Data Sheet No. PD60146 Rev N IR2117(S)/IR2118(S) & (PbF) SINGLE CHANNEL DRIVER Features • • • • • • Product Summary Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout CMOS Schmitt-triggered inputs with pull-down Output in phase with input (IR2117) or out of phase with input (IR2118) Also available LEAD-FREE VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 125 & 105 ns Packages Description The IR2117/IR2118(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 600 volts. 8-Lead PDIP IR2117/IR2118 8-Lead SOIC IR2117S/IR2118S Typical Connection up to 600V VCC IN VCC IN COM VB HO TO LOAD VS IR2117 up to 600V VCC IN VCC IN COM (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VB HO VS IR2118 TO LOAD 1 IR2117(S)/IR2118(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 5 through 8. Symbol Definition Min. Max. Units VB High side floating supply voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Logic supply voltage -0.3 25 VIN Logic input voltage -0.3 VCC + 0.3 Allowable offset supply voltage transient (figure 2) — 50 Package power dissipation @ TA ≤ +25°C (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 dVs/dt PD RthJA Thermal resistance, junction to ambient (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Logic supply voltage 10 20 VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2117(S)/IR2118(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 125 200 VS = 0V toff Turn-off propagation delay — 105 180 VS = 600V tr Turn-on rise time — 80 130 tf Turn-off fall time — 40 65 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH input voltage - logic “1” (IR2117) logic “0” (IR2118) 9.5 — — VIL Input voltage - logic “0” (IR2117) logic “1” (IR2118) — — 6.0 VOH High level output voltage, VBIAS - VO — — 100 VOL Low level output voltage, VO — — 100 ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS Quiescent VBS supply current — 50 240 VIN = 0V or VCC IQCC Quiescent VCC Supply Current — 70 340 IIN+ Logic “1” input bias current (IR2117) (IR2118) VIN = 0V IIN- Logic “0” input bias current (IR2117) VIN = 0V — — 20 — 40 V mV IO = 0A VIN = 0V or VCC µA 1.0 (IR2118) VIN = VCC VIN = VCC VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 Output high short circuit pulsed current 200 250 — IO+ IO = 0A V VO = 0V VIN = Logic “1” IO- Output low short circuit pulsed current 420 500 — mA PW ≤ 10 µs VO = 15V VIN = Logic “0” PW ≤ 10 µs www.irf.com 3 IR2117(S)/IR2118(S) & (PbF) Functional Block Diagram (IR2117) VCC VB UV DETECT HV LEVEL SHIFT R Q HO R S PULSE FILTER IN PULSE GEN VS UV DETECT COM Functional Block Diagram (IR2118) VCC VB HV LEVEL SHIFT IN PULSE GEN UV DETECT R PULSE FILTER R Q HO S VS UV DETECT COM 4 www.irf.com IR2117(S)/IR2118(S) & (PbF) Lead Definitions Symbol Description VCC IN Logic and gate drive supply IN Logic input for gate driver output (HO), out of phase with HO (IR2118) COM Logic ground VB HO High side floating supply High side gate drive output VS High side floating supply return Logic input for gate driver output (HO), in phase with HO (IR2117) Lead Assignments 1 2 3 VB VCC IN HO COM VS 4 7 1 2 6 3 5 4 VCC VB 8 IN HO 7 COM VS 6 5 8 Lead PDIP 8 Lead SOIC IR2117 IR2117S 1 VCC VB 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 COM VS 6 3 COM VS 6 5 4 4 www.irf.com 8 5 8 Lead PDIP 8 Lead SOIC IR2118 IR2118S 5 IR2117(S)/IR2118(S) & (PbF) IN (IR2118) <50 V/ns IN IR2117/IR2118 (IR2117) HO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit IN (IR2118) 50% 50% 50% 50% IN (IR2117) ton tr IR2117/IR2118 HO Figure 3. Switching Time Test Circuit 6 toff 90% 10% tf 90% 10% Figure 4. Switching Time Waveform Definition www.irf.com