ETC IR2112-1

Data Sheet No. PD60026-K
IR2112
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600V
• Tolerant to negative transient voltage
•
•
•
•
•
•
•
•
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
Separate logic supply range from 5 to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
125 & 105 ns
Delay Matching
30 ns
Packages
Description
The IR2112 is a high voltage, high speed power
MOSFET and IGBT driver with independent high and
low side referenced output channels. Proprietary HVIC
and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The
output drivers feature a high pulse current buffer stage
designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in the
high side configuration which operates up to 600 volts.
Typical Connection
14 lead PDIP
16 lead SOIC
(wide body)
14 lead PDIP
w/o lead 4
16 lead PDIP
w/o leads 4 & 5
up to 600V
HO
VDD
VDD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
VCC
VSS
VSS
COM
VCC
www.irf.com
TO
LOAD
LO
287
IR2112
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
Definition
VB
High Side Floating Supply Voltage
VS
Min.
Max.
-0.3
625
Units
High Side Floating Supply Offset Voltage
VB - 25
VB + 0.3
VHO
High Side Floating Output Voltage
VS - 0.3
VB + 0.3
VCC
Low Side Fixed Supply Voltage
-0.3
25
VLO
Low Side Output Voltage
-0.3
VCC + 0.3
VDD
Logic Supply Voltage
-0.3
VSS + 25
VSS
Logic Supply Offset Voltage
VCC - 25
VCC + 0.3
VIN
Logic Input Voltage (HIN, LIN & SD)
VSS - 0.3
VDD + 0.3
—
50
dVs/dt
PD
RTHJA
Allowable Offset Supply Voltage Transient (Figure 2)
Package Power Dissipation @ TA ≤ +25°C
(14 Lead DIP)
—
1.6
(14 Lead DIP w/o Lead 4)
—
1.5
(16 Lead DIP w/o Leads 4 & 5)
—
1.6
(16 Lead SOIC)
—
1.25
(14 Lead DIP)
—
75
(14 Lead DIP w/o Lead 4)
—
85
(16 Lead DIP w/o Leads 4 & 5)
—
75
(16 Lead SOIC)
—
100
Thermal Resistance, Junction to Ambient
TJ
Junction Temperature
—
150
TS
Storage Temperature
-55
150
TL
Lead Temperature (Soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
Definition
VB
High Side Floating Supply Absolute Voltage
VS
High Side Floating Supply Offset Voltage
Min.
Max.
Units
VS + 10
VS + 20
Note 1
600
VB
VHO
High Side Floating Output Voltage
VS
VCC
Low Side Fixed Supply Voltage
10
20
VLO
Low Side Output Voltage
0
VCC
VDD
Logic Supply Voltage
VSS + 4.5
VSS + 20
VSS
Logic Supply Offset Voltage
VIN
TA
-5
5
Logic Input Voltage (HIN, LIN & SD)
VSS
VDD
Ambient Temperature
-40
125
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS.
2
www.irf.com
IR2112
Dynamic Electrical Characteristics
VBIAS (VCC , V BS , VDD ) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-On Propagation Delay
7
—
125
180
VS = 0V
toff
Turn-Off Propagation Delay
8
—
105
160
VS = 600V
tsd
Shutdown Propagation Delay
9
—
105
160
tr
Turn-On Rise Time
10
—
80
130
tf
Turn-Off Fall Time
11
—
40
65
Delay Matching, HS & LS Turn-On/Off
—
—
—
30
MT
ns
VS = 600V
Figure 5
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” Input Voltage
12
9.5
—
—
VIL
Logic “0” Input Voltage
13
—
—
6.0
VOH
14
—
—
100
VOL
High Level Output Voltage, VBIAS - VO
Low Level Output Voltage, VO
15
—
—
100
ILK
Offset Supply Leakage Current
16
—
—
50
VB = VS = 600V
IQBS
Quiescent VBS Supply Current
17
—
25
60
VIN = 0V or VDD
IQCC
Quiescent VCC Supply Current
18
—
80
180
IQDD
Quiescent VDD Supply Current
19
—
2.0
5.0
Logic “1” Input Bias Current
20
—
20
40
VIN = VDD
21
22
—
7.4
—
8.5
1.0
9.6
VIN = 0V
23
7.0
8.1
9.2
24
7.6
8.6
9.6
25
7.2
8.2
9.2
IO+
Logic “0” Input Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
Output High Short Circuit Pulsed Current
26
200
250
—
IO-
Output Low Short Circuit Pulsed Current
27
420
500
—
IIN+
IINVBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
V
mV
µA
IO = 0A
IO = 0A
VIN = 0V or VDD
VIN = 0V or VDD
V
