IRF IRFB7446PBF

PD - 96435A
StrongIRFET™
IRFB7446PbF
Applications
l
l
l
l
l
l
l
l
l
HEXFET® Power MOSFET
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
VDSS
D
40V
RDS(on) typ.
2.6mΩ
max.
G
3.3mΩ
123A
ID (Silicon Limited)
S
c
120A
ID (Package Limited)
D
Benefits
l
l
l
l
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
G
D
S
TO-220AB
IRFB7446PbF
G
D
S
Gate
Drain
Source
Ordering Information
Package Type
IRFB7446PbF
TO-220
Standard Pack
Form
Tube
Complete Part Number
Quantity
50
IRFB7446PbF
125
8
ID = 70A
100
6
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m Ω)
Base part number
T J = 125°C
4
2
50
25
T J = 25°C
0
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
www.irf.com
75
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
1
09/11/12
IRFB7446PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
c
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
123
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
87
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
120
IDM
Pulsed Drain Current
492
PD @TC = 25°C
Maximum Power Dissipation
d
Linear Derating Factor
A
99
W
0.66
W/°C
V
VGS
Gate-to-Source Voltage
± 20
TJ
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
x
e
EAS (Thermally limited)
Single Pulse Avalanche Energy
EAS (tested)
Single Pulse Avalanche Energy Tested Value
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
d
Thermal Resistance
Symbol
x
10lbf in (1.1N m)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
300
111
k
mJ
160
A
See Fig. 14, 15 , 22a, 22b
d
Parameter
j
Typ.
Max.
–––
1.52
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
0.50
–––
RθJA
Junction-to-Ambient
–––
62
mJ
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
Symbol
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
40
–––
–––
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
–––
–––
3.3
–––
3.9
1.0
150
100
-100
–––
V
V/°C
mΩ
mΩ
V
IGSS
2.2
–––
–––
–––
–––
–––
–––
0.033
2.6
3.9
3.0
–––
–––
–––
–––
1.6
RG
Parameter
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.046mH,RG = 50Ω,
IAS = 70A, VGS =10V.
„ ISD ≤ 70A, di/dt ≤ 1174A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
μA
nA
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5mA
VGS = 10V, ID = 70A
VGS = 6.0V, ID = 35A
VDS = VGS, ID = 100μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
g
g
d
Ω
† Coss eff. (TR) is a fixed capacitance that gives the same charging
time as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ Rθ is measured at TJ approximately 90°C.
‰ This value determined from sample failure population,
starting TJ = 25°C, L=0.046mH, RG = 50Ω, IAS = 70A, VGS =10V.
www.irf.com
IRFB7446PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Q gd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
Min.
Typ.
Max.
Units
269
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
62
16
20
42
11
34
33
23
3183
475
331
596
688
–––
93
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
Min.
Typ.
Max.
–––
c
nC
ns
Conditions
VDS = 10V, ID = 70A
ID = 70A
VDS =20V
VGS = 10V
ID = 70A, VDS =0V, VGS = 10V
VDD = 20V
ID = 30A
RG = 2.7Ω
VGS = 10V
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz, See Fig. 5
VGS = 0V, VDS = 0V to 32V , See Fig. 11
VGS = 0V, VDS = 0V to 32V
g
g
pF
i
h
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
(Body Diode)
Diode Forward Voltage
dv/dt
trr
Peak Diode Recovery
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
d
f
www.irf.com
–––
Units
Conditions
MOSFET symbol
120
A
–––
–––
492
–––
0.9
1.3
V
–––
–––
–––
–––
–––
–––
7.6
22
24
15
15
1.0
–––
–––
–––
–––
–––
–––
V/ns
ns
nC
A
D
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 70A, VGS = 0V
G
S
g
TJ = 175°C, IS = 70A, VDS = 40V
TJ = 25°C
VR = 34V,
IF = 70A
TJ = 125°C
di/dt = 100A/μs
TJ = 25°C
TJ = 125°C
TJ = 25°C
g
3
IRFB7446PbF
1000
1000
100
BOTTOM
100
10
4.5V
1
≤60μs PULSE WIDTH
BOTTOM
4.5V
10
≤60μs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.2
T J = 175°C
100
10
T J = 25°C
1
VDS = 10V
≤60μs PULSE WIDTH
0.1
2
4
6
8
ID = 70A
VGS = 10V
1.8
1.4
1.0
0.6
10
-60
-20
100
140
180
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
10000
Ciss
Coss
1000
60
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
20
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
Fig 4. Typical Output Characteristics
1000
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Crss
ID= 70A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
100
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
0
10
20
30
40
50
60
70
80
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
IRFB7446PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
100
TJ = 25°C
10
1
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
VGS = 0V
0.5
1.0
1.5
1msec
Package Limited
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
2.0
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
0.6
50
Id = 5.0mA
49
VDS= 0V to 32V
0.5
48
47
0.4
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
DC
0.1
0.1
0.0
100μsec
100
46
45
44
0.3
0.2
43
42
0.1
41
0.0
40
-60
-20
20
60
100
140
0
180
T J , Temperature ( °C )
10
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
5
Fig 12. Typical COSS Stored Energy
20.0
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
15.0
10.0
5.0
0.0
0
100
200
300
400
500
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
www.irf.com
5
IRFB7446PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart = 25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 70A
80
40
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
175
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
IRFB7446PbF
6
5
IF = 46A
V R = 34V
4
TJ = 25°C
TJ = 125°C
3.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.5
2.5
ID = 100μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
1.5
3
2
1
0.5
0
-75
-25
25
75
125
175
225
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
5
70
IF = 70A
V R = 34V
4
IF = 46A
V R = 34V
60
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
50
3
QRR (nC)
IRRM (A)
400
diF /dt (A/μs)
2
40
30
20
1
10
0
0
0
200
400
600
800
1000
0
200
400
600
800
1000
diF /dt (A/μs)
diF /dt (A/μs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
QRR (nC)
60
50
IF = 70A
V R = 34V
40
TJ = 25°C
TJ = 125°C
30
20
10
0
0
200
400
600
800
1000
diF /dt (A/μs)
www.irf.com
Fig. 20 - Typical Stored Charge vs. dif/dt
7
IRFB7446PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
www.irf.com
IRFB7446PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
ASS EMBLED ON WW 19, 2000
IN T HE ASS EMBLY LINE "C"
Note: "P" in as s embly line position
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
TO-220AB
Industrial††
(per JEDEC JESD47F††† guidelines)
N/A
(per JE DE C J-S TD-020D†††)
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
9/11/2012
Comment
Added Package limit on pg1,2 and updated Fig2 , Fig10
Data and specifications subject to change without notice.
www.irf.com
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 09/2012
9