SAMSUNG K4C89323AF-TCF5

K4C89363AF
Network-DRAM-II Specification
Version 0.0
- 1 -
REV. 0.0 Nov. 2002
K4C89363AF
Revision History
Version 0.0 (Nov. 2002)
- First Release
- 2 -
REV. 0.0 Nov. 2002
K4C89363AF
2,097,152-WORDS x 4 BANKS x 36-BITS DOUBLE DATA RATE Network-DRAM
DESCRIPTION
K4C89363AF is a CMOS Double Data Rate Network-DRAM containing 301,989,888 memory cells. K4C89363AF is organized as
2,097,152-words x 4 banks x36 bits. K4C89363AF feature a fully synchronous operation referenced to clock edge whereby all operations are synchronized at a clock input which enables high performance and simple user interface coexistence. K4C89363AD can
operate fast core cycle compared with regular DDR SDRAM.
K4C89363AF is suitable for Server, Network and other applications where large memory density and low power consumption are
required. The Output Driver for Network-DRAM is capable of high quality fast data transfer under light loading condition.
FEATURES
K4C89363AF
Parameter
F6
FB
F5
CL = 4
4.0 ns
4.5 ns
5.0 ns
CL = 5
3.33 ns
3.75 ns
4.5 ns
CL = 6
3.0ns
3.33 ns
4.0 ns
tRC R a n d o m R e a d / W r i t e C y c l e T i m e ( m i n )
20.0 ns
22.5 ns
25 ns
tR A C R a n d o m A c c e s s T i m e ( m i n )
20.0 ns
22.5 ns
25 ns
ID D 1 S O p e r a t i n g C u r r e n t ( s i n g l e b a n k ) ( m a x )
TBD
TBD
TBD
ID D 2 S P o w e r D o w n C u r r e n t ( m a x )
TBD
TBD
TBD
ID D 3 S S e l f - R e f r e s h C u r r e n t ( m a x )
TBD
TBD
TBD
tC K C l o c k C y c l e T i m e ( m i n )
•
Fully Synchronous Operation
- Double Data Rate (DDR)
- Data input/output are synchronized with both edges of DS / QS.
- Differential Clock (CLK and C L K ) inputs
- C S, FN and all address input signals are sampled on the positive edge of CLK.
- Output data (DQs and QS) is aligned to the crossings of CLK and CLK.
•
Fast clock cycle time of 3.0 ns minimum
- Clock : 333 MHz maximum
- Data : 666 Mbps/pin maximum
•
Quad Independent Banks operation
•
Fast cycle and Short Latency
•
Selectable Data Strobe(Uni/Bi-directional data strobe)
•
Distributed Auto-Refresh cycle in 3.9us
•
Self-Refresh
•
Power Down Mode
•
Variable Write Length Control
•
Write Latency = C A S Latency-1
•
Programable C A S Latency and Burst Length
- C A S Laatency = 4, 5, 6
- Burst Length = 2,4
•
Organization : 2,097,152 words x 4 banks x 36 bits
•
P o w e r S u p p l y V o l t a g e V DD : 2 . 5 V ± 0 . 1 2 5 V
V DDQ : 1 . 8 V ± 0 . 1 V
•
•
1.8V CMOS I/O comply with SSTL - 1.8 (half strength driver)
•
Package : 144Ball BGA, 1mm x 0.8mm Ball pitch
•
JTAG(for x36)
•
Notice : Network-DRAM is trademark of Samsung Electronics., Co LTD
- 3 -
REV. 0.0 Nov. 2002
- 4 -
V SS Q
V DD Q
V SS Q
TD 1
T
U
V
TD 0
D Q 34
V SS
D Q3 5
VDD
V SS Q
VDD
VS S Q
V SS
DQ 18
TC K
D Q1 9
D Q2 1
TM S
V SS Q
V DD Q
Power Down Control
DQ 20
PD
V D DQ
Reference Voltage
VD D Q
V REF
D Q3 3
Function Control
D Q 32
FN
V SS Q
V DD Q
Ground(for I/O buffer)
D Q2 3
D Q2 5
V SSQ
DQ 22
DQ 24
Chip Select
VS S Q
V D DQ
CS
V SS Q
VD D Q
Power (+1.8V)(for I/O buffer)
D Q3 1
D Q2 9
V DDQ
D Q 30
D Q 28
V SS Q
Ground
UDS
V DD Q
VSS
DQ 26
A5
VDD
Bank Address
VS S Q
A4
A7
VS S
VDD
VS S
V SS Q
V DD Q
V SS Q
V DD Q
V SS Q
V DD Q
VDD
12
BA0, BA1
V SS Q
V D DQ
A6
A9
A 12
/P D
V R EF
LD S
D Q1 0
D Q1 2
D Q1 4
D Q1 6
V SS
11
Power (+2.5V)
D Q2 7
VD D Q
VDD
A8
A 11
CLK
/C L K
D Q9
DQ 11
DQ 13
DQ 15
DQ 17
V SS
10
VDD
UQ S
NC
VDD
VS S
VDD
VS S
VS S Q
V D DQ
VS S Q
V D DQ
VS S Q
V D DQ
VDD
9
Address Input
R
V SS Q
N
A3
A2
VSS
VDD
VSS
VS S Q
VD D Q
V SS Q
VD D Q
8
A0 ~ A14
V DD Q
V DD Q
M
A1
A0
BA 1
A 13
/CS
D Q8
D Q6
D Q4
7
Data Input/Output
NC
A1 0
B A0
A1 4
FN
LQ S
D Q7
D Q5
V SS Q
6
Pin
P
VDD
L
V SS Q
G
VS S
V DD Q
F
K
V SS Q
E
VDD
V DD Q
D
D Q2
VD D Q
5
CLK, CLK
D Q3
D Q0
VDD
4
DQ0 ~ DQ35
J
V SS Q
C
D Q1
V SS
3
Name
VS S
V DD Q
B
VS S
2
Pin
H
VDD
A
I nd ex
1
K4C89363AF
Pin Names
Name
No Connection
Clock Input
PIN ASSIGNMENT (TOP VIEW)
ball pitch=1.0 x 0.8mm
REV. 0.0 Nov. 2002
K4C89363AF
Block Diagram
CLK
DLL
CLK
CLOCK
PD
BUFFER
To Each Block
BANK #3
COMMAND
CONTROL
BANK #2
SIGNAL
DECODER
GENERATOR
BANK #0
ROW DECODER
FN
BANK #1
MODE
REGISTER
A0 ~ A14
ADDRESS
BA0, BA1
BUFFER
UPPER ADDRESS
LATCH
REFRESH
COUNTER
D AT A
C O NT R O L A N D L A T C H
C IR CU IT
CS
MEMORY
CELL
ARRAY
COLUMN DECODER
LOWER ADDRESS
LATCH
BURST
COUNTER
READ
DATA
BUFFER
WRITE ADDRESS
LATCH
ADDRESS
COMPARATOR
DS
QS
WRITE
DATA
BUFFER
DQ BUFFER
DQ0 ~ DQ35
Note : The K4C89363AD configuration is 4 Bank of 16384 x 128 x 36 of cell array with the DQ pins numbered DQ0~DQ35.
- 5 -
REV. 0.0 Nov. 2002
K4C89363AF
Absolute Maximum Ratings
Symbol
Parameter
Rating
Units
V DD
Power Supply Voltage
-0.3 ~ 3.3
V
V DDQ
Power Supply Voltage (for I/O buffer)
-0.3 ~ V DD + 0.3
V
V IN
Input Voltage
-0.3 ~ V DD + 0.3
V
VOUT
DQ pin Voltage
-0.3 ~ V DDQ + 0.3
V
VREF
Input Reference Voltage
-0.3 ~ V DDQ + 0.3
V
TOPR
Operating Temperature
0 ~ 70
O
C
T STG
Storage Temperature
-55 ~ 150
O
C
T SOLDER
Soldering Temperature(10s)
260
O
C
PD
Power Dissipation
2
W
IO U T
Short Circuit Output Current
± 50
mA
Notes
Caution : Conditions outside the limits listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device.
The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to "ABSOLUTE MAXIMUM RATINGS" conditions for extended periods may affect device reliability.
Recommended DC,AC Operating Conditions (Notes : 1)
Symbol
VDD
Parameter
Power Supply Voltage
VDDQ
Power Supply Voltage (for I/O Buffer)
VREF
Input Reference Voltage
(Ta = 0 ~ 70
O
C)
Min
Typ
Max
Units
Notes
2.375
2.5
2.625
V
1.7
1.8
1.9
V
V DDQ / 2 x 9 6 %
V D D Q /2
V DDQ / 2 x 1 0 5 %
V
2
V IH ( D C )
Input DC high Voltage
V R E F+ 0 . 1 2 5
-
V DDQ +0.2
V
5
V IL ( D C )
Input DC Low Voltage
-0.1
-
V R E F- 0 . 1 2 5
V
5
Differential Clock DC Input Voltage
-0.1
-
V DDQ +0.1
V
10
V ID ( D C )
Input Differential Voltage. CLK and C L K Inputs (DC)
0.4
-
V DDQ +0.2
V
7,10
V IH ( A C )
Input AC High Voltage
V R E F+ 0 . 2
-
V DDQ +0.2
V
3,6
V IL ( A C )
Input AC Low Voltage
-0.1
-
V REF-0.2
V
4,6
V ID ( A C )
Input Differential Voltage. CLK and C L K Inputs (AC)
0.55
-
V DDQ +0.2
V
7,10
VX (AC)
Differential AC Input Cross Point Voltage
V DDQ / 2 - 0 . 1 2 5
-
V DDQ /2+0.125
V
8,10
Differential Clock AC Middle Level
V DDQ / 2 - 0 . 1 2 5
-
V DDQ /2+0.125
V
9,10
V ICK ( D C )
V ISO ( A C )
- 6 -
REV. 0.0 Nov. 2002
K4C89363AF
Notes:
1. All voltages are referenced to Vss, VssQ.
2. V REF i s e x p e c t e d t o t r a c k v a r i a t i o n s i n V d d Q D C l e v e l o f t h e t r a n s m i t t i n g d e v i c e .
P e a k t o p e a k A C n o i s e o n V REF m a y n o t e x c e e d ± 2 % o f V R E F ( D C ) .
3. Overshoot Iimit : V IH( m a x . ) = V d d Q + 0 . 7 V w i t h a p u l s e w i d t h < = 5 n s
4 . U n d e r s h o o t I i m i t : V I L( m i n . ) = - 0 . 7 V w i t h a p u l s e w i d t h < = 5 n s
5 . V I H ( D C ) a n d V IL ( D C ) a r e l e v e l s t o m a i n t a i n t h e c u r r e n t l o g i c s t a t e .
6 . V I H ( A C ) a n d V I L( A C ) a r e l e v e l s t o c h a n g e t o t h e n e w l o g i c s t a t e .
7. V ID i s m a g n i t u d e o f t h e d i f f e r e n c e b e t w e e n C L K i n p u t l e v e l a n d C L K input level.
8. The value of Vx(AC) is expected to equal VddQ/2 of the transmitting device.
9 . V I S O m e a n s [ V I C K( C L K ) + V I C K (C L K ) ] / 2
10. Refer to the figure below.
CLK
VX
VX
VX
VX
VX
V ID ( A C )
CLK
VI C K
V ICK
VI C K
VI C K
VSS
V ID ( A C )
0 V Differential
V ISO
V ISO(min)
V I S O (max)
VSS
1 1 . I n t h e c a s e o f e x t e r n a l t e r m i n a t i o n , V T T ( T e r m i n a t i o n V o l t a g e ) s h o u l d b e g o n e i n t h e r a n g e o f V R E F( D C ) ± 0 . 0 4 V .
