IRF IR2112STRPBF

Data Sheet No. PD60026 revS
IR2112(-1-2)(S)PbF
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600V
• Tolerant to negative transient voltage
dV/dt immune
• Gate drive supply range from 10 to 20V
• Undervoltage lockout for both channels
• 3.3V logic compatible
•
•
•
•
Separate logic supply range from 3.3V to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
125 & 105 ns
Delay Matching
30 ns
Packages
Description
The IR2112(S) is a high voltage, high speed power
MOSFET and IGBT driver with independent high and
16-Lead SOIC (wide body)
low side referenced output channels. Proprietary HVIC
14-Lead PDIP
and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down to 3.3V logic.
The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction.
Propagation delays are matched to simplify use in high frequency applications. The floating channel can be
used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600
volts.
Typical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2112(-1-2)(S)PbF
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
Definition
VB
High Side Floating Supply Voltage
VS
Min.
Max.
-0.3
625
Units
High Side Floating Supply Offset Voltage
VB - 25
VB + 0.3
VHO
High Side Floating Output Voltage
VS - 0.3
VB + 0.3
VCC
Low Side Fixed Supply Voltage
-0.3
25
VLO
Low Side Output Voltage
-0.3
VCC + 0.3
VDD
Logic Supply Voltage
-0.3
VSS + 25
VSS
Logic Supply Offset Voltage
VCC - 25
VCC + 0.3
VIN
Logic Input Voltage (HIN, LIN & SD)
dVs/dt
PD
RTHJA
V
VSS - 0.3
VDD + 0.3
Allowable Offset Supply Voltage Transient (Figure 2)
—
50
Package Power Dissipation @ TA ≤ +25°C
Thermal Resistance, Junction to Ambient
(14 Lead DIP)
—
1.6
(16 Lead SOIC)
—
1.25
(14 Lead DIP)
—
75
(16 Lead SOIC)
—
100
TJ
Junction Temperature
—
150
TS
Storage Temperature
-55
150
TL
Lead Temperature (Soldering, 10 seconds)
—
300
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
Min.
Max.
VB
High Side Floating Supply Absolute Voltage
Definition
VS + 10
VS + 20
VS
High Side Floating Supply Offset Voltage
Note 1
600
VB
VHO
High Side Floating Output Voltage
VS
VCC
Low Side Fixed Supply Voltage
10
20
VLO
Low Side Output Voltage
0
VCC
VDD
Logic Supply Voltage
VSS
Logic Supply Offset Voltage
VIN
TA
Units
V
VSS + 3
VSS + 20
-5 (Note 2)
5
Logic Input Voltage (HIN, LIN & SD)
VSS
VDD
Ambient Temperature
-40
125
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD.
2
www.irf.com
IR2112(-1-2)(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-On Propagation Delay
7
—
125
180
VS = 0V
toff
Turn-Off Propagation Delay
8
—
105
160
VS = 600V
tsd
Shutdown Propagation Delay
9
—
105
160
tr
Turn-On Rise Time
10
—
80
130
tf
Turn-Off Fall Time
11
—
40
65
Delay Matching, HS & LS Turn-On/Off
—
—
—
30
MT
ns
VS = 600V
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” Input Voltage
12
9.5
—
—
VIL
Logic “0” Input Voltage
13
—
—
6.0
VOH
High Level Output Voltage, VBIAS - VO
14
—
—
100
VOL
Low Level Output Voltage, VO
15
—
—
100
ILK
Offset Supply Leakage Current
16
—
—
50
V
mV
IO = 0A
IO = 0A
VB = VS = 600V
IQBS
Quiescent VBS Supply Current
17
—
25
60
VIN = 0V or VDD
IQCC
Quiescent VCC Supply Current
18
—
80
180
VIN = 0V or VDD
IQDD
Quiescent VDD Supply Current
19
—
2.0
5.0
IIN+
Logic “1” Input Bias Current
20
—
20
40
VIN = VDD
IIN-
21
22
—
7.4
—
8.5
1.0
9.6
VIN = 0V
23
7.0
8.1
9.2
24
7.6
8.6
9.6
25
7.2
8.2
9.2
IO+
Logic “0” Input Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
Output High Short Circuit Pulsed Current
26
200
250
—
IO-
Output Low Short Circuit Pulsed Current
27
420
500
—
VBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
µA
VIN = 0V or VDD
V
mA
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2112(-1-2)(S)PbF
Functional Block Diagram
VB
HO
VS
VCC
LO
COM
Lead Definitions
Symbol
VDD
HIN
SD
LIN
VSS
VB
HO
VS
VCC
LO
COM
4
Description
Logic supply
Logic input for high side gate driver output (HO), in phase
Logic input for shutdown
Logic input for low side gate driver output (LO), in phase
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Low side supply
Low side gate drive output
Low side return
www.irf.com
IR2112(-1-2)(S)PbF
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IR2112
IR2112S
14 Lead PDIP w/o lead 4
14 Lead PDIP w/o leads 4 & 5
IR2112-1
IR2112-2
Part Number
www.irf.com
5
IR2112(-1-2)(S)PbF
<50 V/ns
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test
Circuit
"
#
"
#
!!
