PD - 96435A StrongIRFET IRFB7446PbF Applications l l l l l l l l l HEXFET® Power MOSFET Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters VDSS D 40V RDS(on) typ. 2.6mΩ max. G 3.3mΩ 123A ID (Silicon Limited) S c 120A ID (Package Limited) D Benefits l l l l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free G D S TO-220AB IRFB7446PbF G D S Gate Drain Source Ordering Information Package Type IRFB7446PbF TO-220 Standard Pack Form Tube Complete Part Number Quantity 50 IRFB7446PbF 125 8 ID = 70A 100 6 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m Ω) Base part number T J = 125°C 4 2 50 25 T J = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage www.irf.com 75 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 1 09/11/12 IRFB7446PbF Absolute Maximum Ratings Symbol Parameter Max. Units c ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 123 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 87 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 120 IDM Pulsed Drain Current 492 PD @TC = 25°C Maximum Power Dissipation d Linear Derating Factor A 99 W 0.66 W/°C V VGS Gate-to-Source Voltage ± 20 TJ Operating Junction and -55 to + 175 TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds (1.6mm from case) x e EAS (Thermally limited) Single Pulse Avalanche Energy EAS (tested) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current EAR Repetitive Avalanche Energy d Thermal Resistance Symbol x 10lbf in (1.1N m) Mounting torque, 6-32 or M3 screw Avalanche Characteristics 300 111 k mJ 160 A See Fig. 14, 15 , 22a, 22b d Parameter j Typ. Max. ––– 1.52 RθJC Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– RθJA Junction-to-Ambient ––– 62 mJ Units °C/W Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) Symbol Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance 40 ––– ––– VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance ––– ––– 3.3 ––– 3.9 1.0 150 100 -100 ––– V V/°C mΩ mΩ V IGSS 2.2 ––– ––– ––– ––– ––– ––– 0.033 2.6 3.9 3.0 ––– ––– ––– ––– 1.6 RG Parameter Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.046mH,RG = 50Ω, IAS = 70A, VGS =10V. ISD ≤ 70A, di/dt ≤ 1174A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 5mA VGS = 10V, ID = 70A VGS = 6.0V, ID = 35A VDS = VGS, ID = 100μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V g g d Ω Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L=0.046mH, RG = 50Ω, IAS = 70A, VGS =10V. www.irf.com IRFB7446PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Q gd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) Min. Typ. Max. Units 269 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 62 16 20 42 11 34 33 23 3183 475 331 596 688 ––– 93 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S Min. Typ. Max. ––– c nC ns Conditions VDS = 10V, ID = 70A ID = 70A VDS =20V VGS = 10V ID = 70A, VDS =0V, VGS = 10V VDD = 20V ID = 30A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V , See Fig. 11 VGS = 0V, VDS = 0V to 32V g g pF i h Diode Characteristics Symbol Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD (Body Diode) Diode Forward Voltage dv/dt trr Peak Diode Recovery Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current d f www.irf.com ––– Units Conditions MOSFET symbol 120 A ––– ––– 492 ––– 0.9 1.3 V ––– ––– ––– ––– ––– ––– 7.6 22 24 15 15 1.0 ––– ––– ––– ––– ––– ––– V/ns ns nC A D showing the integral reverse p-n junction diode. TJ = 25°C, IS = 70A, VGS = 0V G S g TJ = 175°C, IS = 70A, VDS = 40V TJ = 25°C VR = 34V, IF = 70A TJ = 125°C di/dt = 100A/μs TJ = 25°C TJ = 125°C TJ = 25°C g 3 IRFB7446PbF 1000 1000 100 BOTTOM 100 10 4.5V 1 ≤60μs PULSE WIDTH BOTTOM 4.5V 10 ≤60μs PULSE WIDTH Tj = 25°C Tj = 175°C 0.1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.2 T J = 175°C 100 10 T J = 25°C 1 VDS = 10V ≤60μs PULSE WIDTH 0.1 2 4 6 8 ID = 70A VGS = 10V 1.8 1.4 1.0 0.6 10 -60 -20 100 140 180 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd 10000 Ciss Coss 1000 60 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 20 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics 1000 ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Crss ID= 70A 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 100 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 0 10 20 30 40 50 60 70 80 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com IRFB7446PbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 VGS = 0V 0.5 1.0 1.5 1msec Package Limited 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 2.0 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.6 50 Id = 5.0mA 49 VDS= 0V to 32V 0.5 48 47 0.4 Energy (μJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) DC 0.1 0.1 0.0 100μsec 100 46 45 44 0.3 0.2 43 42 0.1 41 0.0 40 -60 -20 20 60 100 140 0 180 T J , Temperature ( °C ) 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( mΩ) 5 Fig 12. Typical COSS Stored Energy 20.0 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 15.0 10.0 5.0 0.0 0 100 200 300 400 500 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current www.irf.com 5 IRFB7446PbF Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart = 25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 120 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 70A 80 40 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) 175 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature 6 www.irf.com IRFB7446PbF 6 5 IF = 46A V R = 34V 4 TJ = 25°C TJ = 125°C 3.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.5 2.5 ID = 100μA ID = 250μA ID = 1.0mA ID = 1.0A 1.5 3 2 1 0.5 0 -75 -25 25 75 125 175 225 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 5 70 IF = 70A V R = 34V 4 IF = 46A V R = 34V 60 TJ = 25°C TJ = 125°C TJ = 25°C TJ = 125°C 50 3 QRR (nC) IRRM (A) 400 diF /dt (A/μs) 2 40 30 20 1 10 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 diF /dt (A/μs) diF /dt (A/μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt QRR (nC) 60 50 IF = 70A V R = 34V 40 TJ = 25°C TJ = 125°C 30 20 10 0 0 200 400 600 800 1000 diF /dt (A/μs) www.irf.com Fig. 20 - Typical Stored Charge vs. dif/dt 7 IRFB7446PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 8 Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform www.irf.com IRFB7446PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 ASS EMBLED ON WW 19, 2000 IN T HE ASS EMBLY LINE "C" Note: "P" in as s embly line position indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant TO-220AB Industrial†† (per JEDEC JESD47F††† guidelines) N/A (per JE DE C J-S TD-020D†††) Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Revision History Date 9/11/2012 Comment Added Package limit on pg1,2 and updated Fig2 , Fig10 Data and specifications subject to change without notice. www.irf.com IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2012 9