Pin Capacitance
o
(V DD = 2 . 5 V , V D D Q = 1 . 8 V , f = 1 M H z , T a = 2 5 C )
Symbol
Min
Max
Delts
Units
Input Pin Capacitance
1.5
2.5
0.25
pF
C INC
Clock Pin (CLK, C L K ) Capacitance
1.5
2.5
0.25
pF
C I/O
DQ, DS, QS Capacitance
2.5
3.5
0.5
pF
C NC
NC Pin Capacitance
-
1.5
-
pF
C IN
Parameter
Note : These parameters are periodically sampled and not 100% tested.
- 7 -
REV. 0.0 Nov. 2002
K4C89363AF
DC Characteristics and Operating Conditions
(Vdd = 2.5V ± 0.125V, VddQ = 1.8V ± 0.1V, Ta = 0~70 °C )
Max
Parameter
Symbol
Units
Notes
F6
FB
F5
I DD1S
TBD
TBD
TBD
1, 2
ID D 2 N
TBD
TBD
TBD
1
Operating Current
t CK = m i n , I RC = m i n
Read/Write command cycling
O V < = V IN< = V IL(AC) ( m a x . ) V IH(AC) ( m i n . ) < = VIN < = V DDQ
1 bank operation, Burst Length = 4
A d d r e s s c h a n g e u p t o 2 t i m e s d u r i n g m i n i m u m IR C .
Standby Current
t CK = m i n , C S = V IH, P D = V IH ,
0 V < = V IN< = V IL(AC) ( m a x . ) V IH(AC) ( m i n . ) < = V IH < = VDDQ
All Banks : inactive state
O t h e r i n p u t s i g n a l s a r e c h a n g e d o n e t i m e d u r i n g 4 * tC K
Standby (Power Down) Current
t CK = m i n , C S = V IH, P D = V IL ( P o w e r D o w n )
0 V < = V IN< = V DDQ
mA
I DD2P
TBD
TBD
TBD
1
I DD5
TBD
TBD
TBD
1
I DD6
TBD
TBD
TBD
All Banks : inactive state
Auto-Refresh Current
t CK = m i n , I REFC = m i n , t REFI = m i n
Auto-Refresh command cycling
0 V < = V IN< = V IL( A C ) ( m a x . ) , V IH( A C ) ( m i n . ) < = V IN < = V DDQ
A d d r e s s c h a n g e u p t o 2 t i m e s d u r i n g m i n i m u m I R E F C.
Self-Refresh Current
self-Refresh mode
P D = 0 . 2 V , O V < = V IN < = V DDQ
Parameter
Input Leakage Current
( 0 V < = V IN< = V d d Q , A l l o t h e r p i n s n o t u n d e r t e s t = 0 V )
Output Leakage Current
( O u t p u t d i s a b l e d , 0 V < = VO U T < = V d d Q )
V REF C u r r e n t
Output Source DC Current
V d d Q = 1 . 7 V / V OH = 1 . 4 2 0 V
Symbol
Min
Max
Unit
Notes
ILI
-5
5
uA
I LO
-5
5
uA
I REF
-5
5
uA
I O H( D C )
-5.6
-
3
IOL ( D C )
5.6
-
3
I O H( D C )
-9.8
-
Normal Output Driver
Output Sink DC Current
V d d Q = 1 . 7 V / V OL = 0 . 2 8 0 V
Output Source DC Current
V d d Q = 1 . 7 V / V OH = 1 . 4 2 0 V
Strong Output Driver
3
mA
Output Sink DC Current
V d d Q = 1 . 7 V / V OL = 0 . 2 8 0 V
Output Source DC Current
V d d Q = 1 . 7 V / V OH = 1 . 4 2 0 V
IOL ( D C )
9.8
-
3
I O H( D C )
-2.8
-
3
IOL ( D C )
2.8
-
3
Weak Output Driver
Output Sink DC Current
V d d Q = 1 . 7 V / V OL = 0 . 2 8 0 V
N o t e s : 1 . T h e s e p a r a m e t e r s d e p e n d o n t h e c y c l e r a t e a n d t h e s e v a l u e s a r e m e a s u r e d a t a c y c l e r a t e w i t h t h e m i n i m u m v a l u e s o f t C K, t RC a n d I RC .
2. These parameters depend on the output loading. The specified values are obtained with the output open.
3. Refer to output driver characteristics for the detail. Output Driver Strength is selected by Extended Mode Regis ter.
- 8 -
REV. 0.0 Nov. 2002
K4C89363AF
AC Characteristics and Operating Conditions (Notes : 1, 2)
F6
Symbol
F5
Units
Min
t RC
FB
Parameter
Random Cycle Time
t CK
Clock Cycle Time
t RAC
Random Access Time
Max
Min
Max
Min
Notes
Max
20.0
-
22.5
-
25
-
3
CL = 4
4.0
7.5
4.5
7.5
5.0
7.5
3
CL = 5
3.33
7.5
3.75
7.5
4.5
7.5
3
CL = 6
3.0
7.5
3.33
7.5
4.0
7.5
3
-
20.0
-
22.5
-
25
3
-
3
t CH
Clock High Time
0 . 4 5 * tC K
-
0.45*tC K
-
0 . 4 5 * tC K
t CL
Clock Low Time
0 . 4 5 * tC K
-
0.45*tC K
-
0 . 4 5 * tC K
-
3
t CKQS
QS Access Time from CLK
-0.45
0.45
-0.45
0.45
-0.5
0.5
3, 8
tQSQ
Data Output Skew from QS
-
0.2
-
0.25
-
0.3
4
t AC
Data Access Time from CLK
-0.5
0.5
-0.5
0.5
-0.6
0.6
3, 8
t OH
Data Output Hold Time from CLK
t HP
C L K h a l f p e r i o d ( m i n i u m o f A c t u a l tC H , t CL )
t QSP
t QSQV
t QHS
DQ, QS Hold skew factor
t DQSS
DS(Write) Low to High Setup Time
0.8*t C K
1.2*t C K
0 . 8 * tC K
1.2*t C K
0.8*t C K
1.2*t C K
t DSPRE
DS(Write) Preamble Pulse Width
0.4*t C K
-
0 . 4 * tC K
-
0.4*t C K
-
4
t DSPRES
DS First Input Setup Time
0
-
0
-
0
-
3
t DSPREH
DS First Low Input Hold Time
0.3*t C K
-
0 . 3 * tC K
-
0.3*t C K
-
3
t DSP
DS High or Low Input Pulse Width
0 . 4 5 * tC K
0.55*t C K
0.45*tC K
0.55*t C K
0 . 4 5 * tC K
0.55*t C K
4
CL = 4
0.9
-
0.9
-
1.0
-
3, 4
CL = 5
0.9
-
0.9
-
1.0
-
3, 4
CL = 6
0.9
-
0.9
-
1.0
-
3, 4
0 . 4 5 * tC K
-
0.45*tC K
0 . 4 5 * tC K
-
4
CL = 4
0.9
-
0.9
-
1.0
-
3, 4
CL = 5
0.9
-
0.9
-
1.0
-
3, 4
CL = 6
0.9
-
0.9
-
1.0
t DSS
t DSPST
t DSPSTH
-0.5
0.5
-0.5
0.5
-0.6
0.6
3, 8
m i n ( tC H , t CL )
-
min(tC H , tC L )
-
m i n ( tC H , t CL )
-
3
QS(Read) Pulse Width
t HP-t QHS
-
t H P-tQ H S
-
t HP-t QHS
-
4, 8
Data Output Valid Time from QS
t HP-t QHS
-
t H P-tQ H S
-
t HP-t QHS
-
4, 8
DS Input Falling Edge to Clock Setup Time
DS(Write) Postamble Pulse Width
DS(Write) Postamble Hold Time
0.055x
-
t CK+ 0 . 1 7
-
0.055x
tC K+0.17
-
0.055x
t CK+ 0 . 1 7
ns
3
3, 4
t DS
Data Input Setup Time from DS
0.3
-
0.35
-
0.4
-
4
t DH
Data Input Hold Time from DS
0.3
-
0.35
-
0.4
-
4
t IS
Command / Address Input Setup Time
0.6
-
0.6
-
0.7
-
3
t IH
Command / Address Input Hold Time
0.6
-
0.6
-
0.7
-
3
- 9 -
REV. 0.0 Nov. 2002
K4C89363AF
AC Characteristics and Operating Conditions (Notes : 1, 2) (Continued)
F6
Symbol
FB
F5
Parameter
Units Notes
Min
Max
Min
Max
Min
Max
-0.5
-
-0.5
-
-0.6
-
3, 6, 8
3, 7, 8
tL Z
Data-out Low Impedance Time from CLK
tH Z
Data-out High Impedance Time from CLK
-
0.5
-
0.5
-
0.6
tQPDH
Last Output to P D H i g h H o l d T i m e
0
-
0
-
0
-
tPDEX
Power Down Exit Time
0.6
-
0.6
-
0.7
-
tT
Input Transition Time
0.1
1
0.1
1
0.1
1
tF P D L
P D Low Input Window for Self-Refresh Entry
-0.5*t C K
5
- 0 . 5 * tC K
5
-0.5*t C K
5
tR E F I
Auto-Refresh Average Interval
0.4
3.9
0.4
3.9
0.4
3.9
3
3
5
us
tPAUSE
Pause Time after Power-up
200
-
200
-
200
-
CL = 4
5
-
5
-
5
-
CL = 5
6
-
6
-
6
-
CL = 6
7
-
7
-
7
-
1
1
1
1
1
1
CL = 4
4
-
4
-
4
-
CL = 5
5
-
5
-
5
-
CL = 6
6
-
6
-
6
-
2
-
2
-
2
-
Random Read/Write Cycle Time
IR C
IRCD
IRAS
IRBD
IRWD
IWRD
(Applicable to Same Bank)
RDA/WRA to LAL Command Input Delay
(Applicable to Same Bank)
LAL to RDA/WRA Command Input Delay
(Applicable to Same Bank)
Random Bank Access Delay
(Applicable to Other Bank)
LAL following RDA to WRA Delay
BL = 2
2
-
2
-
2
-
(Applicable to Other Bank)
BL = 4
3
-
3
-
3
-
1
-
1
-
1
-
CL = 4
7
-
7
-
7
-
CL = 5
7
-
7
-
7
-
CL = 6
7
-
7
-
7
-
-
2
-
2
-
2
LAL following WRA to RDA Delay
(Applicable to Other Bank)
IRSC
Mode Register Set Cycle Time
IPD
P D Low to Inactive State of Input Buffer
IP D A
P D High to Active State of Input Buffer
IP D V
IR E F C
ICKD
ILOCK
Power down mode valid from REF command
Auto-Refresh Cycle Time
1
-
1
-
1
-
CL = 4
19
-
19
-
19
-
CL = 5
23
-
23
-
23
-
CL = 6
25
-
25
-
25
-
CL = 4
19
-
19
-
19
-
CL = 5
23
-
23
-
23
-
CL = 6
25
-
25
-
25
-
I REFC
-
I REFC
-
IREFC
-
200
-
200
-
200
-
REF Command to Clock Input Disable
at Self-Refresh Entry
DLL Lock-on Time (Applicable to RDA command)
- 10 -
Cycle
REV. 0.0 Nov. 2002
K4C89363AF
AC Test Conditions
Value
Units
V IH ( m i n )
Symbol
Input high voltage (minimum)
V REF + 0.2
V
V IL ( m a x )
Input low voltage (maximum)
V REF - 0.2
V
VddQ/2
V
VREF
V
0.7
V
V X(AC)
V
V REF
Parameter
Input reference voltage
V TT
Termination voltage
V SWING
Input signal peak to peak swing
VR
Differential clock input reference level
V ID ( A C )
SLEW
V OTR
Input differential voltage
1.0
V
Input signal minimum slew rate
2.5
V/ns
VddQ/2
V
Output timing measurement reference voltage
Notes
9
V TT
VddQ
50 Ω
V IH min (AC)
V SWING
Z=50Ω
25 Ω
VREF
Output
V IL m a x (AC)
Z=50Ω
50 Ω
Vss
∆T
V TT
∆T
S l e w = ( V I H m i n ( A C ) - V I L m a x ( A C ) ) /∆ T
AC Test Load
N o t e s : 1 . T r a n s i t i o n t i m e s a r e m e a s u r e d b e t w e e n V I H m i n ( D C ) a n d V IL m a x ( D C ) .