IR2117(S)/IR2118(S) & (PbF) 500 Turn-on Delay Time (ns) Turn-on Delay Time (ns) 500 400 300 200 M ax. 100 Typ. 0 -50 400 300 M ax. 200 Typ. 100 0 -25 0 25 50 75 100 10 125 12 Temperature ( C) 500 400 400 Turn-Off Time (ns) Turn-Off Time (ns) 500 300 200 M ax. 100 Typ. 18 20 18 20 300 M ax. 200 Typ. 100 0 -25 0 25 50 75 Temperature (oC) Figure 5A. Turn-Off Tim e vs. Tem perature www.irf.com 16 Figure 4B. Turn-On Time vs. Supply Voltage Figure 4A. Turn-On Tim e vs. Tem perature 0 -50 14 V BIAS Supply Voltage (V) o 100 125 10 12 14 16 V BIAS Supply Voltage (V) Figure 5B. Turn-Off Time vs. Supply Voltage 7 IR2117(S)/IR2118(S) & (PbF) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 M ax. 100 400 300 200 M ax. 100 Typ. Typ. 0 -50 0 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 18 20 Figure 6B. Turn-On Rise Time vs. Supply Voltage 250 Turn-Off Fall Time (ns) 250 Turn-Off Fall Time (ns) 16 V BIAS Supply Voltage (V) Fiure 6A. Turn-On Rise Time vs.Temperature 200 150 100 M ax. 50 Typ. 0 -50 200 150 100 M ax. 50 Typ. 0 -25 0 25 50 75 100 o Temperature ( C) Figure 7A. Turn-Off Fall Tim e vs. Tem perature 8 14 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 7B. Turn-Off Fall Tim e vs. Supply Voltage www.irf.com 13 13 12 12 Input Voltage (V) Input Voltage (V) IR2117(S)/IR2118(S) & (PbF) 11 10 M in. 9 8 -50 11 10 9 M in. 8 -25 0 25 50 75 100 125 10 12 Temperature ( oC) 18 20 Figure 8B. Logic "1" (IR2118 "0") Input Voltage vs. Supply Voltage 9 9 8 8 Input Voltage (V) Input Voltage (V) 16 V cc Supply Voltage (V) Figure 8A. Logic "1" (IR2118 "0") Input Voltage vs. Tem perature 7 M ax. 6 5 4 -50 14 7 M ax. 6 5 4 -25 0 25 50 75 100 125 o Temperatre ( C) Figure 9A. Logic "0" (IR2118 "1") Input Voltage vs. Tem perature www.irf.com 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 9B. Logic "0" (IR2118 "1") Input Voltage vs. Supply Voltage 9 0.5 High Level Output Voltage (V) High Level Output Voltage (V) IR2117(S)/IR2118(S) & (PbF) 0.4 0.3 0.2 M ax. 0.1 0.0 -50 -25 0 25 50 75 100 0.5 0.4 0.3 0.2 M ax. 0.1 0 10 125 12 o 0.5 0.4 0.3 0.2 M ax. 0.1 0 25 50 75 100 Temperature (oC) Figure 11A. Low Level Output vs.Temperature 10 18 20 Figure 10B. High Level Output vs. Supply Voltage Low Level Output Voltage (V) Low Level Output Voltage (V) Figure 10A. High Level Output vs. Temperature -25 16 V cc Supply Voltage (V) Temperature ( C) 0 -50 14 125 0.5 0.4 0.3 0.2 MAX. 0.1 0 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 11B. Low Level Output vs. Supply Voltage www.irf.com 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Offset Supply Leakage Current ( A) Offset Supply Leakage Current ( A) IR2117(S)/IR2118(S) & (PbF) 500 400 300 200 100 M ax. 0 0 100 o Temperature ( C) 300 400 500 600 VB Boost Voltage (V) Figure 12A. Offset Supply Leakage Current vs. Temperature Figure 12B. Offset Supply Leakage Current vs. V B Boost Voltage 1000 ) ) 1000 800 V Supply Current ( V Supply Current ( 200 600 400 M ax. 200 Typ. 0 -50 600 400 200 M ax. Typ. 0 -25 0 25 50 75 100 o Temperature ( C) Figure 13A. V BS Supply Current vs. Tem perature www.irf.com 800 125 10 12 14 16 18 20 V BS Supply Voltage (V) Figure 13B. V BS Supply Current vs. Supply Voltage 11 IR2117(S)/IR2118(S) & (PbF) 1000 ) V cc Supply Current ( A) 1000 V cc Supply Current ( 800 600 400 M ax. 200 Typ. 0 -50 800 600 400 M ax. 200 Typ. 0 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 14 16 18 20 V cc Supply Voltage (V) Figure 14B. V cc Supply Current vs . Supply Voltage Figure 14A. V cc Supply Current vs. Tem perature 120 ) ) 120 Logic "1" Input Current ( Logic "1" Input Current ( 100 80 60 40 20 0 -50 M ax. Typ. 80 60 