$
#
Figure 3. Switching Time Test Circuit
!
$
#
%
#
%
#
Figure 4. Switching Time Waveform Definition
"
#
"
#
"
#
'*
%
#
$
#
$
#
Figure 5. Shutdown Waveform Definitions
6
Figure 6. Delay Matching Waveform Definitions
www.irf.com
IR2112(-1-2)(S)PbF
250
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
250
200
Max.
150
100
Typ.
50
150
100
Typ.
50
0
0
-50
-25
0
25
50
Temperature
75
10
100 125
12
16
18
20
Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage
400
Turn-Off Delay Time (ns)
250
300
Max.
200
Typ.
100
0
200
Max.
150
100
Typ.
50
0
0
2
4
6
8
10 12 14 16 18 20
-50
-25
VDD Supply Voltage (V)
0
25
50
75
100
Figure 7C. Turn-On Time vs. VDD Supply Voltage
Figure 8A. Turn-Off Time vs. Temperature
250
400
200
Max.
150
100
Typ.
50
0
10
12
14
16
18
20
VCC /VBS Supply Voltage (V)
Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage
www.irf.com
125
Temperature (°C)
Turn-OFF Delay Time (ns)
Turn-Off Delay Time (ns)
14
VCC /VBS Supply Voltage (V)
Figure 7A. Turn-On Time vs. Temperature
Turn-On Delay Time (ns)
Max .
200
300
Max.
200
100
Typ.
0
0
2
4
6
8
10 12 14 16 18 20
VDD Supply Voltage (V)
Figure 8C. Turn-Off Time vs. VDD Supply Voltage
7
IR2112(-1-2)(S)PbF
250
Shutdown Delay Time (ns)
Shutdown Delay Time (ns)
250
200
Max.
150
100
Typ.
50
0
-50
-25
0
25
50
75
100
200
Max.
150
100
Typ.
50
0
10
125
14
Figure 9A. Shutdow n Time vs. Temperature
20
250
Turn-On rise Time (ns)
300
Max.
200
100
Typ.
2
4
6
8
10
12
14
16
18
200
150
Max.
100
50
Typ.
0
-50
0
0
20
-25
0
V D D S upply V oltage (V )
25 50 75
Temperature (°C)
100 125
Figure 10A. Turn-On Rise Time vs. Temperature
Figure 9C. Shutdown Time vs. VDD Supply Voltage
250
125
Turn-On Fall Time (ns)
Turn-On Rise Time (ns)
18
Figure 9B. Shutdown Delay Time
vs. VCC/VBS Supply Voltage
400
200
Max.
150
100
Typ.
50
0
100
75
Max.
50
25
Typ.
0
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 10B. Turn-On Rise Time vs. Voltage
8
16
VCC /VBS Supply Voltage (V)
Temperature (°C)
S hutdow n D elay Tim e (ns)
12
20
-50
-25
0
25
50
75
100
125
Tem perature (°C)
Figure 11A Turn-On Fall Time vs. Temperature
www.irf.com
IR2112(-1-2)(S)PbF
15
Logic "1" Input Threshold (V)
T u rn -O ff F a ll T im e (n s )
125
100
Max.
75
50
Typ.
25
0
10
12
14
16
V B IA S S u p p ly V o lta g e (V )
18
12
Min.