Transition (rise and fall) of input signals have a fixed slope.
2. If the result of nominal calculation with regard to tCK contains more than
one decimal place, the result is rounded up to the nearest decimal place.
(i.e., tD Q S S = 0 . 8 * t C K , tC K = 3 . 3 n s , 0 . 8 * 3 . 3 n s = 2 . 6 4 n s i s r o u n d e d u p t o 2 . 7 n s . )
3. These parameters are measured from the differential clock (CLK and C LK) AC cross point.
4 . T h e s e p a r a m e t e r s a r e m e a s u r e d f r o m s i g n a l t r a n s i t i o n p o i n t o f D S c r o s s i n g V R E F level.
5. The t REFI(MAX.) applies to equally distributed refresh method.
The t REFI(MIN.) applies to both burst refresh method and distributed refresh method.
In such case, the average interval of eight consecutive Auto-Refresh commands has to be more than 400ns always. In
other words, the number of Auto- Refresh cycles which can be performed within 3.2us (8X400ns) is to 8 times in the
maximum.
6. Low Impedance State is speified at VddQ/2± 0.2V from steady state.
7. High Impedance State is specified where output buffer is no longer driven.
8. These parameters depend on the clock jitter. These parameters are measured at stable clock.
9. Output timing is measured by using Normal driver strength.
- 11 -
REV. 0.0 Nov. 2002
K4C89363AF
Power Up Sequence
1. As for PD , being maintained by the low state (<0.2V) is desirable before a power-supply injection.
2 . A p p l y V DD b e f o r e o r a t t h e s a m e t i m e a s V DDQ .
3 . A p p l y V D D Q b e f o r e o r a t t h e s a m e t i m e a s V R E F.
4. Start clock (CLK, C L K ) and maintain stable condition for 200us (min.).
5. After stable power and clock, apply DESL and take PD = H.
6. Issue EMRS to enable DLL and to define driver strength and data strobe type. (Note : 1)
7. Issue MRS for set C A S Latency (CL), Burst Type (BT), and Burst Length (BL). (Note : 1)
8. Issue two or more Auto-Refresh commands. (Note:1)
9. Ready for normal operation after 200 clocks from Extended Mode Register programming.
Note : 1. Sequence 6, 7 and 8 can be issued in random order.
2. L=Logic Low, H = Logic High
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
2.5V(TYP)
V DD
∼
∼
∼
∼
∼
∼
1.8V(TYP)
V DDQ
∼
∼
∼
∼
∼
∼
0.9V(TYP)
V REF
∼
∼
CLK
∼
∼
∼
∼
CLK
tP D E X
200 µ s(min)
IP D A
lR S C
lR S C
RDA MRS
DESL
WRA REF
DESL
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
DS
WRA REF
op-code
EMRS
DQ
DESL
∼
∼
DESL
∼
∼
RDA MRS
∼
∼
DESL
op-code
Address
∼
∼
200 clock cycle(min)
∼
∼
∼
∼
Command
lR E F C
∼
∼
∼
∼
∼
∼
∼
∼
PD
lR E F C
MRS
Hi-Z
QS
(Uni-QS mode)
- 12 -
∼
∼
MRS
∼
∼
EMRS
∼
∼
∼
∼
QS
(Free Running mode)
Low
Auto Refresh cycle
Normal Operation
REV. 0.0 Nov. 2002
K4C89363AF
Basic Timing Diagrams
Input Timing
Command and Address
tC K
tC H
tC K
tC L
CK
~
CK
tIH
tI S
1st
CS
tIH
~ ~
~
tI S
2nd
tIPW
tI S
tI S
tIH
~ ~
~
~
1st
FN
tIH
2nd
tI P W
A0-A14
BA0.BA1
tI S
tIH
tIH
~ ~
~
~
tI S
LA
UA, BA
~
Data
LDS/UDS
tD H
tD S
tD H
tD S
t DH
tD S
tD H
~~
~
tD S
DQn (Input)
~ ~
~
DQm (Input)
Refer to the Command Truth Table.
Timing of the CLK, C L K
tC H
tC L
V IH
V IH(AC)
CLK
V IL(AC)
CLK
tT
tT
V IL
tC K
V IH
CLK
V ID(AC)
CLK
VX
VX
- 13 -
VX
V IL
REV. 0.0 Nov. 2002
K4C89363AF
Read Timing (Burst Length = 4)
Unidirectional DS/QS mode
0
1
2
tC H
3
tC L
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tC K
CK
CK
tI S
tIH
Input
(Control &
L A L( a f t e r R D A )
DESL
Addresses)
LDS/UDS
(Input)
tC K Q S
tCKQS
C A S latency = 4
LQS/UQS
(Output)
tQ S P
Low
Low
tQSQV
t LZ
DQ
(Output)
tC K Q S
tQSP
tQSQ
tQ S Q
tQSQ
tQ S Q V
Q0
Q1
Q2
t HZ
High-Z
tA C
tA C
Q3
tA C
tOH
tC K Q S
tC K Q S
C A S latency = 5
LQS/UQS
(Output)
tQSP
Low
Low
tQ S Q V
tL Z
DQ
(Output)
tC K Q S
tQSP
tQ S Q
tQSQ
Q0
Q1
tQSQ
tQ S Q V
tHZ
High-Z
tA C
Q2
tA C
Q3
tA C
tOH
tC K Q S
tC K Q S
C A S latency = 6
LQS/UQS
(Output)
tQ S P
Low
Low
tQ S Q V
tL Z
DQ
(Output)
tCKQS
tQ S P
tQSQ
tQ S Q
Q0
Q1
tQ S Q
tQ S Q V
tH Z
High-Z
t AC
tA C
Q2
t AC
Q3
tO H
Note : DQ0 to DQ17 are aligned with LQS.
DQ18 to DQ35 are aligned with UQS.
- 14 -
REV. 0.0 Nov. 2002
K4C89363AF
Read Timing (Burst Length = 4)
Unidirectional DS/Free Running QS mode
0
1
2
tC H
3
tC L
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tC K
CK
CK
tI S
Input
(Control &
tIH
L A L( a f t e r R D A )
DESL
Addresses)
LDS/UDS
(Input)
tC K Q S
tCKQS
C A S latency = 4
tC K Q S
tQSP
tQ S P
LQS/UQS
(Output)
tQSQV
t LZ
DQ
(Output)
tQSQ
tQ S Q
tQSQ
tQ S Q V
Q0
Q1
Q2
t HZ
High-Z
tA C
tA C
Q3
tA C
tOH
tC K Q S
tC K Q S
C A S latency = 5
tC K Q S
tQSP
tQSP
LQS/UQS
(Output)
tQ S Q V
tL Z
DQ
(Output)
tQ S Q
tQSQ
Q0
Q1
tQSQ
tQ S Q V
tHZ
High-Z
tA C
Q2
tA C
Q3
tA C
tOH
tC K Q S
tC K Q S
C A S latency = 6
tCKQS
tQ S P
tQ S P
LQS/UQS
(Output)
tQ S Q V
tL Z
DQ
(Output)
tQSQ
tQ S Q
Q0
Q1
tQ S Q
tQ S Q V
tH Z
High-Z
t AC
tA C
Q2
t AC
Q3
tO H
Note : DQ0 to DQ17 are aligned with LQS.
DQ18 to DQ35 are aligned with UQS.
LQS/UQS is always asserted in Free Running QS mode.
- 15 -
REV. 0.0 Nov. 2002
K4C89363AF
Write Timing (Burst Length = 4)
Unidirectional DS/QS mode, Unidirectional DS/Free Running QS mode
0
1
2
tC H
3
tC L
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
tC K
CK
CK
tI S
Input
(Control &
tIH
L A L( a f t e r R D A )
DESL
Addresses)
tDSPSTH
tDQSS
tD S S
tD S P R E S
C A S latency = 4
tD S P
tDSPREH
tD S P
tD S P
tD S P S T
LDS/UDS
(Input)
tD S S
Preamble
tD S P R E
tD S
tD S
tD H
DQ
(Input)
Postamble
tD S
t DH
Q0
Q1
Q2
tD H
Q3
tD Q S S
tD S S
C A S latency = 5
tD S P S T H
tDSS
tD S P R E S
tDSPREH
tD S P
tD S P
tD S P
tDSPST
LDS/UDS
(Input)
Preamble
tD S P R E
tD S
Postamble
tD S
tD H
DQ
(Input)
Q0
t DS
t DH
tD H
Q2
Q3
Q1
tDQSS
tD S S
C A S latency = 6
tD S P S T H
tD S S
tD S P R E S
tDSPREH
tD S P
tD S P
tD S P
tDSPST
LDS/UDS
(Input)
Preamble
tDSPRE
Postamble
tD S
tD S
tD H
DQ
(Input)
Q0
LQS/UQS
(Uni-QS)
Q1
t DS
t DH
tD H
Q2
Q3
Low
LQS/UQS
(Free Runninig)
Note : DQ0 to DQ17 are sampled at both edges of LDS.
DQ18 to DQ35 are sampled at both edges of UDS.
- 16 -
REV. 0.0 Nov. 2002
K4C89363AF
~
~
t R E F I, t P A U S E, I x x x x T i m i n g
CLK
CLK
Input
(Control &
Addresses)
tIH
tR E F I , tP A U S E , IX X X X
~
~
tI S
Command
N o t e . " I X X X X " m e a n s " IR C " ,
"I R C D " ,
t IS
t IH
Command
" IR A S " , e t c .
- 17 -
REV. 0.0 Nov. 2002
K4C89363AF
Function Truth Table (Notes : 1,2,3)
Command Truth Table (Notes : 4)
•T h e F i r s t C o m m a n d
Symbol
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
Device Deselect
H
X
X
X
X
X
X
RDA
Read with Auto-close
L
H
BA
UA
UA
UA
UA
WRA
Write with Auto-close
L
L
BA
UA
UA
UA
UA
DESL
Function
•T h e S e c o n d C o m m a n d ( T h e n e x t c l o c k o f R D A o r W R A c o m m a n d )
Symbol
Function
CS
FN
BA1-BA0
A14-A13
A12-A11
A10-A9
A8
A7
A6-A0
LAL
Lower Address Latch
H
X
X
V
X
X
X
X
LA
REF
Auto-Refresh
L
X
X
X
X
X
X
X
X
MRS
Mode Register Set
L
X
V
L
L
L
L
V
V
Notes : 1 . L = L o g i c L o w , H = L o g i c H i g h , X = e i t h e r L o r H , V = V a l i d ( S p e c i f i e d V a l u e ) , B A = B a n k A d d r e s s , U A = U p p e r A d d r e s s ,
LA = Lower Address.
2. All commands are assumed to issue at a valid state.
3. All inputs for command (excluding SELFX and PDEX) are latched on the crossing point of differential clock input where
CLK goes to High.
4. Operation mode is decided by the comination of 1st command and 2nd command refer to "STATE DIAGRAM" and the
command table below.
