + 25 VSS Logic Supply Offset Voltage VCC - 25 VCC + 0.3 VIN Logic Input Voltage (HIN, LIN & SD) VSS - 0.3 VDD + 0.3 — 50 dVs/dt PD RTHJA Allowable Offset Supply Voltage Transient (Figure 2) Package Power Dissipation @ TA ≤ +25°C (14 Lead DIP) — 1.6 (14 Lead DIP w/o Lead 4) — 1.5 (16 Lead DIP w/o Leads 4 & 5) — 1.6 (16 Lead SOIC) — 1.25 (14 Lead DIP) — 75 (14 Lead DIP w/o Lead 4) — 85 (16 Lead DIP w/o Leads 4 & 5) — 75 (16 Lead SOIC) — 100 Thermal Resistance, Junction to Ambient TJ Junction Temperature — 150 TS Storage Temperature -55 150 TL Lead Temperature (Soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol Definition VB High Side Floating Supply Absolute Voltage VS High Side Floating Supply Offset Voltage Min. Max. Units VS + 10 VS + 20 Note 1 600 VB VHO High Side Floating Output Voltage VS VCC Low Side Fixed Supply Voltage 10 20 VLO Low Side Output Voltage 0 VCC VDD Logic Supply Voltage VSS + 4.5 VSS + 20 VSS Logic Supply Offset Voltage VIN TA -5 5 Logic Input Voltage (HIN, LIN & SD) VSS VDD Ambient Temperature -40 125 V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. 2 www.irf.com IR2112 Dynamic Electrical Characteristics VBIAS (VCC , V BS , VDD ) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions ton Turn-On Propagation Delay 7 — 125 180 VS = 0V toff Turn-Off Propagation Delay 8 — 105 160 VS = 600V tsd Shutdown Propagation Delay 9 — 105 160 tr Turn-On Rise Time 10 — 80 130 tf Turn-Off Fall Time 11 — 40 65 Delay Matching, HS & LS Turn-On/Off — — — 30 MT ns VS = 600V Figure 5 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Figure Min. Typ. Max. Units Test Conditions VIH Logic “1” Input Voltage 12 9.5 — — VIL Logic “0” Input Voltage 13 — — 6.0 VOH 14 — — 100 VOL High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO 15 — — 100 ILK Offset Supply Leakage Current 16 — — 50 VB = VS = 600V IQBS Quiescent VBS Supply Current 17 — 25 60 VIN = 0V or VDD IQCC Quiescent VCC Supply Current 18 — 80 180 IQDD Quiescent VDD Supply Current 19 — 2.0 5.0 Logic “1” Input Bias Current 20 — 20 40 VIN = VDD 21 22 — 7.4 — 8.5 1.0 9.6 VIN = 0V 23 7.0 8.1 9.2 24 7.6 8.6 9.6 25 7.2 8.2 9.2 IO+ Logic “0” Input Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current 26 200 250 — IO- Output Low Short Circuit Pulsed Current 27 420 500 — IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUV- www.irf.com V mV µA IO = 0A IO = 0A VIN = 0V or VDD VIN = 0V or VDD V mA VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs 3 IR2112 Functional Block Diagram VB UV DETECT VDD R Q S HIN HV LEVEL SHIFT VDD /VCC LEVEL SHIFT PULSE FILTER R R Q HO S PULSE GEN VS SD VCC UV DETECT VDD /VCC LEVEL SHIFT LIN S R Q LO DELAY COM VSS Lead Definitions Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return Lead Assignments 14 Lead DIP 14 Lead DIP w/o Lead 4 16 Lead DIP w/o Leads 4 & 5 16 Lead SOIC (Wide Body) IR2112 IR2112-1 IR2112-2 IR2112S Part Number 4 www.irf.com IR2112 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit 50% 50% HIN LIN ton toff tr 90% HO LO Figure 3. Switching Time Test Circuit 50% 90% 10% 10% Figure 4. Switching Time Waveform Definition HIN LIN SD tf 50% 50% LO HO tsd HO LO 10% 90% MT MT 90% LO Figure 5. Shutdown Waveform Definitions www.irf.com HO Figure 6. Delay Matching Waveform Definitions 5 250 250 200 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2112 150 100 Typ. 