9
6
3
0
-50
25
50
75
100 125
Figure 12A. Logic “I” Input Threshold
vs. Temperature
9
12
Logic "0" Input Threshold (V)
15
15
3
6
Min.
12
9
Max.
6
3
0
0
L o g ic " 1 " In p u t T re s h o ld
0
Temperature (°C)
Figure 11B. Turn-Off Fall Time vs. Voltage
2 .5
5
7 .5
10
V D D L o g ic
1 2 .5
15
1 7 .5
-5 0
20
-2 5
0
25
50
75
100
125
Te m p e ra t u re (°C )
S u p p ly V o lta g e (V )
Figure 13A. Logic “0” Input Threshold
vs. Temperature
15
Figure 12B. Logic “I” Input Threshold
vs. Voltage
6
9
12
H igh Level O utput V oltage (V )
1
3
Max.
0
Logic " 0 " Input Treshold (V)
-25
20
2.5
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 13B. Logic “0” Input Threshold
vs. Voltage
www.irf.com
0.8
0.6
0.4
M ax.
0.2
0
-50
-25
0
25
50
75
100
125
T e m p e ra tu re
Figure 14A. High Level Output vs. Temperature
9
1
1
Low Level Output Voltage (V)
H igh L eve l O utp ut V oltage (V )
IR2112(-1-2)(S)PbF
0.8
0.6
0.4
M a x.
0.2
0.8
0.6
0.4
0
0
10
12
14
16
18
Max.
0.2
-50
20
-25
V B A IS S upply V otage (V )
0.6
0.4
Max.
0.2
0
16
18
20
Offset Supply Leakage Current (uA)
Low Level Output Voltage (V)
0.8
14
100
125
400
300
200
Max.
100
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 16A. Offset Supply Current vs.
Temperature
Figure 15B. Low Level Output vs. Voltage
500
100
VBS Supply Current (uA)
Offset Supply Leakage Current (uA)
75
500
VBIAS Supply Votage (V)
400
300
200
M ax .
100
0
0
100
200
300
400
500
600
V B B oos t V oltage (v)
Figure 16B. Offset Supply Current vs. Voltage
10
50
Figure 15A. Low Level Output vs. Temperature
1
12
25
Temperature (°C)
Figure 14B. High Level Output vs. Voltage
10
0
80
60
Max.
40
20
0
Typ.
-50
-25
0
25
50
75
100
125
Tem perature (°C )
Figure 17A. VBS Supply Current vs. Temperature
www.irf.com
IR2112(-1-2)(S)PbF
300
80
M ax .
60
40
250
Vcc Supply Current (uA)
VBS Supply Current (uA)
100
Typ.
20
200
150
Max.
100
50
0
Typ.
0
10
12
14
16
18
20
-5 0
-2 5
0
V B S Floating S upply V oltage (V )
75
100
125
12
VDD Supply Current (uA)
Vcc Supply Current (uA)
300
250
200
Max.
150
100
Typ.
50
10
Max.
8
6
Typ.
4
2
0
0
10
12
14
16
18
-50
20
-25
0
Figure 18B. VCC Supply Current vs. Voltage
Logic "1 " Input Bias Current (uA)
10
8
Max.
4
2
Typ.
0
2
4
6
8 10 12 14 16
VDD Logic Supply Voltage (V)
18
Figure 19B. VDD Supply Current vs. VDD Voltage
www.irf.com
50
75
100
125
Figure 19A. VDD Supply Current vs. Temperature
12
6
25
Temperature (°C)
Vcc Fixed Supply Voltage (V)
VDD Supply Current (uA)
50
Figure 18A. VCC Supply Current vs. Temperature
Figure 17B. VBS Supply Current vs. Voltage
0
25
T e m p e ra t u re (° C )
20
100
80
60
Max.
40
20
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 20A. Logic “I” Input Current vs. Temperature
11
IR2112(-1-2)(S)PbF
5
80
60
Max.
40
20
Typ.
0
0
2
4
6
8
10 12 14 16
V D D L o g ic S u p p ly V o lta g e (V )
18
20
4
3
2
Max.
1
0
4
6
8
3
2
Max.
1
0
-50
-25
10
50
75
100
125
Max.
9
Typ.
8
Min.