Read Command Table
Command (Symbol)
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
RDA (1st)
L
H
BA
UA
UA
UA
UA
LAL (2nd)
H
X
X
X
X
X
LA
Notes
Write Command Table
Command (Symbol)
CS
FN
WRA (1st)
L
L
LAL (2nd)
H
X
BA1-
A14
A13
A12
A11
BA
UA
UA
UA
UA
X
VW0
VW1
X
X
BA0
A10~
A8
A7
A6-A0
UA
UA
UA
UA
X
X
X
LA
A9
Notes : 5. A14~A13 are used for Variable Write Length (VW) control at Write Operation.
VW Truth Table
Function
VW0
VW1
Write All Words
L
X
Write First One Word
H
X
Reserved
L
L
BL = 2
Write All Words
H
L
Write First Two Words
L
H
Write First One Word
H
H
BL = 4
- 18 -
REV. 0.0 Nov. 2002
K4C89363AF
Function Truth Table (Continued)
Mode Register Set Command Truth Table
Command (Symbol)
CS
FN
BA1-BA0
A14-A9
A8
A7
A6-A0
RDA (1st)
L
H
X
X
X
X
X
MRS (2nd)
L
X
V
L
L
V
V
Notes
6
Note : 6. Refer to "Mode Register Table".
Auto-Refresh Command Table
Command
Current
(Symbol)
State
Active
WRA(1st)
Auto-Refresh
REF(2nd)
Function
PD
CS
FN
H
L
L
X
H
L
X
X
n-1
n
Standby
H
Active
H
BA1-BA0 A14-A9
A8
A7
A6-A0
X
X
X
X
X
X
X
X
Notes
Self-Refresh Command Table
Command
Current
(Symbol)
State
Active
WRA(1st)
Self-Refresh Entry
Function
PD
CS
FN
A14-A9
A8
A7
A6-A0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
X
CS
FN
n-1
n
Standby
H
H
L
L
REF(2nd)
Active
H
L
L
-
Self-Refresh
L
L
SELFX
Self-Refresh
L
H
Command
Current
(Symbol)
State
PDEN
Self-Refresh Continue
Self-Refresh Exit
BA1BA0
Notes
7, 8
9
Power Down Table
Function
Power Down Entry
Power Down Continue
Power Down Exit
Notes :
PD
BA1-
A14-A9
A8
A7
A6-A0
Notes
X
X
X
X
X
8
X
X
X
X
X
X
X
X
X
X
X
X
n-1
n
Standby
H
L
H
X
-
Power Down
L
L
X
PDEX
Power Down
L
H
H
BA0
9
7. PD has to be brought to Low within t FPDL f r o m R E F c o m m a n d .
8. P D should be brought to Low after DQ’s state turned high impedance.
9 . W h e n PD is brought to High from Low, this function is executed asynchronously.
- 19 -
REV. 0.0 Nov. 2002
K4C89363AF
Function Truth Table (Continued)
PD
Current State
CS
FN
Address
Command
H
H
H
L
X
X
DESL
NOP
H
BA, UA
RDA
H
H
Row activate for Read
L
L
BA, UA
WRA
H
Row activate for Write
L
H
X
X
PDEN
H
Power Down Entry
L
L
X
X
-
Illegal
Refer to Power Down state
n-1
n
H
H
Action
Notes
Idle
Row Active for Read
Row Active for Write
10
L
X
X
X
X
-
H
H
H
X
LA
LAL
H
H
L
X
Op-Code
MRS/EMRS
H
L
H
X
X
PDEN
Illegal
H
L
L
X
X
MRS/EMRS
Illegal
L
X
X
X
X
-
Invalid
H
H
H
X
LA
LAL
Begin Write
H
H
L
X
X
REF
Auto-Refresh
H
L
H
X
X
PDEN
H
L
L
X
X
REF (Self)
L
X
X
X
X
-
H
H
H
X
X
DESL
Continue burst read to end
H
H
L
H
BA, UA
RDA
Illegal
11
H
H
L
L
BA, UA
WRA
Illegal
11
H
L
H
X
X
PDEN
Illegal
H
L
L
X
X
-
Illegal
L
X
X
X
X
-
Invalid
H
H
H
X
X
DESL
Data write & continue burst write to end
H
H
L
H
BA, UA
RDA
Illegal
11
H
H
L
L
BA, UA
WRA
Illegal
11
H
L
H
X
X
PDEN
Illegal
H
L
L
X
X
-
Illegal
L
X
X
X
X
-
Invalid
H
H
H
X
X
DESL
N O P - > I d l e a f t e r I REFC
H
H
L
H
BA, UA
RDA
Illegal
H
H
L
L
BA, UA
WRA
Illegal
H
L
H
X
X
PDEN
Self-Refresh entry
H
L
L
X
X
-
Illegal
Refer to Self-Refreshing state
Begin read
Access to Mode Register
Illegal
Self-Refresh entry
Invalid
Read
Write
Auto-Refreshing
Mode Register Accessing
Power Down
L
X
X
X
X
-
H
H
H
X
X
DESL
N o p - > I d l e a f t e r IRSC
H
H
L
H
BA, UA
RDA
Illegal
H
H
L
L
BA, UA
WRA
Illegal
H
L
H
X
X
PDEN
Illegal
H
L
L
X
X
-
Illegal
L
X
X
X
X
-
Invalid
H
X
X
X
X
-
Invalid
L
L
X
X
X
-
Maintain Power Down Mode
L
H
H
X
X
RDEX
L
H
L
X
X
-
Illegal
H
X
X
X
X
-
Invalid
L
L
X
X
X
-
Maintain Self-Refresh
L
H
H
X
X
SELFX
L
H
L
X
X
-
12
E x i t P o w e r D o w n M o d e - > I d l e a f t e r t PDEX
Se;f-Refreshing
E x i t S e l f - R e f r e s h - > I d l e a f t e r I REFC
Illegal
Notes : 10. Illegal if any bank is not idle.
11. Illegal to bank in specified states : Function may be Legal in the bank indicated by bank Address (BA).
1 2 . I l l e g a l i f t FPDL i s n o t S t i s f i e d .
- 20 -
REV. 0.0 Nov. 2002
K4C89363AF
Mode Register Table
Regular Mode Register (Notes : 1)
Address
B A 1 *1
B A 0 *1
A14-A8
A 7 *3
A6-A4
A3
A2-A0
Register
0
0
0
TM
CL
BT
BL
A7
Test Mode (TM)
A3
Burst Type (BT)
0
Regular (Default)
0
Sequential
1
Test Mode Entry
1
Interleave
A6
A5
A4
C A S Latency (CL)
A2
A1
A0
Burst Length (BL)
0
0
X
Reserved *2
0
0
0
Reserved *2
0
1
0
Reserved
*2
0
0
1
2
0
1
1
Reserved *2
0
1
0
4
1
0
0
4
0
1
1
1
0
1
1
X
X
5
1
1
0
6
1
1
1
Reserved *2
Reserved *2
Extended Mode Register (Notes : 4)
A6
Address
B A 1 *4
B A 0 *4
A14-A7
A6~A5
A4-A3
A2~A1
A 0 *5
Register
0
1
0
SS
DIC(QS)
DIC(DQ)
DS
A5
Strobe Select
*2
0
0
Reserved
0
1
Reserved*2
1
0
Unidirectional DS/QS
1
1
Unidirectional DS/Free Running QS
QS
DQ
Output Driver Impedance Control
(DIC)
A4
A3
A2
A1
0
0
0
0
Normal Output Driver
0
1
0
1
Strong Output Driver
1
0
1
0
Weak Output Driver
1
1
1
1
Reserved
Note : 1. Regular Mode Register Is Chosen Using the combination of BA0 = 0 and BA1 = 0.
2. "Reserved" places in Regular Mode Register should not be set.
3. A7 in Regular Mode Register must be set to "0"(Low state).
A0
DLL Switch (DS)
0
DLL Enable
1
DLL Disable
Because Test Mode is specific mode for supplier.
4. Extended Mode Register is chosen using the Combination of BA0 = 1 and BA1 = 0.
5. A0 in Extended Mode Register must be set to "0" to enable DLL for normal operation.
- 21 -
REV. 0.0 Nov. 2002
K4C89363AF
State Diagram
Self
Refresh
Power
Down
SELFX
PDEX
(PD = H )
(P D = H )
PDEN
(P D = L )
PD = L
Standby
(Idle)
PD = H
AutoRefresh
Mode
Register
WRA
RDA
REF
MRS
Active
(Restore)
Active
LAL
LAL
Write
(Buffer)
Read
Command Input
Automatic Return
The second command at Active
state must be issued 1clock after
RDA or WRA command input
- 22 -
REV. 0.0 Nov. 2002
K4C89363AF
Timing Diagrams
Single Bank Read Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
l R C =5cycles
Command
RDA
LAL
lR C D =1cycle
Address
UA
Bank Add.
#0
DESL
lR A S = 4 c y c l e s
LA
l RC = 5 c y c l e s
RDA
LAL
DESL
l R C D =1cycle
UA
l R A S =4cycles
LA
lR C = 5 c y c l e s
RDA
DESL
l R C D =1cycle
UA
#0
LAL
RDA
l R A S= 4 c y c l e s
LA
UA
#0
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
DQ
(Output)
CL=4
CL=4
Hi-Z
Q0
Q1
Q0
Q1
Q0
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
DQ
(Output)
CL=4
CL=4
Hi-Z
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Q0
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
DQ
(Output)
CL=4
CL=4
Hi-Z
Q0
Q1
Q0
Q1
Q0
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
DQ
(Output)
CL=4
CL=4
Hi-Z
Q0
Q1
Q2
Q3
- 23 -
Q0
Q1
Q2
Q3
Q0
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Read Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
RDA
LAL
14
15
CLK
CLK
l R C =6cycles
Command
RDA
LAL
l R C D =1cycle
Address
UA
Bank Add.
#0
DESL
l R A S= 5 c y c l e s
LA
l RC = 6 c y c l e s
RDA
LAL
DESL
l R C D =1cycle
lR A S= 5 c y c l e s
UA
LA
UA
#0
DESL
lR C D =1cycle
LA
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=5
DQ
(Output)
CL=5
Hi-Z
Q0
Q1
Q0
Q1
Q0
Q 1 Q2
Q0
Q1
Q0
Q 1 Q2
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=5
DQ
(Output)
CL=5
Hi-Z
Q0
Q1
Q2
Q3
Q3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
DQ
(Output)
CL=5
Hi-Z
Q0
Q1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
DQ
(Output)
CL=5
Hi-Z
Q0
Q1
- 24 -
Q2
Q3
Q3
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Read Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
LAL
CLK
CLK
lR C = 7 c y c l e s
Command
RDA
LAL
l R C D =1cycle
Address
UA
Bank Add.
#0
DESL
l R C =7cycles
RDA
l R A S= 6 c y c l e s
LAL
DESL
l R C D =1cycle
LA
UA
l R A S= 6 c y c l e s
LA
l R C D =1cycle
UA
#0
LA
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0
Q1
Q0
Q1
Q0
Q1
Q0
Q1
Q0
Q1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0
Q1
Q2
Q3
Q2
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0
Q1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
DQ
(Output)
CL=6
Hi-Z
Q0
- 25 -
Q1
Q2
Q3
Q2
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
l R C =5cycles
Command
WRA
LAL
lR C D =1cycle
Address
UA
Bank Add.
