Data Sheet No. PD60250 IRS2101(S)PbF HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt immune • Gate drive supply range from 10 V to 20 V • Undervoltage lockout • 3.3 V, 5 V, and 15 V logic input compatible • Matched propagation delay for both channels • Outputs in phase with inputs • RoHS compliant Product Summary VOFFSET 600 V max. IO+/- 130 mA/270 mA VOUT 10 V - 20 V ton/off (typ.) 160 ns/150 ns Delay Matching 50 ns Description The IRS2101 is a high voltage, high speed power MOSFET and IGBT driver with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the highside configuration which operates up to 600 V. Packages 8-Lead SOIC IRS2101S 8-Lead PDIP IRS2101 Typical Connection IRS2101 (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2101(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High-side floating supply voltage VS Min. Max. -0.3 625 High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side and logic fixed supply voltage -0.3 25 VLO Low-side output voltage -0.3 VCC + 0.3 VIN Logic input voltage (HIN & LIN) -0.3 VCC + 0.3 — 50 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential. Symbol Min. Max. VB High-side floating supply absolute voltage Definition VS + 10 VS + 20 VS High-side floating supply offset voltage Note 1 600 VHO High-side floating output voltage VS VB VCC Low-side and logic fixed supply voltage 10 20 VLO Low-side output voltage 0 VCC VIN Logic input voltage (HIN & LIN) 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2101(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 160 220 VS = 0 V toff Turn-off propagation delay — 150 220 VS = 600 V tr Turn-on rise time — 70 170 tf Turn-off fall time — 35 90 Delay matching, HS & LS turn-on/off — — 50 MT ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 2.5 — — VIL Logic “0” input voltage — — 0.8 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current — 30 55 IQCC Quiescent VCC supply current — 150 270 IIN+ Logic “1” input bias current — 3 10 VIN = 5 V IIN- VIN = 0 V Logic “0” input bias current — — 5 VCCUV+ VCC supply undervoltage positive going threshold 8 8.9 9.8 VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9 Output high short circuit pulsed current 130 290 — VCC = 10 V to 20 V V IO = 2 mA VB = VS = 600 V µA VIN = 0 V or 5 V V VO = 0 V IO+ mA VIN = Logic “1” PW ≤ 10 µs VO = 15 V IO- www.irf.com Output low short circuit pulsed current 270 600 — VIN = Logic “0” PW ≤ 10 µs 3 IRS2101(S)PbF Functional Block Diagram IRS2101 www.irf.com 4 IRS2101(S)PbF Lead Definitions Symbol Description HIN Logic input for high-side gate driver output (HO), in phase LIN Logic input for low-side gate driver output (LO), in phase VB High-side floating supply HO High-side gate drive output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate drive output COM Low-side return Lead Assignments 8 Lead PDIP 8 Lead SOIC IRS2101PbF IRS2101SPbF Part Number www.irf.com 5 IRS2101(S)PbF ! ! "! Figure 1. Input/Output Timing Diagram #! "! #! Figure 2. Switching Time Waveform Definitions ! ! #! "! Figure 3. Delay Matching Waveform Definitions www.irf.com 6 IRS2101(S)PbF 500 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 500 400 300 200 100 Max. Typ. 0 -50 400 Max. 300 200 Typ. 100 0 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs. Temperature Figure 6B. Turn-On Time vs. Supply Voltage 5 00 Turn-Off Delay Time (ns) 500 Turn-On Delay Time (ns) 14 400 300 200 100 4 00 3 00 M ax . 2 00 1 00 T yp . 0 0 2 4 6 8 0 10 12 14 16 18 20 -50 -25 0 25 50 75 Temperature (°C) Input Voltage (V) 1 25 Figure 7A. Turn-Off Time vs. Temperature Figure 6C. Turn-On Time vs. Input Voltage 500 Turn-Off Delay Time (ns 500 Turn-Off Delay Time (ns) 1 00 400 Max. 300 200 Typ. 100 400 300 Max. 200 100 Typ. 0 0 10 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 7B. Turn-Off Time vs. Supply Voltage www.irf.com 0 2 4 6 8 10 12 14 16 18 20 Input Voltage (V) Figure 7C. Turn-Off Time vs. Input Voltage 7 IRS2101(S)PbF 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 Max. 100 400 300 Max. 200 100 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (°C) Figure 9A. Turn-On Rise Time vs. Temperature Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 18 20 200 150 100 Max. 50 150 100 Max. 50 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 10A. Turn-Off Fall Time vs. Temperature Figure 10B. Turn-Off Fall Time vs. Voltage 