IRF IRF8010

PD - 94497
IRF8010
SMPS MOSFET
Applications
High frequency DC-DC converters
UPS and Motor Control
Benefits
Low Gate-to-Drain Charge to Reduce
Switching Losses
Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
Fully Characterized Avalanche Voltage
and Current
Typical RDS(on) = 12mΩ
HEXFET® Power MOSFET
VDSS
RDS(on) max
100V
15mΩ
ID
80A
TO-220AB
Absolute Maximum Ratings
Parameter
Max.
Units
Continuous Drain Current, VGS @ 10V
80
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
57
IDM
Pulsed Drain Current
320
PD @TC = 25°C
Power Dissipation
260
W
VGS
Linear Derating Factor
Gate-to-Source Voltage
1.8
± 20
W/°C
V
dv/dt
TJ
Peak Diode Recovery dv/dt
Operating Junction and
16
-55 to + 175
V/ns
TSTG
Storage Temperature Range
ID @ TC = 25°C
Soldering Temperature, for 10 seconds
A
°C
300 (1.6mm from case )
1.1(10)
Mounting torque, 6-32 or M3 screw
N•m (lbf•in)
Thermal Resistance
Typ.
Max.
RθJC
Junction-to-Case
Parameter
–––
0.57
RθCS
Case-to-Sink, Flat, Greased Surface
0.50
–––
RθJA
Junction-to-Ambient
–––
62
Notes
through
www.irf.com
Units
°C/W
are on page 8
1
08/23/02
IRF8010
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
IGSS
Min. Typ. Max. Units
V
Conditions
100
–––
–––
VGS = 0V, ID = 250µA
Breakdown Voltage Temp. Coefficient
–––
0.11
–––
Static Drain-to-Source On-Resistance
–––
12
15
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 100V, VGS = 0V
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-200
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 45A
VDS = 100V, VGS = 0V, TJ = 125°C
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
82
–––
–––
Total Gate Charge
–––
81
120
Gate-to-Source Charge
–––
22
–––
V
Conditions
gfs
Qg
Forward Transconductance
VDS = 25V, ID = 45A
Qgs
Qgd
Gate-to-Drain ("Miller") Charge
–––
26
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
15
–––
VDD = 50V
tr
Rise Time
–––
130
–––
td(off)
Turn-Off Delay Time
–––
61
–––
tf
Fall Time
–––
120
–––
VGS = 10V
Ciss
Input Capacitance
–––
3830
–––
VGS = 0V
Coss
Output Capacitance
–––
480
–––
Crss
Reverse Transfer Capacitance
–––
59
–––
Coss
Output Capacitance
–––
3830
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
280
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
530
–––
VGS = 0V, VDS = 0V to 80V
ID = 80A
nC
VDS = 80V
ID = 80A
ns
RG = 39Ω
VDS = 25V
pF
ƒ = 1.0MHz
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy
Typ.
Max.
Units
EAS
–––
310
mJ
IAR
Avalanche Current
–––
45
A
EAR
Repetitive Avalanche Energy
–––
26
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
80
ISM
(Body Diode)
Pulsed Source Current
–––
–––
320
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 80A, VGS = 0V
trr
Reverse Recovery Time
–––
99
150
ns
Qrr
Reverse RecoveryCharge
–––
460
700
nC
ton
Forward Turn-On Time
2
MOSFET symbol
A
D
G
S
TJ = 150°C, IF = 80A, VDD = 50V
di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF8010
1000
10000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
12V
10V
6.0V
5.5V
5.0V
4.5V
4.0V
10
4.0V
1
10
4.0V
10
1
0.1
1
BOTTOM
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.1
100
0.1
100
1
Fig 1. Typical Output Characteristics
3.5
T J = 25°C
VDS = 50V
20µs PULSE WIDTH
1
6.0
8.0
10.0
12.0
14.0
Fig 3. Typical Transfer Characteristics
www.irf.com
16.0
2.5
(Normalized)
100
VGS , Gate-to-Source Voltage (V)
I D = 80A
3.0
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (Α)
T J = 175°C
4.0
100
Fig 2. Typical Output Characteristics
1000
2.0
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
10
VGS
15V
12V
10V
6.0V
5.5V
5.0V
4.5V
4.0V
2.0
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
TJ , Junction Temperature
100 120 140 160 180
( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF8010
100000
VGS , Gate-to-Source Voltage (V)
Coss = Cds + Cgd
10000
C, Capacitance(pF)
12
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Ciss
1000
Coss
100
Crss
ID= 80A
VDS= 80V
VDS= 50V
10
VDS= 20V
8
6
4
2
0
10
1
10
0
100
60
80
100
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10000
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100
I SD , Reverse Drain Current (A)
40
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
100
TJ = 175 ° C
10
T J= 25 ° C
1
V GS = 0 V
0.0
0.5
1.0
1.5
V SD,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
0.1
4
20
2.0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF8010
80
RD
VDS
LIMITED BY PACKAGE
VGS
ID , Drain Current (A)
D.U.T.
RG
60
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
40
Fig 10a. Switching Time Test Circuit
20
VDS
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response
(Z thJC )
10
1
D = 0.50
P DM
0.20
0.1
t1
0.10
t2
0.05
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+T C
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF8010
600
15V
ID
18A
32A
45A
TOP
+
V
- DD
IAS
20V
tp
BOTTOM
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
500
DRIVER
L
VDS
400
300
200
100
0
25
50
75
100
125
Starting Tj, Junction Temperature
150
175
( ° C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
10 V
50KΩ
12V
.2µF
.3µF
QGS
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRF8010
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRF8010
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
3X
1.40 (.055)
1.15 (.045)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE : THIS IS AN IRF1010
WITH ASSEMBLY
LOT CODE 9B1M
A
INTERNATIONAL
RECTIFIER
LOGO
ASSEMBLY
LOT CODE
Notes:
Repetitive rating; pulse width limited by
max. junction temperature.
Starting TJ = 25°C, L = 0.31mH, RG = 25Ω,
IAS = 45A.
ISD ≤ 45A, di/dt ≤ 110A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
PART NUMBER
IRF1010
9246
9B 1M
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
TO-220 package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/02
8
www.irf.com