M ax. 40 Typ. 20 0 -25 0 25 50 75 100 125 o Temperature ( C) Figure 15A. Logic "1" (2118 "0") Input Current vs. Temperature 12 100 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 15B. Logic "1" (2118 "0") Input Current vs. Supply Voltage www.irf.com 5 5 Logic "0" Input Current ( Logic "0" Input Current ( ) ) IR2117(S)/IR2118(S) & (PbF) 4 3 2 M ax. 1 0 -50 -25 0 25 50 75 100 4 3 2 M ax. 1 0 125 10 12 o Temperature ( C) 16 18 20 V cc Supply Voltage (V) Figure 16A. Logic "0" (2118"1") Input Current vs. Temperature Figure 16B. Logic "0" (2118"1") Input Current vs. Supply Voltage 16 ) ) 16 14 V cc Supply Current ( V cc Supply Current ( 14 12 10 M ax. Typ. 8 M in. 14 12 10 8 M ax Typ. M in. 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. V cc Undervoltage Threshold (+) vs. Temperature www.irf.com 6 -50 -25 0 25 50 Temperature 75 100 125 (oC) Figure 18A. V cc Undervoltage Threshold (-) vs. Tem perature 13 IR2117(S)/IR2118(S) & (PbF) 16 ) 14 V Supply Current ( V BS Supply Current ( ) 16 12 10 M ax. Typ. 8 14 12 M ax. 10 Typ. 8 M in. 6 -50 M in. -25 0 25 50 75 100 6 -50 125 -25 0 ) 500 400 Typ. M in. 100 0 -50 100 125 500 400 300 200 Typ. 100 M in. 0 -25 0 25 50 75 100 o 14 75 Figure 20A. V BS Undervoltage Threshold (-) vs. Tem perature Output Source Current ( Output Source Current ( ) Figure 19A. V BS Undervoltage Threshold (+) vs. Tem perature 200 50 Temperature ( C) Temperature ( C) 300 25 o o 125 10 12 14 16 18 Temperature ( C) V BIAS Supply Voltage (V) Figure 21A. Output Source Current vs. Tem perature Figure 21B. Output Source Curre nt vs . Supply Voltage 20 www.irf.com IR2117(S)/IR2118(S) & (PbF) 1000 Output Sink Current ( ) Output Sink Current ( ) 1000 800 Typ. 600 M in. 400 200 0 -50 600 400 Typ. M in. 200 0 -25 0 25 50 75 100 125 Temperature (oC) 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 22B. Output Sink Current vs. Supply Voltage Figure 22A. Output Sink Current vs.Temperature vs Offset Supply Voltage (V) 800 0 -2 Typ. -4 -6 -8 -10 -12 10 12 14 16 18 20 V BS Floting Supply Voltage (V) Figure 23B. Maximum VS Negative Offset vs. Supply Voltage www.irf.com 15 IR2117(S)/IR2118(S) & (PbF) 320V 150 320V 150 140V 140V 125 100 75 10V 50 Junction Temperature (°C) Junction Temperature (°C) 125 25 10V 75 50 25 0 1E+2 100 0 1E+3 1E+4 1E+5 1E+6 1E+2 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 24. IR2117/IR2118 TJ vs. Frequency (IRFBC20) Ω, VCC = 15V RGATE = 33Ω 320V 140V 150 Figure 25. IR2117/IR2118 TJ vs. Frequency (IRFBC30) Ω, VCC = 15V RGATE = 22Ω 10V 320V 140V 150 10V 125 Junction Temperature (°C) Junction Temperature (°C) 125 100 75 50 25 50 0 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 26. IR2117/IR2118 TJ vs. Frequency (IRFBC40) Ω, VCC = 15V RGATE = 15Ω 16 75 25 0 1E+2 100 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 27. IR2117/IR2118 TJ vs. Frequency (IRFPE50) Ω, VCC = 15V RGATE = 10Ω www.irf.com IR2117(S)/IR2118(S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC e1 6X e 3X 1.27 [.050] e1 0.25 [.010] A1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INC HES MIN y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 8-Lead SOIC www.irf.com 17 IR2117(S)/IR2118(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx YWW? Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2117 order IR2117 8-Lead PDIP IR2118 order IR2118 8-Lead SOIC IR2117S order IR2117S 8-Lead SOIC IR2118S order IR2118S Leadfree Part 8-Lead PDIP IR2117 order IR2117PbF 8-Lead PDIP IR2118 order IR2118PbF 8-Lead SOIC IR2117S order IR2117SPbF 8-Lead SOIC IR2118S order IR2118SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/2/2004 18 www.irf.com