IRF IRFZ34E

PD - 9.1672A
IRFZ34E
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
l Dynamic dv/dt Rating
l 175°C Operating Temperature
l Fast Switching
l Ease of Paralleling
Description
l
D
l
VDSS = 60V
RDS(on) = 0.042Ω
G
ID = 28A
S
Fifth Generation HEXFETs from International Rectifier
utilize advanced processing techniques to achieve
the lowest possible on-resistance per silicon area.
This benefit, combined with the fast switching speed
and ruggedized device design that HEXFET Power
MOSFETs are well known for, provides the designer
with an extremely efficient device for use in a wide
variety of applications.
The TO-220 package is universally preferred for all
commercial-industrial applications at power dissipation
levels to approximately 50 watts. The low thermal
resistance and low package cost of the TO-220
contribute to its wide acceptance throughout the
industry.
TO-220AB
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
28
20
112
68
0.46
± 20
97
17
6.8
5.0
-55 to + 175
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Min.
Typ.
Max.
Units
––––
––––
––––
––––
0.50
––––
2.2
––––
62
°C/W
11/4/97
IRFZ34E
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(ON)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
Min.
60
–––
–––
2.0
7.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
LD
Internal Drain Inductance
–––
LS
Internal Source Inductance
–––
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
IGSS
Typ.
–––
0.056
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
5.1
30
22
30
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.042
Ω
VGS = 10V, ID = 17A„
4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 17A
25
VDS = 60V, VGS = 0V
µA
250
VDS = 48V, VGS = 0V, TJ = 150°C
100
VGS = 20V
nA
-100
VGS = -20V
30
ID = 17A
6.7
nC
VDS = 48V
12
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 30V
–––
ID = 17A
ns
–––
RG = 13Ω
–––
RD = 1.8Ω, See Fig. 10 „
D
Between lead,
4.5 –––
6mm (0.25in.)
nH
G
from package
7.5 –––
and center of die contact
S
680 –––
VGS = 0V
220 –––
pF
VDS = 25V
80 –––
ƒ = 1.0MHz, See Fig. 5
Source-Drain Ratings and Characteristics
IS
ISM
V SD
t rr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
28
–––
–––
100
–––
–––
–––
–––
63
130
1.3
95
200
A
V
ns
nC
Conditions
D
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
S
TJ = 25°C, IS = 17A, VGS = 0V „
TJ = 25°C, IF = 17A
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 670µH
RG = 25Ω, IAS = 17A. (See Figure 12)
ƒ ISD ≤ 17 A, di/dt ≤ 200A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
IRFZ34E
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
100
10
4.5V
1
10
4.5V
1
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
2.5
R DS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
10
1
V DS = 25V
20µs PULSE WIDTH
5
6
7
8
9
Fig 3. Typical Transfer Characteristics
10
100
Fig 2. Typical Output Characteristics
100
VGS , Gate-to-Source Voltage (V)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
0.1
20µs PULSE WIDTH
TJ = 175 °C
0.1
0.1
100
VDS , Drain-to-Source Voltage (V)
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
ID = 28A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
IRFZ34E
VGS =
Ciss =
Crss =
Coss =
C, Capacitance (pF)
1000
0V,
f = 1MHz
Cgs + Cgd , Cds SHORTED
Cgd
Cds + Cgd
Ciss
800
600
C oss
400
Crss
200
20
VGS , Gate-to-Source Voltage (V)
1200
0
1
10
ID = 17 A
VDS = 48V
VDS = 30V
15
10
5
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
VDS , Drain-to-Source Voltage (V)
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
1000
ISD , Reverse Drain Current (A)
5
1000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
I D , Drain Current (A)
100
100
TJ = 150 ° C
10
TJ = 25 ° C
1
0.1
0.2
1.0
100us
10
1ms
V GS = 0 V
0.6
10us
1.4
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
1.8
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
1
10ms
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
1000
IRFZ34E
30
RD
VDS
VGS
I D , Drain Current (A)
25
D.U.T.
RG
+
- VDD
20
10 V
15
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10
Fig 10a. Switching Time Test Circuit
VDS
5
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
0.1
IRFZ34E
200
D.U.T.
RG
+
-
VDD
IAS
10 V
tp
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
EAS , Single Pulse Avalanche Energy (mJ)
L
VDS
TOP
BOTTOM
150
100
50
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( ° C)
tp
VDD
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
VDS
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
QG
.3µF
10 V
QGS
D.U.T.
QGD
+
V
- DS
VGS
VG
3mA
IG
Charge
Fig 13a. Basic Gate Charge Waveform
ID
6.9A
12A
17A
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
175
IRFZ34E
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
Driver Gate Drive
P.W.
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
Period
-
VDD
P.W.
Period
VGS=10V
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
ISD
*
IRFZ34E
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2 .87 (.1 1 3 )
2 .62 (.1 0 3 )
10.5 4 (.4 15 )
10.2 9 (.4 05 )
-B-
3 .7 8 (.14 9 )
3 .5 4 (.13 9 )
4 .69 (.1 85 )
4 .20 (.1 65 )
-A-
1 .3 2 (.05 2 )
1 .2 2 (.04 8 )
6.4 7 (.2 55 )
6.1 0 (.2 40 )
4
1 5.24 (.60 0 )
1 4.84 (.58 4 )
1.15 (.04 5)
M IN
1
2
14 .09 (.5 5 5 )
13 .47 (.5 3 0 )
4 .06 (.16 0 )
3 .55 (.14 0 )
3X
3X
1 .40 (.0 55 )
1 .15 (.0 45 )
L EA D A S S IG N M E N T S
1 - GATE
2 - D R A IN
3 - S O U RC E
4 - D R A IN
3
0.93 (.03 7 )
0.69 (.02 7 )
0 .36 (.0 14 )
3X
M
B A M
2 .92 (.11 5 )
2 .64 (.10 4 )
2 .5 4 (.1 0 0)
2X
N O TE S :
1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 14.5 M , 1 9 82.
2 C O N TR O L LING D IM E N SIO N : INC H
0.5 5 (.0 2 2)
0.4 6 (.0 1 8)
3 O U TL IN E C O N F O R M S TO J E D E C O UT LIN E T O -2 2 0 -A B .
4 H EA T S IN K & LE A D M E A S UR E M E NT S D O N O T IN C L U D E B U R R S .
Part Marking Information
TO-220AB
E XA M P L E : TH IS IS A N IR F 1 0 1 0
W ITH A S S E M B L Y
LOT CODE 9B1M
A
IN T E R N A T IO N A L
R E C TIF IE R
LO G O
ASSEMBLY
LOT CODE
PART NUMBER
IR F 1 0 1 0
9 24 6
9B
1M
D A TE C O D E
(YYW W )
YY = YE A R
W W = W EEK
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
11/97