7
6
-50
10 12 14 16 18 20
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21B. Logic “0” Input Current vs. VDD Voltage
Figure 22. VBS Undervoltage (+) vs. Temperature
11
11
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 23. VBS Undervoltage (-) vs. Temperature
Vcc Undervoltage Lockout +(V)
VBS Undervoltage Lockout -(V)
25
11
VDD Supply Voltage (V)
12
0
Figure 21A. Logic “0” Input Current vs. Temperature
VBS Undervoltage Lockout +(V)
Logic "0" Input Bias Current (uA)
5
2
4
Temperature (°C)
Figure 20B. Logic “1” Input Current vs. VDD Voltage
0
Logic "0" Input Bias Current (uA)
Logic " 1" Input Bias Current (uA)
100
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
Temperature
(°C)
Figure 24. VCC Undervoltage (-) vs. Temperature
www.irf.com
IR2112(-1-2)(S)PbF
500
Output source Current (mA)
VCC Undervoltage Lockout - (V)
11
10
Max.
9
Typ.
8
Min.
7
400
300
Typ.
200
Min.
100
0
6
-50
-25
0
25
50
75
100
-50
125
-25
Figure 25. VCC Undervoltage (-) vs. Temperature
25
50
75
100
125
Figure 26A. Output Source Current vs. Temperature
500
750
Output Sink Current (mA)
Output source Current (mA)
0
Tem perature (°C )
Tem perature (°C)
400
Typ.
300
Min.
200
100
0
10
12
14
16
18
20
VBIAS Supply Voltage (V)
600
Typ.
450
300
Min.
150
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26B. Output Source Current vs. Voltage
Figure 27A. Output Sink Current vs. Temperature
Output Sink Current (mA)
750
600
Typ.
450
300
Min.
150
0
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 27B. Output Sink Current vs. Voltage
www.irf.com
13
IR2112(-1-2)(S)PbF
150
150
320V
125
320V
100
75
140V
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
125
25
140V
75
10V
50
25
0
1E+2
100
0
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 28. IR2112 TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
Figure 29. IR2112 TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
320V
150
320V 140V 10V
150
125
125
100
10V
75
50
Junction Temperature (°C)
Junction Temperature (°C)
140V
25
100
75
50
25
0
0
1E+2
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
Figure 30. IR2112 TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
140V
125
100
140V
75
10V
50
25
Junction Temperature (°C)
Junction Temperature (°C)
1E+6
320V
150
320V
125
100
75
10V
50
25
0
0
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 32. IR2112S TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
14
1E+5
Figure 31. IR2112 TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
150
1E+2
1E+4
Frequency (Hz)
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 33. IR2112S TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
www.irf.com
IR2112(-1-2)(S)PbF
320V
150
320V 140V 10V
150
140V
10V
125
Junction Temperature (°C)
Junction Temperature (°C)
125
100
75
50
25
100
75
50
25
0
0
1E+2
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
1E+5
1E+6
Figure 35. IR2112S TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
Figure 34. IR2112S TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
0.0
20.0
VSS Logic Supply Offset Voltage (V)
-3.0
VS Offset Supply Voltage (V)
1E+4
Frequency (Hz)
Typ.
-6.0
-9.0
-12.0
-15.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
www.irf.com
20
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
15
IR2112(-1-2)(S)PbF
Case outline
16
14-Lead PDIP
01-6010
01-3002 03 (MS-001AC)
14-Lead PDIP w/o Lead 4
01-6010
01-3008 02 (MS-001AC)
www.irf.com
IR2112(-1-2)(S)PbF
16 Lead PDIP w/o Leads 4 & 5
16-Lead SOIC (wide body)
www.irf.com
01-6015
01-3010 02
01 6015
01-3014 03 (MS-013AA)
17
IR2112(-1-2)(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx
YWW?
Date code
?XXXX
Pin 1
Identifier
?
P
IR logo
MARKING CODE
Lead Free Released
Non-Lead Free
Released
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
ORDER INFORMATION
Part only available Leadfree
14-Lead
14-Lead
14-Lead
16-Lead
PDIP IR2112 order IR2112PbF
PDIP IR2112-1 order IR2112-1PbF
PDIP IR2112-2 order IR2112-2PbF
SOIC IR2112S order IR2112SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice.
3/23/2005
18
www.irf.com