IRF IRFSL7440PbF

StrongIRFET™
IRFS7440PbF
IRFSL7440PbF
Applications
l
l
l
l
l
l
l
l
l
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
HEXFET® Power MOSFET
G
l
l
l
l
c
120A
D
D
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
RoHS Compliant containing no Lead, no Bromide,
and no Halogen
40V
2.0m
2.5m
208A
ID (Package Limited)
S
Benefits
l
VDSS
RDS(on) typ.
max.
ID
D
S
G
G
D2Pak
IRFS7440PbF
D
S
TO-262
IRFSL7440PbF
G
D
S
Gate
Drain
Source
Ordering Information
Base Part Number
Package Type
D2-Pak
D2-Pak
TO-262
7.0
Complete Part Number
Quantity
50
800
50
IRFS7440PbF
IRFS7440TRLPbF
IRFSL7440PbF
240
ID = 100A
6.0
Limited By Package
200
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
IRFS7440PbF
IRFS7440PbF
IRFSL7440PbF
Standard Pack
Form
Tube
Tape and Reel Left
Tube
5.0
T J = 125°C
4.0
3.0
2.0
160
120
80
40
T J = 25°C
1.0
0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
www.irf.com
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
1
October 10, 2012
IRFS/SL7440PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
208
147
120
IDM
PD @TC = 25°C
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
772
208
1.4
± 20
-55 to + 175
VGS
TJ
TSTG
d
Avalanche Characteristics
EAS (Thermally limited)
EAS (tested)
IAR
EAR
Single Pulse Avalanche Energy
Units
c
c
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
A
W
W/°C
V
°C
300
e
238
298
See Fig. 14, 15, 22a, 22b
Single Pulse Avalanche Energy Tested Value k
Avalanche Currentd
Repetitive Avalanche Energy d
mJ
A
mJ
Thermal Resistance
Symbol
RJC
RJA
Parameter
j
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Typ.
Max.
Units
–––
–––
0.72
40
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
V(BR)DSS/TJ
RDS(on)
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.048mH
RG = 50, IAS = 100A, VGS =10V.
„ ISD  100A, di/dt  1330A/μs, VDD V(BR)DSS, TJ  175°C.
2
October 10, 2012
Min.
Typ.
Max. Units
40
–––
–––
–––
2.2
–––
–––
–––
–––
–––
–––
0.035
2.0
3.0
3.0
–––
–––
–––
–––
2.6
–––
–––
2.5
–––
3.9
1.0
150
100
-100
–––
V
V/°C
m
m
V
μA
nA
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 5.0mA
VGS = 10V, ID = 100A
VGS = 6.0V, ID = 50A
VDS = VGS, ID = 100μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
g
g
d

… Pulse width  400μs; duty cycle  2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ R is measured at TJ approximately 90°C.
‰ This value determined from sample failure population,
starting T J = 25°C, L= 0.048mH, RG = 50, IAS = 100A, VGS =10V.
www.irf.com
IRFS/SL7440PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
Min.
Typ.
88
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
90
23
32
58
24
68
115
68
4730
680
460
845
980
Max. Units
Min.
Typ.
–––
–––
193
–––
–––
772
–––
–––
–––
–––
–––
–––
–––
0.9
6.8
24
28
17
20
1.3
1.3
–––
–––
–––
–––
–––
–––
–––
135
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 10V, ID = 100A
ID = 100A
VDS =20V
VGS = 10V
ID = 100A, VDS =0V, VGS = 10V
VDD = 20V
ID = 30A
R G = 2.7
VGS = 10V
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz
VGS = 0V, VDS = 0V to 32V
VGS = 0V, VDS = 0V to 32V
g
ns
pF
g
i
h
Diode Characteristics
Symbol
IS
Parameter
VSD
dv/dt
trr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Peak Diode Recovery
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
ISM
www.irf.com
d
f
Max. Units
Conditions
A
MOSFET symbol
showing the
G
A
integral reverse
p-n junction diode.
V
TJ = 25°C, IS = 100A, VGS = 0V
V/ns TJ = 175°C, IS = 100A, VDS = 40V
ns TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 100A
di/dt = 100A/μs
nC TJ = 25°C
TJ = 125°C
A
TJ = 25°C
g
D
S
g
3
October 10, 2012
IRFS/SL7440PbF
1000
1000
100
BOTTOM
TOP
10
4.5V
1
60μs PULSE WIDTH
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
60μs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
Fig 4. Typical Output Characteristics
1000
2.0
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
T J = 175°C
T J = 25°C
10
VDS = 10V
60μs PULSE WIDTH
ID = 100A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
1.0
3
4
5
6
7
8
9
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10000
Ciss
Coss
Crss
1000
100
ID= 100A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
October 10, 2012
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
IRFS/SL7440PbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
Limited by
package
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
2.5
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
0.8
50
Id = 5.0mA
49
VDS= 0V to 32V
48
0.6
47
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
VSD, Source-to-Drain Voltage (V)
46
45
44
0.4
43
0.2
42
41
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
5
T J , Temperature ( °C )
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( m)
10
Fig 12. Typical COSS Stored Energy
40
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
30
VGS =10V
20
10
0
0
100 200 300 400 500 600 700 800
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
www.irf.com
5
October 10, 2012
IRFS/SL7440PbF
1
Thermal Response ( Z thJC ) °C/W
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
175
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
October 10, 2012
www.irf.com
IRFS/SL7440PbF
8
IF = 60A
V R = 34V
7
4.0
TJ = 25°C
TJ = 125°C
6
3.0
IRRM (A)
VGS(th), Gate threshold Voltage (V)
5.0
ID = 100μA
ID = 1.0mA
ID = 1.0A
5
4
3
2.0
2
1
1.0
-75 -50 -25
0
0
25 50 75 100 125 150 175
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
8
110
IF = 100A
V R = 34V
7
IF = 60A
V R = 34V
100
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
90
QRR (nC)
6
IRRM (A)
400
diF /dt (A/μs)
5
4
80
70
3
60
2
50
1
40
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
100
IF = 100A
V R = 34V
QRR (nC)
80
TJ = 25°C
TJ = 125°C
60
40
20
0
0
200
400
600
800
1000
diF /dt (A/μs)
www.irf.com
Fig. 21 - Typical Stored Charge vs. dif/dt
7
October 10, 2012
IRFS/SL7440PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple  5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width µs
Duty Factor 
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50K
12V
tf
.2F
.3F
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
October 10, 2012
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
www.irf.com
IRFS/SL7440PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
$66(0%/<
/27&2'(
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
October 10, 2012
IRFS/SL7440PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
October 10, 2012
www.irf.com
IRFS/SL7440PbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Qualification information†
Qualification level
Moisture Sensitivity Level
Industrial††
(per JEDEC JESD47F††† guidelines)
D2Pak
MS L1
(per JE DE C J-S T D-020D†††)
Not applicable
TO-262
RoHS compliant
†
Yes
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/2012
www.irf.com
11
October 10, 2012