SAMSUNG KT3170N

KT3170
LOW POWER DTMF RECEIVER
INTRODUCTION
18-DIP-300A
The KT3170 is a complete Dual Tone Multiple Frequency
(DTMF) receiver that is fabricated by low power CMOS
and the Switched-Capacitor Filter technology.
This LSI consists of band split filters, which seperates
counting section which verifies the frequency and
duration of the received tones before passing the corresponding code to the output bus. It decodes all 16
DTMF tone pairs into a 4bits digital code.
The externally required components are minimized by
on chip provision of a differential input AMP, clock
oscillator and latched three state interface. The on chip
clock generator requires only a low cost TV cystal as
an external component.
FEATURES
•
•
•
•
•
•
Detects all 16 standard tones.
Low power consumption : 15mW (Typ)
Single power supply : 5V
Uses inexpensive 3.58MHz crystal
Three state outputs for microprocessor interface
Good quality and performance for using in
exchange system
• Power down mode/input inhibit
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
PABX
Central Office
Paging Systems
Remote Control
Credit Card Systems
Key Phone System
Answering Phone
Home Automation System
Mobile Radio
Remote Data Entry
ORDERING INFORMATION
Device
Package
Operating
KT3170N
18-DIP-300A
- 25°C ~ + 75°C
PIN CONFIGURATION
IN+
1
18
VDD
IN-
2
17
SI/GTO
GS
3
16
ESO
VREF
4
15
DSO
IIN
5
14
Q4
PDN
6
13
Q3
OSC1
7
12
Q2
OSC2
8
11
Q1
GND
9
10
OE
KT3170
Fig. 1
KT3170
LOW POWER DTMF RECEIVER
PIN DESCRIPTION
Pin No
Symbol
1
IN +
Non inverting input of the op amp.
2
IN -
Inverting input of the op amp.
3
GS
4
VREF
5
IIN
Description
Gain Select. The output used for gain adjustment of analog input
signal with a feedback resistor.
Reference Voltage output (VDD/2, Typ) can be used to bias the op amp
input of VDD/2.
Input inhibit. High input states inhibits the detection of tones. This
pin is pulled down internally.
Control input for the stand-by power down mode. Power down occurs
6
PDN
when the signal on this input is in high states. This pin is pulled down
internally.
7, 8
OSC1
OSC2
9
GND
10
OE
Clock input/output. A inexpensive 3.579545MHz crystal connected
between these pins completes internal oscillator. Also, external clock
can be used.
Ground pin.
Output Enable input. Outputs Q1-Q4 are CMOS push pull when OE is
High and open circuited (High impedance) when disabled by pulling OE
low. Internal pull up resistor built in.
Three state data output. When enabled by OE, these digital outputs
11 - 14
Q1 - Q4
provide the hexadecimal code corresponding to the last valid tone
pair received.
Delayed Steering Output. Indicates that valid frequencies have been
present for the required guard time, thus constituting a valid signal.
15
DSO
Presents a logic high when a received tone pair has been registered
and the output latch is updated. Returns to logic low when the
voltage on SI/GTO falls below VTH.
Early Steering Outputs. Indicates detection of valid tone output a
16
ESO
logic high immediately when the digital algorithm detects a
recognizable tone pair. Any momentary loss of signal condition will
cause ESO to return to low.