mA
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2112
Functional Block Diagram
VB
UV
DETECT
VDD
R Q
S
HIN
HV
LEVEL
SHIFT
VDD /VCC
LEVEL
SHIFT
PULSE
FILTER
R
R
Q
HO
S
PULSE
GEN
VS
SD
VCC
UV
DETECT
VDD /VCC
LEVEL
SHIFT
LIN
S
R Q
LO
DELAY
COM
VSS
Lead Definitions
Symbol
Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
14 Lead DIP
14 Lead DIP w/o Lead 4
16 Lead DIP w/o Leads 4 & 5
16 Lead SOIC (Wide Body)
IR2112
IR2112-1
IR2112-2
IR2112S
Part Number
4
www.irf.com
IR2112
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test
Circuit
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
50%
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
SD
tf
50%
50%
LO
HO
tsd
HO
LO
10%
90%
MT
MT
90%
LO
Figure 5. Shutdown Waveform Definitions
www.irf.com
HO
Figure 6. Delay Matching Waveform Definitions
5
250
250
200
200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IR2112
150
100
Typ.
50
150
Typ.
100
50
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
250
250
200
200
150
100
Typ.
50
18
20
150
Typ.
100
50
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200
200
Shutdown Delay time (ns)
Shutdown Delay Time (ns)
16
Figure 7B. Turn-On Time vs. Voltage
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
Figure 7A. Turn-On Time vs. Temperature
150
100
Typ.
50
150
Typ.
100
50
0
-50
0
-25
0
25
50
75
100
Temperature (°C)
Figure 9A. Shutdown Time vs. Temperature
6
14
VBIAS Supply Voltage (V)
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9B. Shutdown Time vs. Voltage
www.irf.com
250
250
200
200
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2112
150
100
Typ.
50
150
Typ.
100
50
0
-50
0
-25
0
25
50
75
100
125
10
12
Figure 10A. Turn-On Rise Time vs. Temperature
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
125
125
100
100
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
14
VBIAS Supply Voltage (V)
Temperature (°C)
75
50
75
50
Typ.
Typ.
25
25
0
-50
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0
12.0
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Min.
9.0
6.0
3.0
0.0
-50
14
VBIAS Supply Voltage (V)
9.0
6.0
Min.
3.0
0.0
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
www.irf.com
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
7
15.0
15.0
12.0
12.0
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2112
9.0
6.0
Max.
3.0
9.0
6.0
3.0
Max.
0.0
-50
0.0
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
1.00
1.00
0.80
0.80
0.60
0.40
0.20
15
17.5
20
0.60
0.40
0.20
Max.
Max.
0.00
-50
0.00
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
12.5
Figure 13B. Logic “0” Input Threshold vs. Voltage
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
-50
0.00
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
8
10
VDD Logic Supply Voltage (V)
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
www.irf.com
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IR2112
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
125
0
100
100
100
80
80
60
40
600
Typ.
0
-25
0
25
50
75
100
125
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 17A. VBS Supply Current vs. Temperature
Figure 17B. VBS Supply Current vs. Voltage
250
250
200
200
VCC Supply Current (µA)
VCC Supply Current (µA)
500
40
Temperature (°C)
150
100
150
100
Typ.
Typ.
50
0
-50
400
60
20
Typ.
0
-50
300
Figure 16B. Offset Supply Current vs. Voltage
VBS Supply Current (µA)
VBS Supply Current (µA)
Figure 16A. Offset Supply Current vs. Temperature
20
200
VB Boost Voltage (V)
Temperature (°C)
50
0
-25
0
25
50
75
100
Temperature (°C)
Figure 18A. VCC Supply Current vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 18B. VCC Supply Current vs. Voltage
9
10.0
10.0
8.0
8.0
VDD Supply Current (µA)
VDD Supply Current (µA)
IR2112
6.0
4.0
2.0
6.0
4.0
2.0
Typ.
