PD - 94300 SMPS MOSFET IRFBA90N20D HEXFET® Power MOSFET Applications High frequency DC-DC converters l VDSS 200V RDS(on) max ID 0.023Ω 98A Benefits Low Gate-to-Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current l Super-220™ Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Recommended Clip Force Max. 98 71 Units A 390 650 4.3 ± 30 6.3 -55 to + 175 W W/°C V V/ns °C 300 (1.6mm from case ) 20 N Thermal Resistance Parameter RθJC RθCS RθJA Notes Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient through www.irf.com Typ. Max. Units ––– 0.50 ––– 0.23 ––– 58 °C/W are on page 8 1 09/06/01 IRFBA90N20D Static @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage V(BR)DSS IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 200 ––– ––– 3.0 ––– ––– ––– ––– Typ. ––– 0.22 ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.023 Ω VGS = 10V, ID = 59A 5.0 V VDS = VGS, ID = 250µA 25 VDS = 200V, VGS = 0V µA 250 VDS = 160V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 41 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 160 45 75 23 160 39 77 6080 1040 150 7500 410 790 Max. Units Conditions ––– S VDS = 50V, ID = 59A 240 ID = 59A 67 nC VDS = 160V 110 VGS = 10V ––– VDD = 100V ––– ID = 59A ns ––– RG = 1.2Ω ––– VGS = 10V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 160V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 160V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 960 59 65 mJ A mJ Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 98 ––– ––– showing the A G integral reverse ––– ––– 390 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 59A, VGS = 0V ––– 220 340 nS TJ = 25°C, IF = 59A ––– 1.9 2.8 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFBA90N20D 1000 1000 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V 100 VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V BOTTOM 5.0V TOP ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) TOP 10 1 5.0V 0.1 100 5.0V 10 20µs PULSE WIDTH Tj = 25°C 0.01 20µs PULSE WIDTH Tj = 175°C 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000.00 100 ID , Drain-to-Source Current (Α ) LIMITED BY PACKAGE T J = 175°C 80 I D , Drain Current (A) 100.00 10.00 T J = 25°C 60 40 1.00 20 VDS = 15V 20µs PULSE WIDTH 0.10 0 5.0 7.0 9.0 11.0 13.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 15.0 25 50 75 100 TC , Case Temperature 125 150 175 ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFBA90N20D 100000 Coss 1000 Crss 100 10 VDS = 40V 7 5 2 0 1 10 100 1000 0 40 120 160 200 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.00 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 80 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 TJ = 175°C 100.00 100 T J = 25°C 10.00 1.00 100µsec 10 1 VGS = 0V 1msec 10msec Tc = 25°C Tj = 175°C Single Pulse 0.1 0.10 0.0 0.5 1.0 1.5 2.0 2.5 VSD , Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 160V 10 VGS, Gate-to-Source Voltage (V) Ciss ID = 59A VDS = 100V Coss = Cds + Cgd 10000 C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd 3.0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFBA90N20D RD 100 VDS LIMITED BY PACKAGE VGS 80 D.U.T. RG + I D , Drain Current (A) -VDD 60 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 40 Fig 10a. Switching Time Test Circuit VDS 20 90% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 1 D = 0.50 0.1 Thermal Response 0.20 0.10 0.05 0.01 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +T C 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFBA90N20D + V - DD IA S 20V tp 1600 A 0 .0 1 Ω Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp EAS , Single Pulse Avalanche Energy (mJ) D .U .T RG ID D R IV E R L VDS 2000 1 5V TOP 24A 42A BOTTOM 59A 1200 800 400 0 25 50 75 100 125 150 175 ( °C) Starting T , JJunction Temperature Fig 12c. Maximum Avalanche Energy Vs. Drain Current IAS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 10 V 50KΩ 12V .2µF .3µF QGS QGD D.U.T. VG + V - DS VGS 3mA Charge Fig 13a. Basic Gate Charge Waveform 6 IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFBA90N20D Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFBA90N20D Super-220™ Package Outline Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.55mH Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS Calculated continuous current based on maximum allowable R G = 25Ω, IAS = 59A. ISD ≤ 59A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, junction temperature. Package limitation current is 95A. TJ ≤ 175°C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/01 8 www.irf.com