Steering Input/Guard Time Output. A voltage greater the VTS
detected at SI causes the device to register the detected tone pair
17
SI/GTO
and update the output latch. A voltage less than VTS frees the device
to accept a new tone pair. The GTO output acts to reset the external
steering time constant, and its state is a function of ESO and the
voltage on SI
18
VDD
Power Supply (+5V, Typ)
KT3170
LOW POWER DTMF RECEIVER
ABSOLUTE MAXIMUM RATINGS
Characteristics
Symbol
Value
Unit
Power Supper Voltage
VDD
6
V
Analog Input Voltage Range
VI (A)
- 0.3 ~ VDD + 0.3
V
Digital Input Voltage Range
VI (D)
- 0.3 ~ VDD + 0.3
V
VO
- 0.3 ~ VDD + 0.3
V
II
10
mA
Output Voltage Range
Current On Any Pin
Operating Temperature
T OPR
- 40 ~ + 85
°C
Storage Temperature
T STG
-60 ~ + 150
°C
ELECTRICAL CHARACTERISTICS
Characteristic
(VDD = 5V, Ta = 25°C, unless otherwise noted)
Symbol
Test Conditions
Min
Typ
Max
Unit
Operating Voltage
VDD
-
4.75
-
5.25
V
Operating Current
IDD
-
-
3.0
9.0
mA
Power Dissipation
PD
-
-
15
45
mW
Input Voltage Low
VIL
-
-
-
1.5
V
Input Voltage High
VIH
-
3.5
-
-
V
-
0.1
-
µA
Input Leakage Current
II (LKG)
VIN = GND or VDD
Pull Up Current On OE Pin
IPU
OE = GND
-
7.5
15
µA
Analog Input Impedance
RI
fIN = 1KHz
8
10
-
MΩ
Steering Input Threshold Voltage
VTH
2.2
-
2.5
V
Output Voltage Low
VOL
No Load
-
-
0.03
V
VOH
No Load
4.97
-
1
2.5
-
-
Output Current
IO (SINK)
VOL = 0.4V
Output Current
IO (SOURCE)
VOH = 4.6V
V
-
mA
mA
0.4
0.8
-
VREF Output Voltage
VO (REF)
-
2.4
-
2.8
VREF Output Resistance
RO (REF)
-
-
10
-
KΩ
-
-
25
-
mV
-
60
-
dB
Analog Input Offset Voltage
VIO
Power Supply Rejection Ratio
PSRR
Common Mode Rejection Ratio
CMRR
Open Loop Voltage Gain
Open Loop Unit Gain Bandwidth
Analog Output Voltage Swing
GV
Gain Setting Amp
at 1KHz
- 3.0V < VIN < 3.0V
-
60
-
dB
Gain Setting Amp at 1KHz
-
65
-
dB
BW
VO (P-P)
V
-
1.5
-
MHz
RL = 100K
-
-
4.5
-
VP-P
Acceptable Capacitive Load
CL
GS
-
100
-
pF
Acceptable Resistive Load
RL
GS
-
50
-
KΩ
VCM
No Load
-
3.0
-
VP-P
Analog Input Common Mode
Voltage Range
KT3170
LOW POWER DTMF RECEIVER
AC ELECTRICAL CHARACTERISTICS
Characteristic
Valid Input Signal Range
(VDD = 5V, Ta = 25°C, fCK = 3.579545MHz)
Symbol
Test Conditions
Min
Typ
Max
Unit
VI (VAL)
-
-29
-
1.0
dBm
TW
-
-
± 10
-
dB
-
± 1.5%
-
(each tone of composite signal)
Dual Tone Twist Accept
Acceptable Frequency Deviation
∆f
-
-
± 2Hz
∆fR
-
± 3.5%
-
-
-
T3rd
-
-25
-16
-
dB
Noise Tolerance
TN
-
-
-12
-
dB
Dial Tolerance
DT
-
18
22
-
dB
Crystal Clock Frequency
fCK
-
3.5759
3.5795
3.5831
MHz
Frequency Deviation Reject
Third Tone Tolerance
Maximum Clock Input Rise Time
tR (MAX)
External Clock
-
-
110
nS
Maximum Clock Input Fall Time
tF (MAX)
External Clock
-
-
110
nS
Acceptable Clock Input Duty Cycle
DCK
External Clock
40
50
60
%
Acceptable Capacitive Load
CL
OSC2 PIN
-
-
30
pF
Tone Present Detect Time
tDET (P)
-
5
11
14
mS
Tone Absent Detect Time
tDET (A)
-
0.5
4
8.5
mS
Minimum Tone Duration Accept
tTDA (MIN)
User Adjustable
-
-
40
mS
Maximum Tone Duration Reject
tTDR (MAX)
User Adjustable
20
-
-
mS
Acceptable Interdigit Pause
tIDP (A)
User Adjustable
-
-
40
mS
Rejectable Interdigit Pause
tIDP (R)
User Adjustable
20
-
-
mS
Propagation Delay Time SI to Q
tD (SI-Q)
OE = High
-
8
11
µS
Propagation Delay Time SI to DSO
tD (SI-D)
OE = High
-
12
16
µS
tSU
OE = High
-
3.4
-
µS
tD (QE-Q) EN
RL = 10K, CL = 50pF
-
50
60
nS
tD (OE-Q) DIS
RL = 10K, CL = 50pF
-
300
-
nS
Output Data Setup Q to DSO
Propagation Delay Time OE to Q
(Enable)
Propagation Delay Time OE to Q
(disable)
Notes :
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Digit sequence consists of all 16 DTMF tones.
Tone duration = 40mS, Tone pause = 40mS.
Nominal DTMF frequencies are used.
Both tones in the composite signal have an equal amplitude.
Tone pair is deviated by ± 1.5% ± 2Hz.
Bandwidth limited (3KHz) Gaussian Noise.
The precise dial tone frequencies are (350Hz and 440Hz) ± 2%.
For an error rate of better than 1 in 10000.
Referenced to lowest level frequency component in DTMF signal.