0.0
-50
Typ.
0.0
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
100
100
80
80
60
40
20
20
Typ.
-25
0
25
50
75
100
125
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 20B. Logic “1” Input Current vs. Voltage
5.00
5.00
4.00
4.00
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
20
0
Figure 20A. Logic “1” Input Current vs. Temperature
3.00
2.00
Max.
3.00
2.00
1.00
Max.
0.00
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “0” Input Current vs. Temperature
10
17.5
40
Temperature (°C)
0.00
-50
15
60
Typ.
1.00
12.5
Figure 19B. VDD Supply Current vs. Voltage
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
Figure 19A. VDD Supply Current vs. Temperature
0
-50
10
VDD Logic Supply Voltage (V)
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. Voltage
www.irf.com
11.0
11.0
10.0
10.0
VBS Undervoltage Lockout - (V)
VBS Undervoltage Lockout + (V)
IR2112
9.0
Typ.
8.0
7.0
9.0
8.0
Typ.
7.0
6.0
-50
-25
0
25
50
75
100
6.0
-50
125
-25
0
Temperature (°C)
50
75
100
11.0
11.0
10.0
10.0
9.0
Typ.
8.0
7.0
9.0
Typ.
8.0
7.0
6.0
-50
-25
0
25
50
75
100
6.0
-50
125
-25
0
Temperature (°C)
25
50
75
100
500
500
400
400
Output Source
Current
(mA)(A)
Output Source
Current
Figure 25. VCC Undervoltage (-) vs. Temperature
Typ.
200
100
0
-50
125
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
300
125
Figure 23. VBS Undervoltage (-) vs. Temperature
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
Figure 22. VBS Undervoltage (+) vs. Temperature
Output Source Current (mA)
25
Temperature (°C)
300
200
Typ.
100
0
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26A. Output Source Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 26B. Output Source Current vs. Voltage
11
IR2112
750
Typ.
600
Output Sink Current (A)
Output Sink Current (mA)
600
750
450
300
150
0
-50
450
300
Typ.
150
0
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 27A. Output Sink Current vs. Temperature
18
20
150
125
100
75
140V
50
10V
320V
125
320V
Junction Temperature (°C)
Junction Temperature (°C)
16
Figure 27B. Output Sink Current vs. Voltage
150
25
0
1E+2
14
VBIAS Supply Voltage (V)
100
140V
75
10V
50
25
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 28. IR2112 TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
Figure 29. IR2112 TJ vs. Frequency (IRFBC30)
Ω , VCC = 15V
RGATE = 22Ω
320V
150
320V 140V 10V
150
125
125
100
10V
75
50
25
0
1E+2
100
75
50
25
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 30. IR2112 TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
12
Junction Temperature (°C)
Junction Temperature (°C)
140V
1E+6
0
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 31. IR2112 TJ vs. Frequency (IRFPE50)
Ω , VCC = 15V
RGATE = 10Ω
www.irf.com
IR2112
150
140V
125
100
140V
75
10V
50
Junction Temperature (°C)
125
Junction Temperature (°C)
320V
150
320V
25
100
75
10V
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 32. IR2112S TJ vs. Frequency (IRFBC20)
Ω , VCC = 15V
RGATE = 33Ω
Figure 33. IR2112S TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
320V
150
320V 140V 10V
150
140V
125
10V
Junction Temperature (°C)
Junction Temperature (°C)
125
100
75
50
25
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
Figure 34. IR2112S TJ vs. Frequency (IRFBC40)
Ω , VCC = 15V
RGATE = 15Ω
1E+5
1E+6
Figure 35. IR2112S TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
0.0
20.0
VSS Logic Supply Offset Voltage (V)
-3.0
VS Offset Supply Voltage (V)
1E+4
Frequency (Hz)
Typ.
-6.0
-9.0
-12.0
-15.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
www.irf.com
20
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
3/30/2000
13
IR2112
Case Outlines
14 Lead PDIP
14 Lead PDIP w/o Lead 4
14
01-3002 03
01-3008 02
www.irf.com
IR2112
16 Lead PDIP w/o Leads 4 & 5
16 Lead SOIC (wide body)
01-3010 02
01-3014 03
4/12/2000
www.irf.com
15