IRF IRFBA90N20

PD - 94300
SMPS MOSFET
IRFBA90N20D
HEXFET® Power MOSFET
Applications
High frequency DC-DC converters
l
VDSS
200V
RDS(on) max
ID
0.023Ω
98A†
Benefits
Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
l
Super-220™
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Recommended Clip Force
Max.
98†
71†
Units
A
390
650
4.3
± 30
6.3
-55 to + 175
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
20
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Notes 
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
through †
www.irf.com
Typ.
Max.
Units
–––
0.50
–––
0.23
–––
58
°C/W
are on page 8
1
09/06/01
IRFBA90N20D
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
200
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.22
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.023
Ω
VGS = 10V, ID = 59A „
5.0
V
VDS = VGS, ID = 250µA
25
VDS = 200V, VGS = 0V
µA
250
VDS = 160V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
41
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
160
45
75
23
160
39
77
6080
1040
150
7500
410
790
Max. Units
Conditions
–––
S
VDS = 50V, ID = 59A
240
ID = 59A
67
nC
VDS = 160V
110
VGS = 10V „
–––
VDD = 100V
–––
ID = 59A
ns
–––
RG = 1.2Ω
–––
VGS = 10V „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 160V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 160V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
960
59
65
mJ
A
mJ
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
98
––– –––
showing the
A
G
integral reverse
––– ––– 390
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 59A, VGS = 0V „
––– 220 340
nS
TJ = 25°C, IF = 59A
––– 1.9 2.8
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFBA90N20D
1000
1000
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
ID , Drain-to-Source Current (A)
ID , Drain-to-Source Current (A)
TOP
10
1
5.0V
0.1
100
5.0V
10
20µs PULSE WIDTH
Tj = 25°C
0.01
20µs PULSE WIDTH
Tj = 175°C
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000.00
100
ID , Drain-to-Source Current (Α )
LIMITED BY PACKAGE
T J = 175°C
80
I D , Drain Current (A)
100.00
10.00
T J = 25°C
60
40
1.00
20
VDS = 15V
20µs PULSE WIDTH
0.10
0
5.0
7.0
9.0
11.0
13.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
15.0
25
50
75
100
TC , Case Temperature
125
150
175
( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFBA90N20D
100000
Coss
1000
Crss
100
10
VDS = 40V
7
5
2
0
1
10
100
1000
0
40
120
160
200
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.00
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
80
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
TJ = 175°C
100.00
100
T J = 25°C
10.00
1.00
100µsec
10
1
VGS = 0V
1msec
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.10
0.0
0.5
1.0
1.5
2.0
2.5
VSD , Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 160V
10
VGS, Gate-to-Source Voltage (V)
Ciss
ID = 59A
VDS = 100V
Coss = Cds + Cgd
10000
C, Capacitance(pF)
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
3.0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFBA90N20D
RD
100
VDS
LIMITED BY PACKAGE
VGS
80
D.U.T.
RG
+
I D , Drain Current (A)
-VDD
60
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
40
Fig 10a. Switching Time Test Circuit
VDS
20
90%
0
25
50
75
100
125
TC , Case Temperature
150
175
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
(Z thJC)
1
D = 0.50
0.1
Thermal Response
0.20
0.10
0.05
0.01
0.02
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.001
0.00001
0.0001
0.001
0.01
t1 / t 2
J = P DM x Z thJC
+T C
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFBA90N20D
+
V
- DD
IA S
20V
tp
1600
A
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D .U .T
RG
ID
D R IV E R
L
VDS
2000
1 5V
TOP
24A
42A
BOTTOM
59A
1200
800
400
0
25
50
75
100
125
150
175
( °C)
Starting T , JJunction Temperature
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
10 V
50KΩ
12V
.2µF
.3µF
QGS
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFBA90N20D
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFBA90N20D
Super-220™ Package Outline
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.55mH
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
† Calculated continuous current based on maximum allowable
R G = 25Ω, IAS = 59A.
ƒ ISD ≤ 59A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS,
junction temperature. Package limitation current is 95A.
TJ ≤ 175°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/01
8
www.irf.com