#0
l RC = 5 c y c l e s
DESL
WRA
lR A S = 4 c y c l e s
LAL
l R C D =1cycle
LA
UA
lR C = 5 c y c l e s
DESL
WRA
l R A S =4cycles
LAL
l R C D =1cycle
LA
UA
#0
DESL
WRA
l R A S= 4 c y c l e s
LA
UA
#0
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=3
DQ
(Output)
WL=3
D0
D1
WL=3
D0
D1
D0
D1
D0
D1
D0
D1
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=3
DQ
(Output)
WL=3
D0
D1
D2
D3
WL=3
D0
D1
D2
D3
D2
D3
D2
D3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=3
DQ
(Output)
WL=3
D0
D1
WL=3
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=3
DQ
(Output)
WL=3
D0
D1
D2
D3
WL=3
D0
- 26 -
D1
D2
D3
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
WRA
LAL
14
15
CLK
CLK
lR C = 6 c y c l e s
Command
WRA
LAL
lR C D =1cycle
Address
UA
Bank Add.
#0
l R C =6cycles
DESL
WRA
l R A S= 5 c y c l e s
LAL
l R C D =1cycle
LA
UA
DESL
lR A S = 5 c y c l e s
DESL
l R C D =1cycle
LA
UA
#0
LA
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=4
DQ
(Output)
WL=4
D 0 D1
D0
D1
D0
D1
D0
D1
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=4
DQ
(Output)
WL=4
D0
D1
D2
D3
D2
D3
D2
D3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
DQ
(Output)
WL=4
D 0 D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
DQ
(Output)
WL=4
D0
D1
D2
D3
- 27 -
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
WRA
LAL
CLK
CLK
lR C = 7 c y c l e s
Command
WRA
LAL
lR C D =1cycle
Address
UA
Bank Add.
#0
l R C =7cycles
DESL
WRA
l R A S= 6 c y c l e s
LAL
l R C D =1cycle
LA
UA
DESL
lR A S = 6 c y c l e s
lR C D = 1 c y c l e
LA
UA
#0
LA
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=5
DQ
(Output)
WL=5
D0
D1
D0
D1
D0
D1
D0
D1
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
WL=5
DQ
(Output)
WL=5
D0
D1
D2
D3
D2
D3
D2
D3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
DQ
(Output)
WL=5
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
DQ
(Output)
WL=5
D0
D1
- 28 -
D2
D3
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Read-Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
l R C =5cycles
Command
RDA
LAL
Address
UA
LA
Bank Add.
#0
DESL
l RC = 5 c y c l e s
WRA
LAL
UA
LA
lR C = 5 c y c l e s
DESL
#0
RDA
LAL
UA
LA
DESL
WRA
UA
#0
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
DQ
(Output)
WL=3
CL=4
Hi-Z
Q0
Q1
D 0 D1
Q0
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
DQ
(Output)
WL=3
CL=4
Hi-Z
Q0
Q1
Q2
Q3
D0
D1
D2
D3
Q0
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
DQ
(Output)
WL=3
CL=4
Hi-Z
Q0
Q1
D 0 D1
Q0
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
DQ
(Output)
WL=3
CL=4
Hi-Z
Q0
Q1
Q2
Q3
- 29 -
D0
D1
D2
D3
Q0
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Read-Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
RDA
LAL
UA
LA
14
15
CLK
CLK
lR C = 6 c y c l e s
Command
RDA
LAL
Address
UA
LA
Bank Add.
#0
DESL
l R C =6cycles
WRA
LAL
UA
LA
DESL
#0
DESL
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=5
DQ
(Output)
WL=4
Hi-Z
Q0
Q1
D0
D1
D0
D1
D0
D1
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=5
DQ
(Output)
WL=4
Hi-Z
Q0
Q1
Q2
Q3
D2
D3
D2
D3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
DQ
(Output)
WL=4
Hi-Z
Q0
Q1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
DQ
(Output)
WL=4
Hi-Z
Q0
Q1
Q2
Read data
- 30 -
Q3
Write data
REV. 0.0 Sep. 2002
K4C89363AF
Single Bank Read-Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
LAL
UA
LA
CLK
CLK
lR C = 7 c y c l e s
RDA
LAL
Address
UA
LA
Bank Add.
#0
Command
l R C =7cycles
DESL
WRA
LAL
UA
LA
DESL
#0
#0
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=6
DQ
(Output)
WL=5
Hi-Z
Q0
Q1
D0
D1
D0
D1
D0
D1
D0
D1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=6
DQ
(Output)
WL=5
Hi-Z
Q0
Q1
Q2
Q3
D2
D3
D2
D3
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
DQ
(Output)
WL=5
Hi-Z
Q0
Q1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
DQ
(Output)
WL=5
Hi-Z
Q0
Q1
Q2
Read data
- 31 -
Q3
Write data
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Read Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D= 2 c y c l e s
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D= 2 c y c l e s
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
Bank
"b"
l RC (Bank"a")=5cycles
l R C (Bank"a")=5cycles
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=4
CL=4
DQ
(Output)
Hi-Z
Q a 0 Qa1
Q b 0 Qb1
Qa0 Q a 1
Qb0 Q b 1
Qc0 Q c 1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=4
CL=4
DQ
(Output)
Hi-Z
Q a 0 Qa1 Q a 2 Qa3 Q b 0 Q b 1 Qb2 Q b 3
Qa0 Q a 1 Q a 2 Q a 3 Q b 0 Q b 1 Q b 2 Q b 3 Qc0 Q c 1 Qc2
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
CL=4
DQ
(Output)
Hi-Z
Q a 0 Qa1
Q b 0 Qb1
Qa0 Q a 1
Qb0 Q b 1
Qc0 Q c 1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
CL=4
DQ
(Output)
Hi-Z
Q a 0 Qa1 Q a 2 Qa3 Q b 0 Q b 1 Qb2 Q b 3
Qa0 Q a 1 Q a 2 Q a 3 Q b 0 Q b 1 Q b 2 Q b 3 Qc0 Q c 1 Qc2
Note : l R C to the same bank must be satisfied
- 32 -
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Read Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D =2cycles
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D =2cycles
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lR C ( B a n k " a " ) = 6 c y c l e s
lR C ( B a n k " a " ) = 6 c y c l e s
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=5
CL=5
DQ
(Output)
Hi-Z
Q a 0 Qa1
Qb0 Q b 1
Q a 0 Qa1
Qb0 Q b 1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=5
CL=5
DQ
(Output)
Hi-Z
Q a 0 Qa1 Q a 2 Q a 3 Qb0 Q b 1 Qb2 Q b 3
Q a 0 Q a 1 Q a 2 Q a 3 Qb0 Q b 1 Q b 2
Q a 0 Qa1
Q a 0 Qa1
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
CL=5
DQ
(Output)
Hi-Z
Qb0 Q b 1
Qb0 Q b 1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=5
CL=5
DQ
(Output)
Hi-Z
Q a 0 Qa1 Q a 2 Q a 3 Qb0 Q b 1 Qb2 Q b 3
- 33 -
Q a 0 Q a 1 Q a 2 Q a 3 Qb0 Q b 1 Q b 2
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Read Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D= 2 c y c l e s
RDA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D= 2 c y c l e s
RDA
LAL
RDA
LAL
RDA
LAL
RDA
LAL
RDA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lR C ( B a n k " a " ) = 7 c y c l e s
lR C ( B a n k " a " ) = 7 c y c l e s
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=6
CL=6
DQ
(Output)
Hi-Z
Q a 0 Qa1
Qb0 Q b 1
Q a 0 Qa1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
CL=6
CL=6
DQ
(Output)
Hi-Z
Q a 0 Q a 1 Qa2 Q a 3 Qb0 Q b 1 Q b 2 Q b 3
Q a 0 Qa1 Q a 2
Q a 0 Qa1
Q a 0 Qa1
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
CL=6
DQ
(Output)
Hi-Z
Qb0 Q b 1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=6
CL=6
DQ
(Output)
Hi-Z
Q a 0 Q a 1 Qa2 Q a 3 Qb0 Q b 1 Q b 2 Q b 3
- 34 -
Q a 0 Qa1 Q a 2
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Write Timing (CL=4)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D= 2 c y c l e s
WRA
LAL
WRA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D= 2 c y c l e s
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
Bank
"b"
Da0 Da1
Db0 Db1
Dc0 Dc1
Dd0 Dd1
l RC (Bank"a")=5cycles
l R C (Bank"b")=5cycles
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=3
WL=3
DQ
(Output)
D a 0 Da1
D b 0 Db1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=3
WL=3
DQ
(Output)
D a 0 Da1 D a 2 D a 3 Db0 D b 1 Db2 D b 3
D a 0 D a 1 D a 2 Da3 D b 0 Db1 D b 2 Db3 Dc0 Dc1 Dc2 Dc3 D d 0 D d 1
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=3
WL=3
DQ
(Output)
D a 0 Da1
D b 0 Db1
Da0 Da1
Db0 Db1
Dc0 Dc1
Dd0 Dd1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=3
WL=3
DQ
(Output)
D a 0 Da1 D a 2 D a 3 Db0 D b 1 Db2 D b 3
- 35 -
D a 0 D a 1 D a 2 Da3 D b 0 Db1 D b 2 Db3 Dc0 Dc1 Dc2 Dc3 D d 0 D d 1
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Write Timing (CL=5)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D =2cycles
WRA
LAL
WRA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D =2cycles
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
UA
LA
UA
LA
UA
LA
UA
LA
UA
LA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
lR C ( B a n k " a " ) = 6 c y c l e s
lR C ( B a n k " b " ) = 6 c y c l e s
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=4
WL=4
DQ
(Output)
D a 0 Da1
D b 0 Db1
Da0 Da1
Db0 Db1
Dc0 Dc1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=4
WL=4
DQ
(Output)
D a 0 D a 1 Da2 D a 3 Db0 D b 1 D b 2 D b 3
D a 0 D a 1 D a 2 Da3 D b 0 Db1 D b 2 Db3 Dc0 Dc1
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
WL=4
DQ
(Output)
D a 0 Da1
D b 0 Db1
Da0 Da1
Db0 Db1
Dc0 Dc1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
WL=4
DQ
(Output)
D a 0 D a 1 Da2 D a 3 Db0 D b 1 D b 2 D b 3
D a 0 D a 1 D a 2 Da3 D b 0 Db1 D b 2 Db3 Dc0 Dc1
N o t e : IR C t o t h e s a m e b a n k m u s t b e s a t i s f i e d .
- 36 -
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Write Timing (CL=6)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
lR B D= 2 c y c l e s
WRA
LAL
WRA
LAL
UA
LA
UA
LA
Bank
"a"
DESL
Bank
"b"
lR B D = 2 c y c l e s
lR B D = 2 c y c l e s
lR B D= 2 c y c l e s
WRA
LAL
WRA
LAL
WRA
LAL
WRA
LAL
WRA
UA
LA
UA
LA
UA
LA
UA
LA
UA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
Da0 D a 1
Db0 Db1
lR C ( B a n k " a " ) = 7 c y c l e s
lR C ( B a n k " a " ) = 7 c y c l e s
Unidirectional DS/QS mode
BL =2
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=5
WL=5
DQ
(Output)
D a 0 Da1
D b 0 Db1
BL =4
LDS/UDS
(Input)
Low
LQS/UQS
(Output)
WL=5
WL=5
DQ
(Output)
D a 0 D a 1 Da2 D a 3 Db0 D b 1 D b 2 D b 3
D a 0 D a 1 D a 2 D a 3 D b 0 Db1
Unidirectional DS/Free Running QS mode
BL =2
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
WL=5
DQ
(Output)
D a 0 Da1
D b 0 Db1
Da0 D a 1
Db0 Db1
BL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
WL=5
DQ
(Output)
D a 0 D a 1 Da2 D a 3 Db0 D b 1 D b 2 D b 3
D a 0 D a 1 D a 2 D a 3 D b 0 Db1
N o t e : IR C t o t h e s a m e b a n k m u s t b e s a t i s f i e d .