Minimum signal acceptance level is measured with specitied maximum frequency deviation.
This item also applies to a third tone injected onto the power supply.
Referenced to Fig. 1 Input DTMF tone level at -28dBm.
LOW POWER DTMF RECEIVER
KT3170
TEST CIRCUIT
6
3
18
14
13
12
11
10
R1
VCC
100K
R2
100K
0.1µF
X - tal 2
1
2
3
4
5
6
7
9
8
2
9
1
14
C1
LED
300K
8
9
10
11
12
13
7
6
5
4
3
2
R3
VCC
18
17
16
15
14
13
12
11
10
HL74HCTLS02
Fig. 2
VCC VCC
1
b
16
14
15
g
f
LT
13
c
10
11
9
d
12
a
VCC
HL74LS47
c
3
RDO
2
4
ABI
GND
d
5
6
7
8
VCC
R9
R10
R8
R7
R6
R5
R4
10
g
8 7
6
f com a b
9
3
4 5
a d com c dp
1 2
VCC
LTS542R
1
5
17
1
8
2
4
#
16
7
0
3
*
15
KS58006
4
5
6
X - tal 1
9
8
7
KT3170
KT3170
LOW POWER DTMF RECEIVER
TIMING DIAGRAM
tT D R
tTDA
(MAX)
tI D P
(MIN)
tI D P
(A)
DTMF #n
DTMF #n + 1
(R)
DTMF #n + 1
DTMF
INPUT
tD E T
tD E T
(P)
(A)
ESO
tPGT
tAGT
V
TH
SI/GTO
t SU
DECODED TONE # (n - 1)
Q1 - Q4
tD
(SI-D)
DSO
tD
(OE-Q) EN
tD
(OE-Q) DIS
OE
Fig. 3
DIGITAL OUTPUT
Outputs Q1-Q4 are CMOS push pull when enabled (EO = High) and open circuited (high impedance) when disabled
by pulling EO = Low. These digital outputs provide the hexadecimal code corresponding to the DTMF signals. The table
below describes the hexadecimal.
NO
LOW
HIGH
FREQUENCY FREQUENCY
OE
Q4
Q3
Q2
Q1
1
697
1209
H
0
0
0
1
2
697
1336
H
0
0
1
0
3
697
1477
H
0
0
1
1
4
770
1209
H
0
1
0
0
5
770
1336
H
0
1
0
1
6
770
1477
H
0
1
1
0
7
852
1209
H
0
1
1
1
8
852
1336
H
1
0
0
0
9
852
1477
H
1
0
0
1
0
941
1336
H
1
0
1
0
*
941
1209
H
1
0
1
1
#
941
1477
H
1
1
0
0
A
697
1633
H
1
1
0
1
B
770
1633
H
1
1
1
0
C
852
1633
H
1
1
1
1
D
941
1633
H
0
0
0
0
ANY
-
-
L
Z
Z
Z
Z
Z : High Impedance
H : High Logic Level
L : Low Logic Level
KT3170
LOW POWER DTMF RECEIVER
APPLICATION CIRCUIT
0.1uF
IN+
V DD
IN-
SI/GTO
0.1uF
+5V
100K
100K
GS
ESO
VREF
DSO
IIN
Q4
PDN
Q3
10nF
100K
C1
10nF
100K
R2
3.58MHz
Q2
OSC2
Q1
GND
OE
1
+
R1
INGS
C2
OSC1
IN+
300K
R5
R3
37.5K
R2
60K
_
2
3
100K
VREF
KT3170
4
R3 = R2R5/(R2+R5), VOLTAGE GAIN = R5/R1
2
2
INPUT IMPEDANCE : 2 √R1 + (1/wC)
All resistors are 1% tolerance
All capacitors are 5% tolerance
All resistors are 1% tolerance
All capacitors are 5% tolerance
Fig. 4 Single Ended Input Configuration
Fig. 5 Differential Ended Input Configuration
VDD
C
C
SI/GTO
SI/GTO
R1
R1
R2
R2
ESO
ESO
tPGT = (R1C) In (VDD/VDD-VTH)
tAGT = (RPC) In (VDD/VTST)
RP = R1R2/(R1 + R2)
(a) Decreasing tAGT (tPGT > tAGT)
tPGT = (RPC) In (VDD/VDD-VTH)
tAGT = (R1C) In (VDD/VTH)
RP = R1R2 (R1 + R2)
(a) Decreasing tPGT (tPGT< tAGT)
Fig. 6 Guard Time Adjustment
KT3170
KT3170
30pF
OSC1
OSC1
3.579545MH z
OSC2
OSC2
T O O S C 1 o f n ex t K T 3 1 7 0
Fig. 7 Oscillator Connection