50 150 Typ. 100 50 0 -50 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) 250 250 200 200 150 100 Typ. 50 18 20 150 Typ. 100 50 0 -50 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 200 Shutdown Delay time (ns) Shutdown Delay Time (ns) 16 Figure 7B. Turn-On Time vs. Voltage Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) Figure 7A. Turn-On Time vs. Temperature 150 100 Typ. 50 150 Typ. 100 50 0 -50 0 -25 0 25 50 75 100 Temperature (°C) Figure 9A. Shutdown Time vs. Temperature 6 14 VBIAS Supply Voltage (V) 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Shutdown Time vs. Voltage www.irf.com 250 250 200 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2112 150 100 Typ. 50 150 Typ. 100 50 0 -50 0 -25 0 25 50 75 100 125 10 12 Figure 10A. Turn-On Rise Time vs. Temperature 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage 125 125 100 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 14 VBIAS Supply Voltage (V) Temperature (°C) 75 50 75 50 Typ. Typ. 25 25 0 -50 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 12.0 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Figure 11A. Turn-Off Fall Time vs. Temperature Min. 9.0 6.0 3.0 0.0 -50 14 VBIAS Supply Voltage (V) 9.0 6.0 Min. 3.0 0.0 -25 0 25 50 75 100 125 Temperature (°C) Figure 12A. Logic “1” Input Threshold vs. Temperature www.irf.com 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12B. Logic “1” Input Threshold vs. Voltage 7 15.0 15.0 12.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2112 9.0 6.0 Max. 3.0 9.0 6.0 3.0 Max. 0.0 -50 0.0 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 1.00 1.00 0.80 0.80 0.60 0.40 0.20 15 17.5 20 0.60 0.40 0.20 Max. Max. 0.00 -50 0.00 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) 12.5 Figure 13B. Logic “0” Input Threshold vs. Voltage High Level Output Voltage (V) High Level Output Voltage (V) Figure 13A. Logic “0” Input Threshold vs. Temperature 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 -50 0.00 -25 0 25 50 75 100 Temperature (°C) Figure 15A. Low Level Output vs. Temperature 8 10 VDD Logic Supply Voltage (V) 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15B. Low Level Output vs. Voltage www.irf.com 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IR2112 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 125 0 100 100 100 80 80 60 40 600 Typ. 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage 250 250 200 200 VCC Supply Current (µA) VCC Supply Current (µA) 500 40 Temperature (°C) 150 100 150 100 Typ. Typ. 50 0 -50 400 60 20 Typ. 0 -50 300 Figure 16B. Offset Supply Current vs. Voltage VBS Supply Current (µA) VBS Supply Current (µA) Figure 16A. Offset Supply Current vs. Temperature 20 200 VB Boost Voltage (V) Temperature (°C) 50 0 -25 0 25 50 75 100 Temperature (°C) Figure 18A. VCC Supply Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage 9 10.0 10.0 8.0 8.0 VDD Supply Current (µA) VDD Supply Current (µA) IR2112 6.0 4.0 2.0 6.0 4.0 2.0 Typ. 0.0 -50 Typ. 0.0 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 100 100 80 80 60 40 20 20 Typ. -25 0 25 50 75 100 125 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 20B. Logic “1” Input Current vs. Voltage 5.00 5.00 4.00 4.00 Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) 20 0 Figure 20A. Logic “1” Input Current vs. Temperature 3.00 2.00 Max. 3.00 2.00 1.00 