- 37 -
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Read-Write Timing (BL=2)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DESL
WRA
LAL
RDA
LAL
DESL
WRA
LAL
RDA
LAL
DESL
WRA
UA
LA
UA
LA
UA
LA
UA
LA
CLK
CLK
lR B D =2cycles
Command
Address
Bank Add.
WRA
LAL
RDA
LAL
UA
LA
UA
LA
Bank
"a"
Bank
"b"
Bank
"c"
Bank
"d"
Bank
"a"
UA
Bank
"b"
Bank
"c"
l R C (Bank"a")
l R C (Bank"a")
Unidirectional DS/QS mode
CL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
WL=3
DQ
Hi-Z
D a 0 Da1
(Output)
Q b 0 Qb1
Dc0 Dc1
Q d 0 Qd1
Da0 Da1
CL =5
LDS/UDS
(Input)
LQS/UQS
Low
(Output)
CL=5
WL=4
DQ
(Output)
Hi-Z
D a 0 Da1
Q b 0 Qb1
Dc0 Dc1
Q d 0 Qd1
Da0 Da1
CL =6
LDS/UDS
(Input)
LQS/UQS
Low
(Output)
CL=6
WL=5
Hi-Z
DQ
D a 0 Da1
(Output)
Q b 0 Qb1
Dc0 Dc1
Q d 0 Qd1
Unidirectional DS/Free Running QS mode
CL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
WL=3
DQ
Hi-Z
Da0 Qa1
(Output)
Q b 0 Qb1
Dc0 Q c 1
Q d 0 Qd1
Da0 Da1
CL =5
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
CL=5
Hi-Z
DQ
D a 0 Da1
(Output)
Q b 0 Qb1
Dc0 Dc1
Q d 0 Qd1
Da0 Da1
CL =6
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
CL=6
Hi-Z
DQ
(Output)
D a 0 Da1
Q b 0 Qb1
Dc0 Dc1
Q d 0 Qd1
N o t e : IR C t o t h e s a m e b a n k m u s t b e s a t i s f i e d .
- 38 -
REV. 0.0 Sep. 2002
K4C89363AF
Multiple Bank Read-Write Timing (BL=4)
0
1
2
3
RDA
LAL
4
5
6
7
8
9
WRA
LAL
RDA
LAL
10
11
12
13
14
15
WRA
LAL
RDA
LAL
CLK
CLK
lR B D =2cycles
Command
WRA
LAL
l W R D =1cycle
Address
Bank Add.
UA
LA
Bank
"a"
UA
DESL
lR W D = 3 c y c l e s
l W R D =1cycle
LA
UA
Bank
"b"
LA
UA
Bank
"c"
DESL
l R W D =3cycles
LA
l W R D =1cycle
UA
Bank
"d"
LA
Bank
"a"
UA
LA
Bank
"b"
l R C (Bank"a")
l R C (Bank"a")
Unidirectional DS/QS mode
CL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
CL=4
WL=3
DQ
Hi-Z
D a 0 Da1 D a 2 D a 3
(Output)
Q b 0 Q b 1 Q b 2 Qb3
D a 0 Da1 D a 2 D a 3
Qb0 Q b 1 Qb2 Q b 3
CL =5
LDS/UDS
(Input)
LQS/UQS
Low
(Output)
CL=5
WL=4
DQ
(Output)
Hi-Z
D a 0 Da1 D a 2 D a 3
Q b 0 Qb1 Q b 2 Qb3
Da0 Da1 Da2 Da3
Qb0 Q b 1 Qb2 Q b 3
CL =6
LDS/UDS
(Input)
LQS/UQS
Low
(Output)
CL=6
WL=5
DQ
Hi-Z
D a 0 Da1 D a 2 D a 3
(Output)
Q b 0 Qb1 Q b 2 Qb3
Da0 Da1 Da2 Da3
Qb0 Q b 1
Unidirectional DS/Free Running QS mode
CL =4
LDS/UDS
(Input)
LQS/UQS
(Output)
CL=4
WL=3
DQ
Hi-Z
D a 0 Da1 D a 2 D a 3
(Output)
Q b 0 Q b 1 Q b 2 Qb3
D a 0 Da1 D a 2 D a 3
Qb0 Q b 1 Qb2 Q b 3
CL =5
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=4
DQ
CL=5
Hi-Z
D a 0 Da1 D a 2 D a 3
(Output)
Q b 0 Qb1 Q b 2 Qb3
Da0 Da1 Da2 Da3
Qb0 Q b 1 Qb2 Q b 3
CL =6
LDS/UDS
(Input)
LQS/UQS
(Output)
WL=5
DQ
(Output)
CL=6
Hi-Z
D a 0 Da1 D a 2 D a 3
Q b 0 Qb1 Q b 2 Qb3
Da0 Da1 Da2 Da3
Qb0 Q b 1
N o t e : IR C t o t h e s a m e b a n k m u s t b e s a t i s f i e d .
- 39 -
REV. 0.0 Sep. 2002
K4C89363AF
Write with Variable Write Length (VW) Control(CL=4)
0
1
2
3
4
5
6
WRA
LAL
UA
LA=#1
VW=1
7
8
9
10
11
12
13
14
15
CLK
CLK
BL=2, SEQUENTIAL MODE
Command
Address
WRA
LAL
UA
LA=#3
VW=All
DESL
VW0 = Low
VW1 = don’t care
Bank Add.
DESL
VW0 = High
VW1 = don’t care
Bank
"a"
Bank
"a"
LDS/UDS
(Input)
LQS/UQS
(Input)
D0
D1
D0
Lower Address #3 #2
#1 (#0)
Last one data is masked.
BL=4, SEQUENTIAL MODE
Command
Address
WRA
LAL
UA
LA=#3
VW=All
DESL
WRA
LAL
UA
LA=#1
VW=1
VW0 = High
VW1 = Low
Bank Add.
DESL
WRA
LAL
UA
LA=#2
VW=2
VW0 = High
VW1 = High
Bank
"a"
DESL
VW0 = Low
VW1 = High
Bank
"a"
Bank
"a"
LDS/UDS
(Input)
LQS/UQS
(Input)
Lower Address
D0
D1
D2
D3
#3
#0
#1
#2
D0
#1 (#2) (#3) (#0)
Last three data are masked.
D0
D1
#2
#3
(#0) (#1)
Last two data are masked.
Note : DS input must be continued till end of burst count even if some of laster data is masked.
- 40 -
REV. 0.0 Sep. 2002
K4C89363AF
Power Down Timing (CL=4, BL=4)
Read cycle to Power Down Mode
0
1
2
3
4
5
6
7
8
9
CLK
RDA
LAL
UA
LA
DESL
n
n+1
n+2
DESL
RDA
or
WRA
n+3
IP D A
∼
∼
Address
n-1
∼
∼
BL=2, SEQUENTIAL MODE
Command
10
∼
∼
CLK
t IH
tI S
UA
I P D =2 cycle
∼
∼
PD
tQ P D H
tPDEX
IR C ( m i n ) , tR E F I ( m a x )
Unidirectional DS/QS mode
∼
∼
LDS/UDS
(Input)
Low
DQ
(Output)
Hi-Z
∼
∼
LQS/UQS
(Output)
CL=4
Q1 Q2
Q3
Q0
Q1 Q2
Q3
Hi-Z
∼
∼
Q0
Unidirectional DS/Free Running QS mode
∼
∼
LDS/UDS
(Input)
∼
∼
LQS/UQS
(Output)
CL=4
Hi-Z
Hi-Z
∼
∼
DQ
(Output)
Power Down Entry
Power Down Exit
Note : P D must be kept "High" level until end of Burst data output.
P D should be brought to "High" within tR E F I (max.) to maintain the data written into cell.
In Power Down Mode, P D "Low" and a stable clock signal must be maintained.
W h e n PD is brought to "High", a valid executable command may be applied I P D A cycles later.
- 41 -
REV. 0.0 Sep. 2002
K4C89363AF
Power Down Timing (CL=4, BL=4)
Write cycle to Power Down Mode
0
1
2
3
4
5
6
7
8
9
10
n-1
n
n+1
n+2
n+3
∼
∼
CLK
CLK
IP D A
LAL
UA
LA
DESL
DESL
RDA
or
WRA
∼
∼
Address
WRA
∼
∼
Command
t IH
tI S
I P D =2 cycle
∼
∼
PD
UA
tPDEX
WL=3
IP D =2 cycle
IR C ( m i n ) , tR E F I ( m a x )
Unidirectional DS/QS mode
∼
∼
LDS/UDS
(Input)
Low
∼
∼
LQS/UQS
(Output)
WL=3
D0
D1
D2
D3
D0
D1
D2
D3
∼
∼
DQ
(Output)
Unidirectional DS/Free Running QS mode
∼
∼
LDS/UDS
(Input)
∼
∼
LQS/UQS
(Output)
WL=3
∼
∼
DQ
(Output)
Note : P D must be kept "High" level until end of Burst data output.
P D should be brought to "High" within tR E F I (max.) to maintain the data written into cell.
In Power Down Mode, P D "Low" and a stable clock signal must be maintained.
W h e n PD is brought to "High", a valid executable command may be applied I P D A cycles later.
- 42 -
REV. 0.0 Sep. 2002
K4C89363AF
Mode Register Set Timing (CL=4, BL=2)
From Read operation to Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
l R C =7cycles
RDA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
CL + BL/2
Unidirectional DS/QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
DQ
(Output)
Q0
Q1
Q0
Q1
Unidirectional DS/Free Running QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
DQ
(Output)
Note : Minimum delay from LAL following RDA to RDA of MRS operation is CL+BL/2.
- 43 -
REV. 0.0 Sep. 2002
K4C89363AF
Mode Register Set Timing (CL=4, BL=4)
From Write operation to Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
l R C =7cycles
WRA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
WL + BL/2
Unidirectional DS/QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
DQ
(Output)
D0
D1
D2
D3
D0
D1
D2
D3
Unidirectional DS/Free Running QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
DQ
(Output)
Note : Minimum delay from LAL following WRA to RDA of MRS operation is WL+BL/2.
- 44 -
REV. 0.0 Sep. 2002
K4C89363AF
Extended Mode Register Set Timing (CL=4, BL=2)
From Read operation to Extended Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
l R C =7cycles
RDA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
CL + BL/2
Unidirectional DS/QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
DQ
(Output)
Q0
Q1
Q0
Q1
Unidirectional DS/Free Running QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
DQ
(Output)
Note : M i n i m u m d e l a y f r o m L A L f o l l o w i n g R D A t o R D A o f E M R S o p e r a t i o n i s C L + B L / 2 .
When DQ strobe mode is changed by EMRS, QS output is invalid for I R S C p e r i o d .
DLL switch in Extended Mode Register must be set to enable mode for normal operation.
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.
- 45 -
REV. 0.0 Sep. 2002
K4C89363AF
Extended Mode Register Set Timing (CL=4, BL=4)
From Write operation to Extended Mode Register Set operation
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RDA
or
WRA
LAL
Valid
(opcode)
UA
LA
BA0="0"
BA1="0"
BA
CLK
CLK
l R C =7cycles
WRA
LAL
A14~A0
UA
LA
BA0, BA1
BA
Command
DESL
RDA
MRS
DESL
WL + BL/2
Unidirectional DS/QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
Low
DQ
(Output)
D0
D1
D2
D3
D0
D1
D2
D3
Unidirectional DS/Free Running QS mode
LDS/UDS
(Input)
LQS/UQS
(Output)
DQ
(Output)
Note : When DQ strobe mode is changed by EMRS, QS output is invalid for I R S C p e r i o d .
DLL switch in Extended Mode Register must be set to enable mode for normal operation.
DLL lock-on time is needed after initial EMRS operation. See Power Up Sequence.