8 8 7 7 Input Voltage (V) Input Voltage (V) 16 Figure 9B. Turn-On Rise Time vs. Voltage 200 6 5 4 3 2 14 VBIAS Supply Voltage (V) Min. 1 6 5 4 3 Min. 2 1 0 -50 0 -25 0 25 50 75 100 o Temperature ( C) Figure 12A. Logic "1" Input Voltage vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 12B. Logic "1" Input Voltage vs. Voltage 8 6 5 Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) IRS2101(S)PbF Max 4 3 2 1 0 -50 -25 0 25 50 Temperature (°C) 75 100 125 6 5 Max 4 3 2 1 0 10 12 14 16 18 Supply Voltage (V) Temperature(°C) (°C) Temperature Figure 13B. Logic "0" Input Bias Current vs. Voltage 0.5 High Level Output Voltage (V) High Level Output Voltage (V) Figure 13A. Logic "0" Input Bias Current vs. Temperature 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 -50 -25 0 25 50 Temperature 75 100 0.5 0.4 0.3 Max. 0.2 0.1 Typ. 0.0 125 10 Low Level Output Voltage (V) Low Level Output Voltage (V) 0.2 Max. Typ. 0.0 25 50 75 100 o Temperature ( C) Figure 15A. Low Level Output Voltage vs. Temperature www.irf.com 18 20 V BAIS Supply V oltage (V ) 0.3 0 16 Figure 14B. High Level Output vs. Supply Voltage 0.4 -25 14 Vcc Supply Voltage (V) 0.5 -50 12 ( oC) Figure 14A. High Level Output Voltage vs. Temperature 0.1 20 125 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 15B. Low level Output vs.Supply Voltage 9 500 Offset Supply Leakage Current (µA) (µA) Offset Supply Leakage Current (µA) IRS2101(S)PbF 500 400 400 300 300 200 200 100 100 M ax. 0 -5 0 -2 5 0 25 50 75 100 125 Max. 0 0 100 1 20 90 60 M ax . 30 T yp . 0 500 600 120 90 60 Max . 30 Ty p. 0 -50 -25 0 25 50 75 1 00 1 25 10 12 Temperature (°C) 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17B. VBS Supply Current vs. Voltage Figure 17A. VBS Supply Current vs. Temperature 700 700 Vcc Supply Current (µA) Vcc Supply Current (µA) 400 150 VBS Supply Current (µA) VBS Supply Current (µA) 1 50 600 500 400 M ax. 200 100 300 Figure 16B. Offset Supply Current vs. Voltage Figure 16A. Offset Supply Current vs. Temperature 300 200 VB Boost Voltage (V) Temperature (°C) Typ. 600 500 400 300 M ax. 200 100 Typ. 0 0 -5 0 -2 5 0 25 50 75 100 Temperature (°C) Figure 18A. Vcc Supply Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 18B. Vcc Supply Current vs. Voltage 10 IRS2101(S)PbF 30 Logic 1” Input Current (µA) Logic 1” Input Current (µA) 30 25 20 15 10 Max. 5 Typ. 0 -50 25 20 15 10 Max. 5 Typ. 0 -25 0 25 50 75 100 125 10 12 Figure 19A. Logic"1" Input Current vs. Temperature Logic “0” Input Current (µA) Logic “0” Input Current (µA) 18 20 5 4 3 2 Max. 1 0 -50 -25 0 25 50 75 Temperature (°C) 100 4 3 2 Max. 1 0 10 125 Figure 20A. Logic "0" Input Current vs. Temperature 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 20B. Logic "0" Input Current vs. Voltage 11 11 Max. VCC UVLO Threshold - (V) VCC UVLO Threshold +(V) 16 Figure 19B. Logic"1" Input Current vs. Voltage 5 10 9 14 Vcc Supply Voltage (V) Temperature (°C) Typ. Min. 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Vcc Undervoltage Threshold(+) vs. Temperature www.irf.com 10 Max. 9 Typ. 8 7 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21B. Vcc Undervoltage Threshold(-) vs. Temperature 11 IRS2101(S)PbF 500 Output Source Current (mA) ( ) Output Source Current (mA) 500 400 Typ. 300 200 Min. 100 0 400 300 200 Typ. 100 Min. 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) o Temperature ( C) VBIASSSupply Voltage (V) ( ) Figure 22A. Output Source Current vs. Temperature Figure 22B. Output Source Current vs. Supply Voltage 1000 800 Output Sink Current (mA) Output Sink Current (mA) 1000 Typ. 600 400 Min. 200 0 -50 800 600 400 Typ. 200 Min. 0 -25 0 25 50 75 100 Temperature (°C) Figure 23A. Output Sink Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23B. Output Sink Current vs. Supply Voltage 12 IRS2101(S)PbF Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC www.irf.com MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 13 IRS2101(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 14 IRS2101(S)PbF LEADFREE PART MARKING INFORMATION Part number Date code S IRxxxxxx YWW? ?XXXX Pin 1 Identifier ? P IR logo MARKING CODE Lead Free Released Non-Lead Free Released Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2101PbF 8-Lead SOIC IRS2101SPbF 8-Lead SOIC Tape & Reel IRS2101STRPbF The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/27/2006 www.irf.com 15