Max. 0.00 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Logic “0” Input Current vs. Temperature 10 17.5 40 Temperature (°C) 0.00 -50 15 60 Typ. 1.00 12.5 Figure 19B. VDD Supply Current vs. Voltage Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) Figure 19A. VDD Supply Current vs. Temperature 0 -50 10 VDD Logic Supply Voltage (V) 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. Voltage www.irf.com 11.0 11.0 10.0 10.0 VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) IR2112 9.0 Typ. 8.0 7.0 9.0 8.0 Typ. 7.0 6.0 -50 -25 0 25 50 75 100 6.0 -50 125 -25 0 Temperature (°C) 50 75 100 11.0 11.0 10.0 10.0 9.0 Typ. 8.0 7.0 9.0 Typ. 8.0 7.0 6.0 -50 -25 0 25 50 75 100 6.0 -50 125 -25 0 Temperature (°C) 25 50 75 100 500 500 400 400 Output Source Current (mA)(A) Output Source Current Figure 25. VCC Undervoltage (-) vs. Temperature Typ. 200 100 0 -50 125 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature 300 125 Figure 23. VBS Undervoltage (-) vs. Temperature VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) Figure 22. VBS Undervoltage (+) vs. Temperature Output Source Current (mA) 25 Temperature (°C) 300 200 Typ. 100 0 -25 0 25 50 75 100 125 Temperature (°C) Figure 26A. Output Source Current vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage 11 IR2112 750 Typ. 600 Output Sink Current (A) Output Sink Current (mA) 600 750 450 300 150 0 -50 450 300 Typ. 150 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 27A. Output Sink Current vs. Temperature 18 20 150 125 100 75 140V 50 10V 320V 125 320V Junction Temperature (°C) Junction Temperature (°C) 16 Figure 27B. Output Sink Current vs. Voltage 150 25 0 1E+2 14 VBIAS Supply Voltage (V) 100 140V 75 10V 50 25 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 28. IR2112 TJ vs. Frequency (IRFBC20) Ω, VCC = 15V RGATE = 33Ω Figure 29. IR2112 TJ vs. Frequency (IRFBC30) Ω , VCC = 15V RGATE = 22Ω 320V 150 320V 140V 10V 150 125 125 100 10V 75 50 25 0 1E+2 100 75 50 25 1E+3 1E+4 1E+5 Frequency (Hz) Figure 30. IR2112 TJ vs. Frequency (IRFBC40) Ω, VCC = 15V RGATE = 15Ω 12 Junction Temperature (°C) Junction Temperature (°C) 140V 1E+6 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 31. IR2112 TJ vs. Frequency (IRFPE50) Ω , VCC = 15V RGATE = 10Ω www.irf.com IR2112 150 140V 125 100 140V 75 10V 50 Junction Temperature (°C) 125 Junction Temperature (°C) 320V 150 320V 25 100 75 10V 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 32. IR2112S TJ vs. Frequency (IRFBC20) Ω , VCC = 15V RGATE = 33Ω Figure 33. IR2112S TJ vs. Frequency (IRFBC30) Ω, VCC = 15V RGATE = 22Ω 320V 150 320V 140V 10V 150 140V 125 10V Junction Temperature (°C) Junction Temperature (°C) 125 100 75 50 25 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) Figure 34. IR2112S TJ vs. Frequency (IRFBC40) Ω , VCC = 15V RGATE = 15Ω 1E+5 1E+6 Figure 35. IR2112S TJ vs. Frequency (IRFPE50) Ω, VCC = 15V RGATE = 10Ω 0.0 20.0 VSS Logic Supply Offset Voltage (V) -3.0 VS Offset Supply Voltage (V) 1E+4 Frequency (Hz) Typ. -6.0 -9.0 -12.0 -15.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com 20 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 3/30/2000 13 IR2112 Case Outlines 14 Lead PDIP 14 Lead PDIP w/o Lead 4 14 01-3002 03 01-3008 02 www.irf.com IR2112 16 Lead PDIP w/o Leads 4 & 5 16 Lead SOIC (wide body) 01-3010 02 01-3014 03 4/12/2000 www.irf.com 15