Minimum delay from LAL following WRA to RDA of EMRS operation is WL+BL/2.
- 46 -
REV. 0.0 Sep. 2002
K4C89363AF
Auto-Refresh Timing (CL=4, BL=4)
Unidirectional DS/QS mode
0
1
2
3
4
5
6
7
n-1
n
n+1
n+2
RDA
or
WRA
LAL or
MRS or
REF
RDA
or
WRA
LAL or
MRS or
REF
CLK
CLK
l R C =5cycles
LAL
Bank, Address
Bank,
UA
LA
DESL
l R C D =1cycle
REF
DESL
l R A S= 4 c y c l e s
l R C D =1cycle
Low
Low
∼
∼
LQS/UQS
(output)
WRA
∼
∼
RDA
∼
∼
Command
lR E F C = 1 9 c y c l e s
CL=4
Hi-Z
Q0
Q1
Q2
Q3
∼
∼
DQ
(output)
Hi-Z
Unidirectional DS/Free Running QS mode
CLK
CLK
l R C =5cycles
LAL
Bank, Address
Bank,
UA
LA
DESL
WRA
REF
DESL
∼
∼
RDA
∼
∼
Command
lR E F C = 1 9 c y c l e s
lR C D = 1 c y c l e s
l R A S= 4 c y c l e s
l R C D =1cycles
∼
∼
LQS/UQS
(output)
CL=4
Hi-Z
Q0
Q1
Q2
Q3
∼
∼
DQ
(output)
Hi-Z
Note : In case of CL=4, IR E F C must be meet 19 clock cycles.
When the Auto-Refresh operation is perfomed, the synthetic average interval of Auto-Refresh command
specified by tR E F I m u s t b e s a t i s f i e d .
tR E F I is average interval time in 8 Refresh cycles that is sampled randomly.
t1
t2
∼
∼
WRAREF
t8
∼
∼
WRA REF
t7
∼
∼
WRA REF
∼
∼
∼
∼
CLK
t3
WRAREF
WRA REF
8 Refresh cycle
t + t + t + t +t +t +t +t
tR E F I = Total time of 8 Refresh cycle = 1 2 3 4 5 6 7 8
8
8
tR E F I is specified to avoid partly concentrated current of Refresh operation that is acivated
larger are than Read/Write operation.
- 47 -
REV. 0.0 Sep. 2002
K4C89363AF
Self-Refresh Entry Timing
Unidirectional DS/QS mode
0
1
2
3
4
5
6
8
9
10
11
lR C D = 1 c y c l e s
lR E F C
tF P D L
DESL
tFPDL
(min)
(max)
∼
∼
REF
∼
∼
WRA
∼
∼
CLK
Command
7
∼
∼
CLK
Auto Refresh
Self Refresh Entry
∼
∼
∼
∼
PD
l P D V* 2
tQ P D H
∼
∼
∼
∼
LOW
Qx
∼
∼
Hi-Z
∼
∼
DQ
(output)
Hi-Z
lC K D
LQS/UQS
(output)
Note : 1.
is don’t care.
2. P D must be brought to "Low" within the timing between t F P D L (min) and t F P D L (max) to Self
R e f r e s h m o d e . W h e n PD is brought to "Low" after I P D V , K 4 C 8 9 1 8 3 A D perform Auto Refresh and enter
Power down mode.
3. It is desirable that clock input is continued at least I C K D f r o m R E F c o m m a n d e v e n t h o u g h P D is
brought to "Low" for Self-Refresh Entry.
Self-Refresh Exit Timing
Unidirectional DS/QS mode
0
1
3
m-1
m
m+1
m+2
*2
lR E F C
DESL
*4
l P D A =2 c y c l e s
WRA
*5
REF
*5
DESL
p-1
p
C o m m a n d ( 2 n d ) *6
l R C D = 1cycle
∼
∼
Command
n+1
C o m m a n d ( 1 s t ) *6
lR E F C
∼
∼
∼
∼
∼
∼
*3
n
∼
∼
CLK
n-1
∼
∼
∼
∼
∼
∼
CLK
RDA*7
L A L* 7
l R C D = 1cycle
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
tP D E X
PD
lL O C K
Hi-Z
∼
∼
∼
∼
DQ
(output)
∼
∼
∼
∼
LQS/UQS
(output)
Hi-Z
LOW
Self-Refresh Exit
Note : 1.
is don’t care.
2. Clock should be stable prior to PD = "High" if clock input is suspended in Self-Refresh mode.
3 . D E S L c o m m a n d m u s t b e a s s e r t e d d u r i n g I R E F C after P D is brought to "High"
4. l P D A is defined from the first clock rising edge after PD is brought to "High"
5. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any other
operation.
6. Any command (except Read command) can be issued after lR E F C .
7. Read command (RDA +LAL) can be issued after lL C O K .
- 48 -
REV. 0.0 Sep. 2002
K4C89363AF
Self-Refresh Entry Timing
Unidirectional DS/Free Running QS mode
0
1
2
3
4
5
m-1
m+1
l R C D =1cycle
REF
(min)
DESL
tFPDL
(max)
∼
∼
tF P D L
lR E F C
∼
∼
WRA
∼
∼
CLK
Command
m
∼
∼
CLK
Auto Refresh
∼
∼
∼
∼
PD
Self Refresh Entry
l P D V* 2
tQ P D H
∼
∼
lC K D
LQS/UQS
(output)
Qx
∼
∼
Hi-Z
∼
∼
DQ
(output)
Hi-Z
Note : 1.
is don’t care.
2. P D must be brought to "Low" within the timing between t F P D L (min) and t F P D L (max) to Self
R e f r e s h m o d e . W h e n P D is brought to "Low" after IP D V , K 4 C 8 9 1 8 3 A D p e r f o r m A u t o R e f r e s h a n d e n t e r
Power down mode.
3. It is desirable that clock input is continued at least I C K D f r o m R E F c o m m a n d e v e n t h o u g h P D is
brought to "Low" for Self-Refresh Entry.
Self-Refresh Exit Timing
Unidirectional DS/Free Running QS mode
0
1
3
m-1
m
m+1
m+2
lR E F C
*4
l P D A =2 c y c l e s
WRA
*5
REF
*5
DESL
p-1
p
C o m m a n d ( 2 n d ) *6
l R C D = 1cycle
∼
∼
DESL
n+1
C o m m a n d ( 1 s t ) *6
lR E F C
∼
∼
∼
∼
∼
∼
Command
n
∼
∼
CLK
n-1
∼
∼
∼
∼
∼
∼
CLK
RDA*7
L A L* 7
l R C D = 1cycle
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
∼
tP D E X
PD
lL O C K
∼
∼
∼
∼
LQS/UQS
QS
(output)
Hi-Z
∼
∼
∼
∼
DQ
(output)
Self-Refresh Exit
Note : 1.
is don’t care.
2. Clock should be stable prior to PD = "High" if clock input is suspended in Self-Refresh mode.
3 . D E S L c o m m a n d m u s t b e a s s e r t e d d u r i n g I R E F C after P D is brought to "High"
4. l P D A is defined from the first clock rising edge after PD is brought to "High"
5. It is desirable that one Auto-Refresh command is issued just after Self-Refresh Exit before any other
operation.
6. Any command (except Read command) can be issued after lR E F C .
7 . R e a d c o m m a n d ( R D A + L A L ) c a n b e i s s u e d a f t e r l L O C K.
8. QS output is invalid until DLL lock from Self-Refresh exit.
- 49 -
REV. 0.0 Sep. 2002
K4C89363AF
Function Description
Network - DRAM
Network - DRAM is an acronym of Double Data Rate Network - DRAM.
Network - DRAM is competent to perform fast random core access, low latency and high-speed data transfer.
Pin Functions
Clock Inputs : CLK & CLK
The CLK and C L K inputs are used as the reference for synchronous operation. CLK is master clock input. The C S, FN and all
address input signals are sampled on the crossing of the positive edge of CLK and the negative edge of CLK . The QS and DQ output
data are aligned to the crossing point of CLK and C L K . The timing reference point for the differential clock is when the CLK and C L K
signals cross during a transition.
Power Down : PD
T h e PD input controls the entry to the Power Down or Self-Refresh modes. The PD input does not have a Clock Suspend function like
a CKE input of a standard SDRAMs, therefore it is illegal to bring PD pin into low state if any Read or Write operation is being performed.
Chip Select & Function Control : C S & FN
The C S and FN inputs are a control signal for forming the operation commands on Network-DRAM. Each operation mode is decided
by the combination of the two consecutive operation commands using the C S and FN inputs.
Bank Addresses : BA0 & BA1
The BA0 and BA1 inputs are latched at the time of assertion of the RDA or WRA command and are selected the bank to be used for
the operation. BA0 and BA1 also define which mode register is loaded during the Mode Register Set command (MRS or EMRS).
BA0
BA1
Bank #0
0
0
Bank #1
1
0
Bank #2
0
1
Bank #3
1
1
Address Inputs : A0 to A14
A d d r e s s i n p u t s a r e u s e d t o a c c e s s t h e a r b i t r a r y a d d r e s s o f t h e m e m o r y c e l l a r r a y w i t h i n e a c h b a n k . T h e U p p e r A d d r e s s e s w i t h B an k
address are latched at the RDA or WRA command and the Lower Addresses are latched at the LAL command. The A0 to A14 inputs
are also used for setting the data in the Regular or Extended Mode Register set cycle.
K4C89363AF
Upper Address
Lower Address
A0 to A14
A0 to A6
- 50 -
REV. 0.0 Nov. 2002
K4C89363AF
Functional Description (Continued)
Data Input/Output : DQ0 ~ DQ35
The input data of DQ0 to DQ35 are taken in synchronizing with the both edges of LDS/UDS input signal.
The output data of DQ0 to DQ35 are outputted synchronizing with the both edges of LQS/UQS output signal.
Data Strobe : DS(LDS/UDS) or QS(LQS/UQS)
Method of data strobe is chosen by Extended mode register.
(1) Unidirectional DS/QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. During Write, Auto-Refresh and NOP cycle, QS assert always "Low"
level. QS is Hi-Z in Self-Refresh mode.
(2) Unidirectional DS/Free running QS mode
DS is input signal and QS is output signal. Both edges of DS are used to sample all DQs at Write operation. Both edges of QS
are used for trigger signal of all DQs at Read operation. QS assert always toggle signal except Self-Refresh mode. This strobe
type is easy to use for pin to pin connect application.
P o w e r S u p p l y : V D D , V D D Q , V SS , V S S Q
V D D a n d V SS a r e s u p p l y p i n s f o r m e m o r y c o r e a n d p e r i p h e r a l c i r c u i t s .
V DDQ a n d V S S Q a r e p o w e r s u p p l y p i n s f o r t h e o u t p u t b u f f e r .
Reference Voltage : V REF
V REF is reference voltage for all input signals.
- 51 -
REV. 0.0 Nov. 2002
K4C89363AF
Command Functions and Operations
K4C89363AF is introduced the two consecutive command input method. Therefore, except for Power Down mode, each operation
mode decided by the combination of the first command and the second command from stand-by states of the bank to be accessed.
Read Operation (1st command + 2nd command = RDA + LAL)
Issuing the RDA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a read mode. When the LAL command with Lower Addresses is issued at the next clock of the RDA command, the data is read out
sequentially synchronizing with the both edges of QS output signal (Burst Read Operation). The initial valid read data appears a fter
C A S latency, the burst length of read data and the burst type must be set in the Mode Register beforehand. The read operated bank
g o e s b a c k a u t o m a t i c a l l y t o t h e i d l e s t a t e a f t e r I RC.
