IRF IRHYB67230CM

PD-95818C
RADIATION HARDENED
POWER MOSFET
THRU-HOLE (Low-Ohmic TO-257AA)
IRHYB67230CM
200V, N-CHANNEL
TECHNOLOGY
Product Summary
Part Number
Radiation Level RDS(on)
IRHYB67230CM 100K Rads (Si) 0.13Ω
ID
16A
IRHYB63230CM 300K Rads (Si)
16A
0.13Ω
Low-Ohmic
TO-257AA Tabless
International Rectifier’s R6TM technology provides
superior power MOSFETs for space applications.
These devices have improved immunity to Single
Event Effect (SEE) and have been characterized for
useful performance with Linear Energy Transfer
(LET) up to 90MeV/(mg/cm2). Their combination of
very low RDS(on) and faster switching times reduces
power loss and increases power density in today’s
high speed switching applications such as DC-DC
converters and motor controllers. These devices
retain all of the well established advantages of
MOSFETs such as voltage control, ease of paralleling
and temperature stability of electrical parameters.
Features:
n
n
n
n
n
n
n
n
n
n
Low RDS(on)
Fast Switching
Single Event Effect (SEE) Hardened
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Eyelets
Electrically Isolated
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
Units
16
10
64
75
0.6
±20
83
16
7.5
9.0
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (0.063 in. /1.6 mm from case for 10s)
3.7 (Typical)
g
For footnotes refer to the last page
www.irf.com
1
03/17/06
IRHYB67230CM
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
200
—
—
V
—
0.19
—
V/°C
—
—
0.13
Ω
VGS = 12V, ID = 10A Ã
2.0
11
—
—
—
—
—
—
4.0
—
10
25
V
S( )
nC
VDS = VGS, ID = 1.0mA
VDS = 15V, IDS = 10A Ã
VDS= 160V ,VGS=0V
VDS = 160V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID = 16A
VDS = 100V
ns
VDD = 100V, ID = 16A
VGS =12V, RG = 7.5Ω
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Typ Max Units
Ω
BVDSS
µA
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.8
100
-100
42
10
20
15
40
35
15
—
Ciss
Coss
Crss
Rg
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Gate Resistance
—
—
—
—
1660
206
2.6
1.75
—
—
—
—
nA
nH
pF
Ω
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
Measured from Drain lead (6mm /
0.25in. from package) to Source lead
(6mm /0.25in. from package)
VGS = 0V, VDS = 25V
f = 1.0MHz
f = 1.0MHz, open drain
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
16
64
1.2
300
3.2
Test Conditions
A
V
ns
µC
Tj = 25°C, IS = 16A, VGS = 0V Ã
Tj = 25°C, IF = 16A, di/dt ≤ 100A/µs
VDD ≤ 25V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
RthJA
Junction-to-Case
Junction-to-Ambient
Min Typ Max Units
—
—
—
—
1.67
80
°C/W
Test Conditions
Typical Socket Mount
Note: Corresponding Spice and Saber models are available on International Rectifier Web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHYB67230CM
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Units
Test Conditions ˆ
V
µA
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20V
VDS=160V, VGS=0V
0.134
Ω
VGS = 12V, ID = 10A
—
0.13
Ω
VGS = 12V, ID = 10A
—
1.2
V
VGS = 0V, ID = 16A
Up to 300K Rads (Si)
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source „
On-State Resistance (TO-3)
Static Drain-to-Source On-State „
Resistance (Low Ohmic TO-257)
Diode Forward Voltage
„
Min
Max
200
2.0
—
—
—
—
4.0
100
-100
10
—
nA
Part numbers IRHYB67230CM, IRHYB63230CM
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
LET
2
Energy
Range
VDS (V)
(MeV)
(µm)
@VGS= 0V
@VGS= -5V
@VGS= -10V
@VGS= -15V
43
2441
205
200
200
200
190
Xe
59
825
66
200
200
200
190
Au
90
1480
80
170
170
--
--
VDS
(MeV/(mg/cm ))
Xe
240
200
160
120
80
40
0
Xe - LET=43
Xe - LET=59
Au - LET=90
0
-5
-10
VGS
-15
-20
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHYB67230CM
Pre-Irradiation
100
100
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
5.0V
1
60µs PULSE WIDTH
Tj = 25°C
0.1
10
1
60µs PULSE WIDTH
Tj = 150°C
0.1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
2.5
T J = 25°C
10
VDS = 50V
15
60µs PULSE WIDTH
4
6
8
10
12
14
16
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
T J = 150°C
2
10
100
Fig 2. Typical Output Characteristics
100
1
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
4
5.0V
ID = 16A
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
3000
20
VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 100KHz
1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
2400
C, Capacitance (pF)
IRHYB67230CM
Ciss
1800
Coss
1200
600
Crss
0
1
10
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
10
VDS , Drain-to-Source Voltage (V)
20
30
40
50
60
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
VDS =
6 160V
VDS = 100V
VDS = 40V
16
0
100
ID = 16A
100
T J = 150°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 25°C
1.0
10
100µs
1
1ms
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
10ms
0.1
0.1
0.2
0.4
0.6
0.8
1.0
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
1.2
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHYB67230CM
Pre-Irradiation
16
RD
VDS
VGS
12
ID , Drain Current (A)
D.U.T.
RG
+
-V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
8
Fig 10a. Switching Time Test Circuit
4
VDS
90%
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
P DM
0.05
0.02
0.01
t1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
t2
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHYB67230CM
15V
L
VDS
D.U.T.
RG
IAS
VGS
20V
DRIVER
+
- VDD
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
160
ID
7.0A
10A
BOTTOM 16A
TOP
120
80
40
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
V(BR)DSS
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHYB67230CM
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
maximum junction temperature.
Á VDD = 25V, starting TJ = 25°C, L= 0.65mH
Peak IL = 16A, VGS = 12V
 I SD ≤ 16A, di/dt ≤ 750A/µs,
VDD ≤ 200V, TJ ≤ 150°C
12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
160 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — Low-Ohmic TO-257AA ( Tabless)
$
>@
>@
>@
>@
%
>@
>@
>@
&
0$;
>@
>@
>@
>@
>@
;
>@
;‘
‘>@
>@
% $
127(6
',0(16,21,1*72/(5$1&,1*3(5$16,<0
&21752//,1*',0(16,21,1&+
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(72$$
LEAD ASSIGNMENTS
1 = DRAIN
2 = SOURCE
3 = GATE
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 03/2006
8
www.irf.com