Write Operation (1st command + 2nd command = WRA + LAL)
Issuing the WRA command with Bank Addresses and Upper Addresses to the idle bank puts the bank designated by Bank Address in
a write mode. When the LAL command with Lower Addresses is issued at the next clock of the WRA command, the input data is
latched sequentially synchronizing with the both edges of DS input signal (Burst Write Operation). The data and DS inputs have to be
asserted in keeping with clock input after C A S latency-1 from the issuing of the LAL command. The DS have to be provided for a burst
length. The C A S latency and the burst type must be set in the Mode Register beforehand. The write operated bank goes back automatically to the idle state after IRC. W r i t e B u r s t L e n g t h i s c o n t r o l l e d b y V W 0 a n d V W 1 i n p u t s w i t h L A L c o m m a n d . S e e V W t r u t h t a b l e .
Auto-Refresh Operation (1st command + 2nd command = WRA + REF)
K4C89363AF is required to refresh like a standard SDRAM. The Auto-Refresh operation is begun with the REF command following to
the WRA command. The Auto-Refresh mode can be effective only when all banks are in the idle state and all DQ are in Hi-Z states. In
a point to notice, the write mode started with the WRA command is canceled by the REF command having gone into the next clock of
the WRA command instead of the LAL command. The minimum period between the Auto-Refresh command and the next command is
specified by IREFC. H o w e v e r , a b o u t a s y n t h e t i c a v e r a g e i n t e r v a l o f A u t o - R e f r e s h c o m m a n d , i t m u s t b e c a r e f u l . I n c a s e o f e q u a l l y d i s tributed refresh, Auto-Refresh command has to be issued within once for every 3.9 us by the maximum In case of burst refresh or random distributed refresh, the average interval of eight consecutive Auto-Refresh command has to be more than 400ns always. In oth er
words, the number of Auto-Refresh cycles which can be performed within 3.2 us (8x400ns) is to 8 times in the maximum.
Self-Refresh Operation (1st command + 2nd command = WRA + REF with PD ="L")
It is the function of Self-Refresh operation that refresh operation can be performed automatically by using an internal timer. When all
banks are in the idle state and all outputs are in Hi-z states, the K4C89363AF become Self-Refresh mode by issuing the Self-Refresh
c o m m a n d . P D h a s t o b e b r o u g h t t o " L o w " w i t h i n t FPDL f r o m t h e R E F c o m m a n d f o l l o w i n g t o t h e W R A c o m m a n d f o r a S e l f - R e f r e s h m o d e
entry. In order to satisfy the refresh period, the Self-Refresh entry command should be asserted within 3.9us after the latest AutoR e f r e s h c o m m a n d . O n c e t h e d e v i c e e n t e r s S e l f - R e f r e s h m o d e , t h e D E S L c o m m a n d m u s t b e c o n t i n u e d f o r I REFC period. In addition, it
is desirable that clock input is kept in ICKD period. The device is in Self-Refresh mode as long as P D held "Low". During Self-Refresh
mode, all input and output buffers except for PD are disabled, therefore the power dissipation lowers. Regarding a Self-Refresh mode
exit, P D h a s t o b e c h a n g e d o v e r f r o m " L o w " t o " H i g h " a l o n g w i t h t h e D E S L c o m m a n d , a n d t h e D E S L c o m m a n d h a s t o b e c o n t i n u o u s l y
i s s u e d i n t h e n u m b e r o f c l o c k s s p e c i f i e d b y I REFC . The Self-Refresh exit function is asynchronous operation. It is required that one
A u t o - R e f r e s h c o m m a n d i s i s s u e d t o a v o i d t h e v i o l e n c e o f t h e r e f r e s h p e r i o d j u s t a f t e r I REFC from Self-Refresh exit.
- 52 -
REV. 0.0 Nov. 2002
K4C89363AF
Power Down Mode( P D="L" )
When all banks are in the idle state and all DQ outputs are in Hi-Z states, the K4C89363AF become Power Down Mode by asserting
PD is "Low". When the device enters the Power Down Mode, all input and output buffers except for PD , CLK, C L K and QS. Therefore,
the power dissipation lowers. To exit the Power Down Mode, PD has to be brought to "High" and the DESL command has to be issued
for IP D A c y c l e a f t e r P D g o e s h i g h . T h e P o w e r D o w n e x i t f u n c t i o n i s a s y n c h r o n o u s o p e r a t i o n .
Mode Register Set (1st command + 2nd command = RDA + MRS)
When all banks are in the idle state, issuing the MRS command following to the RDA command can program the Mode Register. In a
point to notice, the read mode started with the RDA command is canceled by the MRS command having gone into the next clock of
the RDA command instead of the LAL command. The data to be set in the Mode Register is transferred using A0 to A14, BA0 and BA1
address inputs. The K4C89363AF have two mode registers. These are Regular and Extended Mode Register. The Regular or
Extended Mode Register is chosen by BA0 and BA1 in the MRS command.The Regular Mode Register designates the operation
mode for a read or write cycle. The Regular Mode Register has four function fields.
The four fields are as follows :
(R-1) Burst Length field to set the length of burst data
(R-2) Burst Type field to designate the lower address access sequence in a burst cycle
(R-3) C A S Latency field to set the access time in clock cycle
(R-4) Test Mode field to use for supplier only.
The Extended Mode Register has two function fields.
The two fields are as follows:
(E-1) DLL Switch field to choose either DLL enable or DLL disable
(E-2) Output Driver Impedance Control field.
(E-3) Data Strobe Select
Once these fields in the Mode Register are set up, the register contents are maintained until the Mode Register is set up again b y
another MRS command or power supply is lost. The initial value of the Regular or Extended Mode Register after power-up is undefined, therefore the Mode Register Set command must be issued before proper operation.
- 53 -
REV. 0.0 Nov. 2002
K4C89363AF
• Regular Mode Register/Extended Mode Register change bits (BA0, BA1)
These bits are used to choose either Regular MRS or Extended MRS
BA1
BA0
A14~A0
0
0
Regular MRS cycle
0
1
Extended MRS cycle
1
X
Reserved
Regular Mode Register Fields
(R-1) Burst Length field (A2 to A0)
This field specifies the data length for column access using the A2 to A0 pins and sets the Burst Length to be 2 or 4
words.
A2
A1
A0
Burst Length
0
0
0
Reserved
0
0
1
2 words
0
1
0
4 words
0
1
1
Reserved
1
X
X
Reserved
(R-2) Burst Type field (A3)
This Burst Type can be chosen Interleave mode or Sequential mode. When the A3 bit is " 0", Sequential mode is
selected. When the A3 bit is "1", Interleave mode is selected. Both burst types support burst length of 2 and 4 words.
A3
Burst Type
0
Sequential
1
Interleave
• Addressing sequence of Sequential mode (A3)
A column access is started from the inputted lower address and is performed by incrementing the lower address input to
the device.
C A S Latency = 4 (Free Running QS mode)
CK
CK
Command
RDA
LAL
QS
DQ
Data 0 Data 1 Data 2 Data 3
Addressing sequence for Sequential mode
Data
Access Address
Data 0
n
Burst Length
Data 1
n + 1
not carried from LA0~LA1
Data 2
n + 2
4 words(Address bits is LA1, LA0)
Data 3
n + 3
2 words (Address bits is LA0)
not carried from LA1~LA2
- 54 -
REV. 0.0 Nov. 2002
K4C89363AF
Functional Description (Continued)
• Addressing sequence of Inteleave mode
A column access is started from the inputted lower address and is performed by interleaving the address bits in the
sequence shown as the following.
Addressing sequence for Interleave mode
Data
Access Address
Burst Length
Data 0
...A8 A7 A6 A5 A4 A3 A2 A1 A0
Data 1
...A8 A7 A6 A5 A4 A3 A2 A1 A 0
Data 2
...A8 A7 A6 A5 A4 A3 A2 A 1 A 0
Data 3
...A8 A7 A6 A5 A4 A3 A2 A 1 A 0
2 words
4 words
(R-3) C A S Latency field (A6 to A4)
This field specifies the number of clock cycles from the assertion of the LAL command following the RDA command to
the first data read. The minimum values of C A S Latency depends on the frequency of CLK. In a write mode, the place of
clock which should input write data is C A S Latency cycles - 1.
Addressing sequence for Interleave mode
A6
A5
A4
CAS
Latency
0
0
0
Reserved
0
0
1
Reserved
0
1
0
Reserved
0
1
1
Reserved
1
0
0
4
1
0
1
5
1
1
0
6
1
1
1
Reserved
(R-4) Test Mode field (A7)
This bit is used to enter Test Mode for supplier only and must be set to "0" for normal operation.
(R-5) Reserved field in the Regular Mode Register
• Reserved bits (A8 to A14)
These bits are reserved for future operations. They must be set to "0" for normal operation.
- 55 -
REV. 0.0 Nov. 2002
K4C89363AF
Extended Mode Register Fields
(E-1) DLL Switch field (A0)
This bit is used to enable DLL. When the A0 bit is set "0", DLL is enabled.
(E-2) Output Driver Impedance Control field (A1 to A4)
This field is used to choose Output Driver Strength. Four types of Driver Strength are supported. QS and DQ Driver
Strength can be chosen separately. A2-A1 specified the DQ Driver Strength. A4-A3 specified the QS Driver Strength.
QS
DQ
Output Driver Impedance Control
A4
A3
A2
A1
0
0
0
0
Normal Output Driver
0
1
0
1
Strong Output Driver
1
0
1
0
Weaker Output Driver
1
1
1
1
Reserved
(E-3) Strobe Select (A6/A5)
Two types of strobe are supported. This field is used to choose the type of data strobe.
(1) Unidirectional DS/QS mode
Data strobe is separated DS for write strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data at Read operation.
(2) Unidirectional DS/Free running QS mode
Data strobe is separated DS for write strobe and QS for read strobe.
DS is used to sample write data at write operation. QS is aligned with read data and always clocking
A6
A5
Strobe Select
0
0
Reserved
0
1
Reserved
1
0
Unidirectional DS/QS mode
1
1
Unidirectional DS/Free running QS mode
(E-4)Reserved fied (A7 to A14)
These bits are reserved for future operations and must be set to "0" for normal operation.
- 56 -
REV. 0.0 Nov. 2002
K4C89363AF
Package Outline Drawing (FBGA 144ball, 1.0 x 0.8 mm) - will be added
- 57 -
REV. 0.0 Nov. 2002
K4C89363AF
General Information
Organization
F6 (667Mbps)
FB (600Mbps )
F5 (500Mbps )
288M(x32)
K4C89323AF-GCF6
K4C89323AF-GCFB
K4C89323AF-GCF5
288M(x36)
K4C89363AF-GCF6
K4C89363AF-GCFB
K4C89363AF-GCF5
1
5
2
3
4
6
7
8
K 4 C XX XX X X X
9
10
11
- X X XX
Memory
Speed
DRAM
Temperature & Power
Small Classification
Package
Density and Refresh
Version
Organization
Bank
Interface (VDD & VDDQ)
1. SAMSUNG Memory
: K
8. Version
F : 7th Generation
2. DRAM : 4
3. Small Classification
C
9. P a c k a g e
: Network-DRAM
T : TSOP II (400mil x 875mil)
4. Density & Refresh
89 : 288M
G : 144 FBGA
8K/32ms
10. Temperature & Power
C : (Commercial, Normal)
5. Organization
32
: x32
36
: x36
11. Speed
F6 : 667Mbps/pin (333MHz, CL=6)
FB : 600Mbps /pin (300MHz, CL=6)
6. Bank
F5 : 500Mbps/pin (250MHz, CL=6)
3 : 4 Bank
7. Interface (VDD & VDDQ)
A: SSTL-2(2.5V, 1.8V)
- 58 -
REV. 0.0 Nov. 2002